organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­bromo-1,3-dihy­dr­oxy-9H-xanthen-9-one

aKey Laboratory for the Chemistry & Molecular Engineering of Medicinal Resources, Ministry of Education of China, School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin, 541004, People's Republic of China, and bDepartment of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
*Correspondence e-mail: jiangkeq@163.com

(Received 26 May 2013; accepted 12 July 2013; online 31 July 2013)

The title compound, C13H6Br2O4, derived from xanthone, a fundamental structural framework of active ingredients in many medicinal plants, and was synthesized by bromination of 1,3-di­hydroxyxanthen-9-one with N-bromo­succinimide. The mol­ecular conformation is essentially planar, the dihedral angle between the benzene rings being 1.1 (4)°. This conformation is favorable for the formation of an intra­molecular O—H⋯O hydrogen bond between a hy­droxy group and the xanthone carbonyl group. In the crystal, mol­ecules are associated into chains along the b-axis direction via C=O⋯H—O hydrogen bonds involving the other hy­droxy group.

Related literature

For the pharmacological activity of xanthone derivatives, see: Cheng et al. (2011[Cheng, J.-H., Huang, A.-M., Hour, T.-C., Yang, S.-C., Pu, Y.-S. & Lin, C.-N. (2011). Eur. J. Med. Chem. 46, 1222-1231.]); Dao et al. (2012[Dao, T. T., Dang, T. T., Nguyen, P. H., Kim, E., Thuong, P. T. & Oh, W. K. (2012). Bioorg. Med. Chem. Lett. 22, 3688-3692.]); Sousa et al. (2009[Sousa, E., Paiva, A., Nazareth, N., Gales, L., Damas, A. M., Nascimento, M. S. J. & Pinto, M. (2009). Eur. J. Med. Chem. 44, 3830-3835.]); Szkaradek et al. (2013[Szkaradek, N., Gunia, A., Waszkielewicz, A. M., Antkiewicz-Michaluk, L., Cegla, M., Szneler, E. & Marona, H. (2013). Bioorg. Med. Chem. 21, 1190-1198.]). For the synthesis of the xanthone used as a starting material, see: Liu et al. (2006[Liu, Y., Zou, L., Ma, L., Chen, W.-H., Wang, B. & Xu, Z.-L. (2006). Bioorg. Med. Chem. 14, 5683-5690.]). For related xanthone structures, see: Corrêa et al. (2010[Corrêa, R. S., dos Santos, M. H., Nagem, T. J. & Ellena, J. (2010). Struct. Chem. 21, 555-563.]).

[Scheme 1]

Experimental

Crystal data
  • C13H6Br2O4

  • Mr = 386.00

  • Orthorhombic, P n a 21

  • a = 18.4489 (15) Å

  • b = 16.9049 (13) Å

  • c = 3.8564 (3) Å

  • V = 1202.72 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.75 mm−1

  • T = 298 K

  • 0.28 × 0.09 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.254, Tmax = 0.688

  • 6188 measured reflections

  • 2120 independent reflections

  • 1830 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.070

  • S = 1.04

  • 2120 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 881 Friedel pairs

  • Absolute structure parameter: −0.008 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2 0.82 1.81 2.555 (7) 149
O3—H3⋯O2i 0.82 2.02 2.741 (7) 147
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Xanthone, also named as dibenzo-γ-pyrone, is a fundamental structural framework of active ingredients in many medicinal plants, which derivatives have broad pharmacological activities, such as antioxidant (Cheng et al., 2011), antitumor (Sousa et al., 2009), anticonvulsant (Szkaradek et al., 2013) and inhibition of neuraminidase activity (Dao et al., 2012). The title compound in this study is a new xanthone derivative, which was synthesized by bromination of 1,3-dihydroxy-xanthen-9-one (Liu et al., 2006) with NBS.

We report here the synthesis and crystal structure of 2,4-dibromo-1,3-dihydroxy-xanthen-9-one (C13H6Br2O4, Fig. 1). The molecule of the title compound has a planar conformation, with characteristic bond lengths C2—Br1 = 1.893 (5) Å and C4—Br2 = 1.902 (5) Å. The molecular conformation is mainly controlled by the O4—H4···O2 intramolecular hydrogen bond between the hydroxy OH group and the carbonyl O atom. Molecules are further connected into a one-dimensional supramolecular architecture via O3—H3···O2 intermolecular hydrogen bonds (Fig. 2). The title compound has the same planar molecular conformation as that reported for other 1-hydroxy-9H-xanthen-9-one derivatives (Corrêa et al., 2010), while the carbonyl bond length C7O2, 1.262 (7) Å, is slightly larger than the corresponding carbonyl bond lengths in these derivatives.

Related literature top

For the pharmacological activity of xanthone derivatives, see: Cheng et al. (2011); Dao et al. (2012); Sousa et al. (2009); Szkaradek et al. (2013). For the synthesis of the xanthone used as a starting material, see: Liu et al. (2006). For related xanthone structures, see: Corrêa et al. (2010).

Experimental top

The title compound was synthesized using the following procedure: in a 50 ml flask, 1,3-dihydroxy-xanthen-9-one (1010 mg, 4.43 mmol; Liu et al., 2006) was dissolved in CCl4 (15 ml), then NBS (500 mg, 2.83 mmol) was added. The mixture was stirred at room temperature for 24 h. The residue was washed with acetone and then filtered. The yellow solid was collected and dried. Recrystallization from methanol solution afforded 2,4-dibromo-1,3-dihydroxy-xanthen-9-one as yellow crystals. The compound identity was confirmed by NMR spectroscopy. 1H NMR (500 MHz, DMSO-d6): 13.63 (s, 1H), 8.09 (dd, J = 7.9, 1.6 Hz, 1H), 7.87 (td, J = 7.8, 1.5 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H).

Refinement top

The H atoms on C and O atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the title compound.
2,4-Dibromo-1,3-dihydroxy-9H-xanthen-9-one top
Crystal data top
C13H6Br2O4F(000) = 744
Mr = 386.00Dx = 2.132 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2778 reflections
a = 18.4489 (15) Åθ = 3.3–26.2°
b = 16.9049 (13) ŵ = 6.75 mm1
c = 3.8564 (3) ÅT = 298 K
V = 1202.72 (16) Å3Block, yellow
Z = 40.28 × 0.09 × 0.06 mm
Data collection top
Bruker SMART CCD
diffractometer
2120 independent reflections
Radiation source: fine-focus sealed tube1830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2121
Tmin = 0.254, Tmax = 0.688k = 2015
6188 measured reflectionsl = 44
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0232P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
2120 reflectionsΔρmax = 0.43 e Å3
172 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 881 Friedel pairs
0 constraintsAbsolute structure parameter: 0.008 (16)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H6Br2O4V = 1202.72 (16) Å3
Mr = 386.00Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.4489 (15) ŵ = 6.75 mm1
b = 16.9049 (13) ÅT = 298 K
c = 3.8564 (3) Å0.28 × 0.09 × 0.06 mm
Data collection top
Bruker SMART CCD
diffractometer
2120 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1830 reflections with I > 2σ(I)
Tmin = 0.254, Tmax = 0.688Rint = 0.076
6188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.43 e Å3
S = 1.04Δρmin = 0.33 e Å3
2120 reflectionsAbsolute structure: Flack (1983), 881 Friedel pairs
172 parametersAbsolute structure parameter: 0.008 (16)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.65912 (3)1.09241 (3)0.07056 (16)0.03711 (16)
Br20.91885 (3)0.97740 (3)0.54899 (17)0.03972 (17)
O10.61335 (17)0.9267 (2)0.0466 (12)0.0366 (9)
O20.72160 (18)0.7368 (2)0.4658 (13)0.0483 (11)
O30.8177 (2)1.0920 (2)0.2248 (11)0.0408 (11)
H30.79041.12480.13770.061*
O40.83232 (18)0.8253 (2)0.5513 (13)0.0452 (11)
H40.80740.78510.55210.068*
C10.6824 (3)0.9348 (3)0.1582 (13)0.0262 (13)
C20.7137 (3)1.0086 (3)0.1241 (13)0.0277 (13)
C30.7844 (3)1.0223 (3)0.2401 (14)0.0293 (13)
C40.8233 (3)0.9589 (3)0.3828 (15)0.0310 (14)
C50.7941 (3)0.8853 (3)0.4141 (16)0.0323 (13)
C60.7210 (3)0.8704 (3)0.2998 (14)0.0305 (14)
C70.6879 (3)0.7943 (4)0.3340 (15)0.0351 (15)
C80.6131 (3)0.7875 (3)0.2015 (14)0.0337 (14)
C90.5753 (3)0.7164 (4)0.2048 (17)0.0400 (15)
H90.59770.67070.28580.048*
C100.5053 (3)0.7135 (4)0.0887 (19)0.0479 (16)
H100.47970.66610.09780.057*
C110.4724 (3)0.7802 (4)0.0412 (18)0.0458 (15)
H110.42510.77700.12360.055*
C120.5080 (3)0.8511 (3)0.0515 (17)0.0410 (14)
H120.48530.89650.13330.049*
C130.5793 (3)0.8533 (3)0.0642 (17)0.0314 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0367 (3)0.0309 (3)0.0438 (3)0.0061 (2)0.0024 (3)0.0080 (3)
Br20.0277 (3)0.0461 (4)0.0454 (3)0.0007 (2)0.0040 (3)0.0016 (3)
O10.0249 (19)0.033 (2)0.052 (2)0.0044 (15)0.007 (2)0.008 (2)
O20.037 (2)0.027 (2)0.081 (3)0.0009 (17)0.006 (3)0.015 (2)
O30.040 (2)0.025 (2)0.058 (3)0.0020 (19)0.005 (2)0.012 (2)
O40.032 (2)0.037 (2)0.067 (3)0.0062 (16)0.010 (3)0.015 (2)
C10.025 (3)0.026 (3)0.027 (3)0.006 (2)0.000 (2)0.002 (2)
C20.028 (3)0.028 (3)0.026 (4)0.012 (2)0.002 (2)0.001 (2)
C30.028 (3)0.028 (3)0.032 (3)0.003 (3)0.005 (2)0.003 (3)
C40.022 (3)0.036 (3)0.034 (3)0.000 (2)0.006 (3)0.002 (3)
C50.027 (3)0.036 (3)0.034 (3)0.006 (2)0.005 (3)0.008 (3)
C60.033 (3)0.023 (3)0.036 (3)0.008 (2)0.003 (2)0.005 (2)
C70.028 (3)0.037 (4)0.041 (4)0.001 (3)0.008 (3)0.003 (3)
C80.037 (4)0.034 (4)0.031 (3)0.002 (3)0.001 (3)0.003 (3)
C90.038 (4)0.028 (3)0.054 (4)0.004 (3)0.002 (3)0.001 (3)
C100.040 (4)0.048 (4)0.056 (4)0.008 (3)0.003 (3)0.003 (3)
C110.030 (3)0.056 (4)0.051 (4)0.007 (3)0.004 (3)0.001 (4)
C120.028 (3)0.048 (4)0.048 (4)0.006 (3)0.008 (3)0.001 (3)
C130.034 (3)0.032 (3)0.029 (3)0.001 (2)0.010 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1—C21.893 (5)C5—C61.442 (7)
Br2—C41.902 (5)C6—C71.429 (8)
O1—C11.351 (6)C7—C81.476 (8)
O1—C131.393 (6)C8—C131.379 (7)
O2—C71.262 (7)C8—C91.390 (8)
O3—C31.331 (7)C9—C101.368 (8)
O3—H30.8200C9—H90.9300
O4—C51.343 (6)C10—C111.374 (8)
O4—H40.8200C10—H100.9300
C1—C21.381 (7)C11—C121.368 (8)
C1—C61.411 (7)C11—H110.9300
C2—C31.398 (7)C12—C131.389 (7)
C3—C41.402 (7)C12—H120.9300
C4—C51.361 (7)
C1—O1—C13119.9 (4)O2—C7—C6121.3 (5)
C3—O3—H3109.5O2—C7—C8122.7 (5)
C5—O4—H4109.5C6—C7—C8115.9 (5)
O1—C1—C2117.1 (4)C13—C8—C9118.4 (5)
O1—C1—C6121.4 (5)C13—C8—C7119.5 (5)
C2—C1—C6121.5 (5)C9—C8—C7122.2 (5)
C1—C2—C3120.6 (5)C10—C9—C8120.0 (6)
C1—C2—Br1119.4 (4)C10—C9—H9120.0
C3—C2—Br1120.0 (4)C8—C9—H9120.0
O3—C3—C2124.2 (5)C9—C10—C11120.5 (6)
O3—C3—C4117.3 (5)C9—C10—H10119.8
C2—C3—C4118.5 (5)C11—C10—H10119.8
C5—C4—C3122.1 (5)C12—C11—C10121.2 (5)
C5—C4—Br2119.1 (4)C12—C11—H11119.4
C3—C4—Br2118.8 (4)C10—C11—H11119.4
O4—C5—C4121.2 (5)C11—C12—C13117.9 (5)
O4—C5—C6118.6 (5)C11—C12—H12121.1
C4—C5—C6120.2 (5)C13—C12—H12121.1
C1—C6—C7121.0 (5)C8—C13—C12122.0 (5)
C1—C6—C5117.1 (5)C8—C13—O1122.3 (5)
C7—C6—C5121.9 (5)C12—C13—O1115.7 (5)
C13—O1—C1—C2178.1 (5)O4—C5—C6—C71.1 (9)
C13—O1—C1—C61.2 (8)C4—C5—C6—C7178.8 (5)
O1—C1—C2—C3178.6 (5)C1—C6—C7—O2178.7 (5)
C6—C1—C2—C32.1 (8)C5—C6—C7—O20.1 (9)
O1—C1—C2—Br10.3 (6)C1—C6—C7—C82.1 (8)
C6—C1—C2—Br1179.6 (4)C5—C6—C7—C8179.2 (5)
C1—C2—C3—O3178.2 (5)O2—C7—C8—C13179.3 (6)
Br1—C2—C3—O30.1 (8)C6—C7—C8—C131.6 (8)
C1—C2—C3—C41.7 (8)O2—C7—C8—C91.8 (9)
Br1—C2—C3—C4180.0 (4)C6—C7—C8—C9177.3 (5)
O3—C3—C4—C5179.3 (5)C13—C8—C9—C103.0 (9)
C2—C3—C4—C50.6 (9)C7—C8—C9—C10178.0 (6)
O3—C3—C4—Br21.0 (7)C8—C9—C10—C111.9 (11)
C2—C3—C4—Br2178.9 (4)C9—C10—C11—C121.3 (12)
C3—C4—C5—O4179.9 (6)C10—C11—C12—C131.9 (10)
Br2—C4—C5—O41.8 (8)C9—C8—C13—C123.7 (9)
C3—C4—C5—C60.2 (9)C7—C8—C13—C12177.4 (6)
Br2—C4—C5—C6178.1 (4)C9—C8—C13—O1179.2 (6)
O1—C1—C6—C70.8 (8)C7—C8—C13—O10.3 (9)
C2—C1—C6—C7179.9 (5)C11—C12—C13—C83.1 (10)
O1—C1—C6—C5179.5 (5)C11—C12—C13—O1179.6 (6)
C2—C1—C6—C51.2 (8)C1—O1—C13—C81.7 (9)
O4—C5—C6—C1179.8 (5)C1—O1—C13—C12179.0 (5)
C4—C5—C6—C10.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···Br10.822.613.139 (5)124
O4—H4···O20.821.812.555 (7)149
O3—H3···O2i0.822.022.741 (7)147
Symmetry code: (i) x+3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.821.812.555 (7)149.4
O3—H3···O2i0.822.022.741 (7)146.7
Symmetry code: (i) x+3/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported financially by grants from the National Natural Science Foundation of PRC (21002015) and the Natural Science Foundation of Guangxi (2010GXNSFB013013).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCheng, J.-H., Huang, A.-M., Hour, T.-C., Yang, S.-C., Pu, Y.-S. & Lin, C.-N. (2011). Eur. J. Med. Chem. 46, 1222–1231.  Web of Science CrossRef CAS PubMed
First citationCorrêa, R. S., dos Santos, M. H., Nagem, T. J. & Ellena, J. (2010). Struct. Chem. 21, 555–563.
First citationDao, T. T., Dang, T. T., Nguyen, P. H., Kim, E., Thuong, P. T. & Oh, W. K. (2012). Bioorg. Med. Chem. Lett. 22, 3688–3692.  Web of Science CrossRef CAS PubMed
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationLiu, Y., Zou, L., Ma, L., Chen, W.-H., Wang, B. & Xu, Z.-L. (2006). Bioorg. Med. Chem. 14, 5683–5690.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSousa, E., Paiva, A., Nazareth, N., Gales, L., Damas, A. M., Nascimento, M. S. J. & Pinto, M. (2009). Eur. J. Med. Chem. 44, 3830–3835.  Web of Science CSD CrossRef PubMed CAS
First citationSzkaradek, N., Gunia, A., Waszkielewicz, A. M., Antkiewicz-Michaluk, L., Cegla, M., Szneler, E. & Marona, H. (2013). Bioorg. Med. Chem. 21, 1190–1198.  Web of Science CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds