organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(2-Chloro-8-methyl­quinolin-3-yl)-1-(2,4-di­methyl­quinolin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India, bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 July 2013; accepted 13 July 2013; online 20 July 2013)

In the mol­ecule of the title compound, C24H19ClN2O, the terminal quinolinyl residues are close to perpendicular to each other [dihedral angle 83.72 (4)°]. The quinolinyl residues are connected by and inclined to the prop-2-en-1-one bridge, with the Car—Car—C—C (ar = aromatic) torsion angles being 71.01 (17) and 20.6 (2)°. The crystal structure features phen­yl–carbonyl C—H⋯O inter­actions and ππ inter­actions between centrosymmetrically related quinolinyl residues [3.5341 (10) and 3.8719 (9) Å], which together lead to a three-dimensional architecture.

Related literature

For background to quinoline chalcones and for a related structure, see: Prasath et al. (2013[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1274.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19ClN2O

  • Mr = 386.86

  • Triclinic, [P \overline 1]

  • a = 7.4150 (5) Å

  • b = 9.9045 (6) Å

  • c = 14.0696 (9) Å

  • α = 71.072 (5)°

  • β = 88.427 (5)°

  • γ = 72.552 (5)°

  • V = 929.66 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.853, Tmax = 1.000

  • 6846 measured reflections

  • 3811 independent reflections

  • 3587 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.04

  • 3811 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O1i 0.95 2.58 3.364 (2) 140
Symmetry code: (i) x-1, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

For the background to biological activities, utility as intermediates in organic synthesis and photophysical properties of quinolines, as well as the bio-activities of quinolinyl chalcones and a related structure, see the Introduction to Prasath et al. (2013).

In (I), Fig. 1, the dihedral angle between the quinolinyl rings is 83.72 (4)°. The conformation about the ethylene bond [C13C14 = 1.3333 (19) Å] is E. The central prop-2-en-1-one residue, comprising the O1 and C12–C15 atoms, is twisted, as manifested in the O1—C12—C13—C14 torsion angle of 16.4 (2)°. The N1- and N2-containing quinolinyl rings are also twisted with respect to the central bridge, as seen in the C7—C8—C12—C13 and C13—C14—C15—C23 torsion angles of 71.01 (17) and 20.6 (2)°, respectively.

In the most closely related structure available for comparison, (II), namely (2E)-3-(6-chloro-2-methoxyquinolin-3-yl)-1-(5,7-dimethylquinolin-6-yl)prop-2-en-1-one (Prasath et al., 2013), the dihedral angle between the quinolinyl residues is 63.30 (5)°, indicating a more compact configuration than that in (I); the central residue in (II) is planar. Finally, when the structures are viewed normal to the ethylene bond, the pyridyl-N atoms in (I) can be described as anti, whereas they are closer to syn in (II).

In the crystal, linear supramolecular chains are formed by phenyl-C—H···O(carbonyl) interactions, Table 1. These, along with ππ interactions between the rings of centrosymmetrically related N1-quinolinyl residues [3.7578 (9) Å; angle of inclination = 1.91 (7)° for symmetry operation 1 - x, -y, 1 - z] and between the rings of centrosymmetrically related N2-quinolinyl residues [3.5767 (9) Å; angle of inclination = 0.99 (7)° for symmetry operation -x, 2 - y, -z], connect the molecules into a three-dimensional architecture, Fig. 2.

Related literature top

For background to quinoline chalcones and for a related structure, see: Prasath et al. (2013).

Experimental top

A mixture of 2,4-dimethyl-3-acetylquinoline (200 mg, 0.001 M) and 2-chloro-8-methylquinoline-3-carbaldehyde (200 mg, 0.001 M) in methanol (20 ml) containing 0.2 g of potassium hydroxide was stirred at room temperature for 12 h. Then the reaction mixture was neutralized with dilute acetic acid and the resultant solid was filtered, dried and purified by column chromatography using ethyl acetate–hexane (1:1) mixture to afford (I). Re-crystallization was by slow evaporation of an acetone solution of (I), which yielded pale-yellow blocks in 78% yield; m.p. 458–460 K.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding-model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view, in projection down the a axis, of the unit-cell contents of (I). The C—H···O and ππ interactions are shown as orange and purple blue dashed lines, respectively.
(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one top
Crystal data top
C24H19ClN2OZ = 2
Mr = 386.86F(000) = 404
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.4150 (5) ÅCell parameters from 4165 reflections
b = 9.9045 (6) Åθ = 3.3–76.5°
c = 14.0696 (9) ŵ = 1.95 mm1
α = 71.072 (5)°T = 100 K
β = 88.427 (5)°Block, pale-yellow
γ = 72.552 (5)°0.25 × 0.25 × 0.25 mm
V = 929.66 (10) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3811 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3587 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 3.3°
ω scansh = 96
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1211
Tmin = 0.853, Tmax = 1.000l = 1717
6846 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.4107P]
where P = (Fo2 + 2Fc2)/3
3811 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C24H19ClN2Oγ = 72.552 (5)°
Mr = 386.86V = 929.66 (10) Å3
Triclinic, P1Z = 2
a = 7.4150 (5) ÅCu Kα radiation
b = 9.9045 (6) ŵ = 1.95 mm1
c = 14.0696 (9) ÅT = 100 K
α = 71.072 (5)°0.25 × 0.25 × 0.25 mm
β = 88.427 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3811 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3587 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 1.000Rint = 0.014
6846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3811 reflectionsΔρmin = 0.30 e Å3
256 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50310 (4)0.74397 (4)0.07296 (2)0.02306 (10)
O10.77211 (15)0.37500 (12)0.27778 (8)0.0303 (2)
N10.59497 (15)0.23114 (12)0.58173 (8)0.0197 (2)
N20.27853 (15)0.99608 (13)0.06433 (8)0.0204 (2)
C10.45484 (18)0.16757 (15)0.57864 (10)0.0191 (3)
C20.40578 (19)0.08004 (16)0.67102 (10)0.0230 (3)
H20.46750.06900.73260.028*
C30.2705 (2)0.01120 (16)0.67258 (11)0.0248 (3)
H30.23870.04710.73510.030*
C40.1783 (2)0.02640 (16)0.58199 (11)0.0250 (3)
H40.08630.02330.58350.030*
C50.22039 (19)0.11248 (15)0.49156 (10)0.0222 (3)
H50.15630.12270.43090.027*
C60.35811 (18)0.18627 (14)0.48764 (10)0.0187 (3)
C70.40656 (18)0.27748 (14)0.39547 (10)0.0191 (3)
C80.55043 (18)0.33647 (14)0.40032 (10)0.0192 (3)
C90.64203 (18)0.31126 (14)0.49597 (10)0.0189 (3)
C100.3031 (2)0.30187 (16)0.29759 (10)0.0234 (3)
H10A0.34530.37270.24230.035*
H10B0.16640.34260.30160.035*
H10C0.33040.20610.28530.035*
C110.79125 (19)0.38402 (16)0.50126 (11)0.0232 (3)
H11A0.84280.35140.57130.035*
H11B0.73460.49330.47660.035*
H11C0.89340.35470.45940.035*
C120.61717 (19)0.42581 (16)0.30561 (10)0.0219 (3)
C130.4853 (2)0.57651 (16)0.25090 (10)0.0233 (3)
H130.38300.62050.28440.028*
C140.50609 (19)0.65201 (16)0.15594 (10)0.0216 (3)
H140.60570.60400.12280.026*
C150.38631 (18)0.80355 (15)0.09910 (10)0.0204 (3)
C160.37602 (18)0.86237 (15)0.00807 (10)0.0198 (3)
C170.17413 (18)1.09272 (15)0.01732 (10)0.0203 (3)
C180.06749 (19)1.24027 (16)0.07813 (11)0.0226 (3)
C190.0346 (2)1.33729 (16)0.03049 (12)0.0261 (3)
H190.10561.43630.07020.031*
C200.0373 (2)1.29435 (17)0.07542 (12)0.0264 (3)
H200.10871.36440.10570.032*
C210.0626 (2)1.15243 (17)0.13450 (11)0.0243 (3)
H210.05971.12350.20570.029*
C220.17080 (19)1.04805 (16)0.08914 (10)0.0209 (3)
C230.27938 (19)0.90076 (16)0.14569 (10)0.0213 (3)
H230.27900.86780.21710.026*
C240.0660 (2)1.28611 (17)0.19129 (11)0.0274 (3)
H24A0.01111.39130.22110.041*
H24B0.01201.22270.21510.041*
H24C0.19591.27410.21130.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02514 (17)0.02405 (17)0.01915 (17)0.00578 (13)0.00524 (12)0.00798 (12)
O10.0269 (5)0.0329 (6)0.0264 (5)0.0062 (4)0.0094 (4)0.0069 (4)
N10.0197 (5)0.0203 (5)0.0189 (5)0.0053 (4)0.0017 (4)0.0067 (4)
N20.0193 (5)0.0222 (6)0.0213 (5)0.0090 (4)0.0033 (4)0.0071 (5)
C10.0180 (6)0.0184 (6)0.0198 (6)0.0032 (5)0.0017 (5)0.0072 (5)
C20.0235 (6)0.0255 (7)0.0181 (6)0.0068 (5)0.0009 (5)0.0053 (5)
C30.0241 (7)0.0251 (7)0.0213 (7)0.0078 (6)0.0041 (5)0.0028 (5)
C40.0221 (6)0.0243 (7)0.0276 (7)0.0091 (5)0.0018 (5)0.0055 (6)
C50.0209 (6)0.0218 (6)0.0230 (7)0.0056 (5)0.0006 (5)0.0069 (5)
C60.0181 (6)0.0175 (6)0.0190 (6)0.0023 (5)0.0017 (5)0.0069 (5)
C70.0195 (6)0.0176 (6)0.0180 (6)0.0015 (5)0.0011 (5)0.0067 (5)
C80.0200 (6)0.0174 (6)0.0182 (6)0.0029 (5)0.0038 (5)0.0059 (5)
C90.0181 (6)0.0177 (6)0.0196 (6)0.0026 (5)0.0026 (5)0.0073 (5)
C100.0255 (7)0.0241 (7)0.0189 (6)0.0072 (5)0.0004 (5)0.0052 (5)
C110.0212 (6)0.0235 (7)0.0256 (7)0.0079 (5)0.0027 (5)0.0083 (5)
C120.0236 (6)0.0238 (7)0.0195 (6)0.0092 (5)0.0037 (5)0.0073 (5)
C130.0255 (7)0.0225 (7)0.0218 (6)0.0082 (5)0.0052 (5)0.0065 (5)
C140.0221 (6)0.0239 (7)0.0208 (6)0.0093 (5)0.0041 (5)0.0080 (5)
C150.0198 (6)0.0224 (7)0.0210 (6)0.0109 (5)0.0031 (5)0.0061 (5)
C160.0191 (6)0.0225 (6)0.0207 (6)0.0096 (5)0.0042 (5)0.0083 (5)
C170.0174 (6)0.0220 (7)0.0243 (7)0.0101 (5)0.0033 (5)0.0079 (5)
C180.0200 (6)0.0233 (7)0.0260 (7)0.0107 (5)0.0023 (5)0.0066 (5)
C190.0212 (6)0.0216 (7)0.0355 (8)0.0074 (5)0.0018 (6)0.0087 (6)
C200.0222 (6)0.0275 (7)0.0362 (8)0.0107 (6)0.0080 (6)0.0172 (6)
C210.0235 (7)0.0296 (7)0.0274 (7)0.0150 (6)0.0076 (5)0.0134 (6)
C220.0196 (6)0.0244 (7)0.0239 (7)0.0126 (5)0.0044 (5)0.0096 (5)
C230.0225 (6)0.0252 (7)0.0199 (6)0.0134 (5)0.0039 (5)0.0072 (5)
C240.0267 (7)0.0250 (7)0.0262 (7)0.0073 (6)0.0006 (6)0.0036 (6)
Geometric parameters (Å, º) top
Cl1—C161.7554 (14)C11—H11A0.9800
O1—C121.2177 (17)C11—H11B0.9800
N1—C91.3150 (17)C11—H11C0.9800
N1—C11.3749 (17)C12—C131.4825 (19)
N2—C161.2963 (18)C13—C141.3333 (19)
N2—C171.3752 (18)C13—H130.9500
C1—C61.4161 (18)C14—C151.4636 (19)
C1—C21.4161 (18)C14—H140.9500
C2—C31.368 (2)C15—C231.3814 (19)
C2—H20.9500C15—C161.4243 (18)
C3—C41.406 (2)C17—C221.4193 (19)
C3—H30.9500C17—C181.423 (2)
C4—C51.370 (2)C18—C191.378 (2)
C4—H40.9500C18—C241.507 (2)
C5—C61.4136 (19)C19—C201.412 (2)
C5—H50.9500C19—H190.9500
C6—C71.4269 (18)C20—C211.366 (2)
C7—C81.3739 (19)C20—H200.9500
C7—C101.5082 (18)C21—C221.4221 (19)
C8—C91.4371 (18)C21—H210.9500
C8—C121.5050 (18)C22—C231.410 (2)
C9—C111.5055 (18)C23—H230.9500
C10—H10A0.9800C24—H24A0.9800
C10—H10B0.9800C24—H24B0.9800
C10—H10C0.9800C24—H24C0.9800
C9—N1—C1118.17 (11)O1—C12—C8120.60 (12)
C16—N2—C17117.78 (12)C13—C12—C8116.16 (11)
N1—C1—C6122.93 (12)C14—C13—C12121.82 (13)
N1—C1—C2118.08 (12)C14—C13—H13119.1
C6—C1—C2119.00 (12)C12—C13—H13119.1
C3—C2—C1120.74 (13)C13—C14—C15124.62 (13)
C3—C2—H2119.6C13—C14—H14117.7
C1—C2—H2119.6C15—C14—H14117.7
C2—C3—C4120.19 (13)C23—C15—C16115.37 (12)
C2—C3—H3119.9C23—C15—C14122.38 (12)
C4—C3—H3119.9C16—C15—C14122.23 (12)
C5—C4—C3120.42 (13)N2—C16—C15126.49 (13)
C5—C4—H4119.8N2—C16—Cl1115.42 (10)
C3—C4—H4119.8C15—C16—Cl1118.08 (10)
C4—C5—C6120.68 (13)N2—C17—C22121.50 (13)
C4—C5—H5119.7N2—C17—C18118.38 (12)
C6—C5—H5119.7C22—C17—C18120.12 (13)
C5—C6—C1118.94 (12)C19—C18—C17118.10 (13)
C5—C6—C7122.83 (12)C19—C18—C24121.77 (13)
C1—C6—C7118.22 (12)C17—C18—C24120.12 (13)
C8—C7—C6117.71 (12)C18—C19—C20122.18 (14)
C8—C7—C10122.91 (12)C18—C19—H19118.9
C6—C7—C10119.36 (12)C20—C19—H19118.9
C7—C8—C9120.42 (12)C21—C20—C19120.24 (13)
C7—C8—C12120.60 (12)C21—C20—H20119.9
C9—C8—C12118.97 (12)C19—C20—H20119.9
N1—C9—C8122.49 (12)C20—C21—C22119.83 (13)
N1—C9—C11117.30 (12)C20—C21—H21120.1
C8—C9—C11120.14 (12)C22—C21—H21120.1
C7—C10—H10A109.5C23—C22—C17117.73 (13)
C7—C10—H10B109.5C23—C22—C21122.75 (13)
H10A—C10—H10B109.5C17—C22—C21119.52 (13)
C7—C10—H10C109.5C15—C23—C22121.13 (12)
H10A—C10—H10C109.5C15—C23—H23119.4
H10B—C10—H10C109.5C22—C23—H23119.4
C9—C11—H11A109.5C18—C24—H24A109.5
C9—C11—H11B109.5C18—C24—H24B109.5
H11A—C11—H11B109.5H24A—C24—H24B109.5
C9—C11—H11C109.5C18—C24—H24C109.5
H11A—C11—H11C109.5H24A—C24—H24C109.5
H11B—C11—H11C109.5H24B—C24—H24C109.5
O1—C12—C13123.24 (12)
C9—N1—C1—C60.82 (19)O1—C12—C13—C1416.4 (2)
C9—N1—C1—C2179.35 (12)C8—C12—C13—C14164.32 (13)
N1—C1—C2—C3178.51 (12)C12—C13—C14—C15177.18 (12)
C6—C1—C2—C31.7 (2)C13—C14—C15—C2320.6 (2)
C1—C2—C3—C40.1 (2)C13—C14—C15—C16161.14 (13)
C2—C3—C4—C51.3 (2)C17—N2—C16—C150.2 (2)
C3—C4—C5—C60.6 (2)C17—N2—C16—Cl1179.09 (9)
C4—C5—C6—C11.2 (2)C23—C15—C16—N20.5 (2)
C4—C5—C6—C7179.81 (13)C14—C15—C16—N2177.91 (12)
N1—C1—C6—C5177.89 (12)C23—C15—C16—Cl1178.36 (9)
C2—C1—C6—C52.28 (19)C14—C15—C16—Cl13.26 (17)
N1—C1—C6—C71.16 (19)C16—N2—C17—C220.64 (19)
C2—C1—C6—C7178.67 (12)C16—N2—C17—C18179.55 (11)
C5—C6—C7—C8176.23 (12)N2—C17—C18—C19179.07 (12)
C1—C6—C7—C82.78 (18)C22—C17—C18—C191.12 (19)
C5—C6—C7—C102.20 (19)N2—C17—C18—C241.80 (19)
C1—C6—C7—C10178.79 (12)C22—C17—C18—C24178.01 (12)
C6—C7—C8—C92.55 (19)C17—C18—C19—C200.5 (2)
C10—C7—C8—C9179.08 (12)C24—C18—C19—C20178.63 (13)
C6—C7—C8—C12176.23 (11)C18—C19—C20—C210.4 (2)
C10—C7—C8—C122.1 (2)C19—C20—C21—C220.5 (2)
C1—N1—C9—C81.12 (19)N2—C17—C22—C230.34 (19)
C1—N1—C9—C11178.05 (11)C18—C17—C22—C23179.86 (11)
C7—C8—C9—N10.6 (2)N2—C17—C22—C21179.24 (11)
C12—C8—C9—N1178.20 (12)C18—C17—C22—C210.95 (19)
C7—C8—C9—C11176.24 (12)C20—C21—C22—C23178.96 (12)
C12—C8—C9—C114.96 (18)C20—C21—C22—C170.12 (19)
C7—C8—C12—O1109.66 (16)C16—C15—C23—C220.77 (18)
C9—C8—C12—O169.14 (18)C14—C15—C23—C22177.61 (12)
C7—C8—C12—C1371.01 (17)C17—C22—C23—C150.40 (19)
C9—C8—C12—C13110.19 (14)C21—C22—C23—C15178.47 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.952.583.364 (2)140
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.952.583.364 (2)140
Symmetry code: (i) x1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: prasad24487@yahoo.co.in.

Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship [grant No. 09/919/(0014)/2012 EMR-I]. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1274.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds