supplementary materials


hy2630 scheme

Acta Cryst. (2013). E69, m428    [ doi:10.1107/S1600536813015493 ]

Bis(1-ethyl-4,4'-bipyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-[kappa]2S,S')nickelate(II)

Y. Chen, W. Ning and J.-L. Liu

Abstract top

In the anion of the title compound, (C12H13N2)[Ni(C4N2S2)2], the NiII atom is coordinated by four S atoms from two 1,2-dicyanoethene-1,2-dithiolate (mnt) ligands in a suqare-planar geometry. Weak C-H...N and C-H...S hydrogen bonds between the 1-ethyl-4,4'-bipyridin-1-ium cations and mnt anions and weak [pi]-[pi] interactions between the pyridine rings of the cations [centroid-centroid distances = 3.808 (3) and 3.972 (3) Å] lead to a two-dimensional network parallel to (010).

Comment top

Bis(1,2-dithiolene) complexes of transition metals as an important part of the molecular-based materials have been widely studied due to their novel applications in the areas of materials science, medicines and biology (Duan et al., 2010; Kato, 2004). It is known that weak inter- or intramolecular interactions in the complexes could influence on their properties. Herein we report the crystal structure of the title compound. The bond lengths and angles in the title compound (Fig. 1) are within normal ranges (Duan et al., 2011; Liu et al., 2011). Weak C—H···N and C—H···S hydrogen bonds between the 1-ethyl-4,4'-bipyridin-1-ium cations and 1,2-dicyanoethene-1,2-dithiolate anions and weak ππ interactions between the pyridine rings of the cations [centroid–centroid distances = 3.808 (3) and 3.972 (3) Å] lead to a two-dimensional network parallel to (010) (Fig. 2).

Related literature top

For general background to bis(1,2-dithiolene) complexes acting as magnetic materials or showing non-linear optical properties, see: Duan et al. (2010); Kato (2004). For the synthesis of the compound, see: Pei et al. (2010). For related structures, see: Duan et al. (2011); Liu et al. (2011).

Experimental top

The title compound was prepared by a method similar to that reported in literature (Pei et al., 2010). Nickel chloride hexahydrate (238 mg, 1.00 mmol) and disodium maleonitriledithiolate (365 mg, 2.00 mmol) were mixed under stirring in water (50 ml) and heated to boiling for about 20 min. After filtering the red solution, an aequeous solution of 1-ethyl-4,4'-bipyridin-1-ium bromide (554 mg, 2.00 mmol) was added dropwise to the filtrate. The immediately formed dark red precipitate was filtered off, washed with water and dried in vacuum oven, giving the crude product (yield: 511 mg, 72%). Red block-like single crystals were obtained by slow evaporation of the crude in an acetonitrile solution at room temperature in about two weeks.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a axis. Dashed lines indicate hydrogen bonds.
Bis(1-ethyl-4,4'-bipyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S')nickelate(II) top
Crystal data top
(C12H13N2)[Ni(C4N2S2)2]Z = 2
Mr = 709.58F(000) = 732.0
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4505 (13) ÅCell parameters from 1518 reflections
b = 12.793 (2) Åθ = 2.3–19.7°
c = 17.745 (3) ŵ = 0.89 mm1
α = 78.664 (2)°T = 296 K
β = 86.558 (2)°Block, red
γ = 80.344 (2)°0.25 × 0.20 × 0.15 mm
V = 1634.2 (5) Å3
Data collection top
Bruker APEX CCD
diffractometer
7631 independent reflections
Radiation source: fine-focus sealed tube3616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.808, Tmax = 0.876k = 1616
14954 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
7631 reflections(Δ/σ)max < 0.001
408 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
(C12H13N2)[Ni(C4N2S2)2]γ = 80.344 (2)°
Mr = 709.58V = 1634.2 (5) Å3
Triclinic, P1Z = 2
a = 7.4505 (13) ÅMo Kα radiation
b = 12.793 (2) ŵ = 0.89 mm1
c = 17.745 (3) ÅT = 296 K
α = 78.664 (2)°0.25 × 0.20 × 0.15 mm
β = 86.558 (2)°
Data collection top
Bruker APEX CCD
diffractometer
7631 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3616 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.876Rint = 0.050
14954 measured reflectionsθmax = 28.0°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.49 e Å3
S = 0.97Δρmin = 0.37 e Å3
7631 reflectionsAbsolute structure: ?
408 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.82715 (7)0.22869 (4)0.39454 (3)0.04134 (16)
S10.73997 (14)0.35458 (7)0.46177 (6)0.0484 (3)
S20.76184 (16)0.10350 (7)0.48848 (6)0.0547 (3)
S30.87246 (15)0.35324 (8)0.29580 (6)0.0528 (3)
S40.93428 (17)0.10088 (8)0.33202 (6)0.0613 (3)
C20.6768 (5)0.2822 (3)0.5502 (2)0.0441 (9)
C10.6135 (6)0.3411 (3)0.6099 (2)0.0499 (10)
C30.6833 (5)0.1733 (3)0.5608 (2)0.0440 (10)
C40.6232 (6)0.1130 (3)0.6311 (2)0.0551 (11)
C60.9759 (5)0.2797 (3)0.2284 (2)0.0465 (10)
C51.0367 (6)0.3382 (3)0.1563 (2)0.0565 (12)
C71.0008 (5)0.1697 (3)0.2436 (2)0.0479 (10)
C81.0813 (6)0.1076 (3)0.1876 (2)0.0558 (11)
C90.2604 (6)0.3605 (3)0.4593 (3)0.0606 (12)
H90.28700.42310.42730.073*
C100.1955 (5)0.3644 (3)0.5330 (3)0.0576 (12)
H100.17720.43010.54970.069*
C110.1563 (5)0.2723 (3)0.5835 (2)0.0461 (10)
C120.1837 (6)0.1787 (3)0.5540 (2)0.0577 (12)
H120.15940.11480.58500.069*
C130.2461 (6)0.1784 (3)0.4801 (3)0.0609 (12)
H130.26150.11400.46180.073*
C140.0815 (5)0.2768 (3)0.6632 (2)0.0481 (10)
C150.0630 (6)0.3698 (3)0.6932 (3)0.0672 (13)
H150.10120.43160.66450.081*
C160.0124 (6)0.3709 (4)0.7661 (3)0.0713 (14)
H160.02150.43450.78490.086*
C170.0516 (7)0.1977 (4)0.7814 (3)0.0785 (15)
H170.08910.13680.81170.094*
C180.0220 (6)0.1890 (3)0.7087 (3)0.0645 (13)
H180.03090.12440.69110.077*
C190.3576 (6)0.2552 (4)0.3530 (2)0.0682 (13)
H19A0.47850.21260.35660.082*
H19B0.27950.21590.33120.082*
C200.3667 (7)0.3600 (4)0.3003 (3)0.0956 (17)
H20A0.25070.40570.30060.143*
H20B0.39720.34760.24910.143*
H20C0.45820.39430.31700.143*
C210.2644 (6)0.2746 (4)0.9515 (3)0.0754 (14)
H210.21030.31360.98830.090*
C220.2539 (6)0.1671 (4)0.9611 (2)0.0686 (13)
H220.19190.13451.00400.082*
C230.3346 (5)0.1053 (4)0.9076 (2)0.0567 (11)
C240.4248 (6)0.1605 (4)0.8456 (2)0.0688 (13)
H240.48230.12310.80850.083*
C250.4311 (7)0.2679 (4)0.8376 (3)0.0796 (15)
H250.49170.30270.79510.095*
C260.3254 (6)0.0126 (4)0.9179 (2)0.0572 (11)
C270.2592 (6)0.0700 (4)0.9857 (3)0.0676 (13)
H270.21660.03591.02640.081*
C280.2581 (6)0.1785 (4)0.9909 (3)0.0759 (14)
H280.21320.21551.03670.091*
C290.3719 (8)0.1787 (5)0.8721 (3)0.0989 (19)
H290.40790.21510.83180.119*
C300.3822 (7)0.0688 (4)0.8589 (3)0.0785 (15)
H300.42590.03410.81210.094*
C310.3614 (8)0.4438 (4)0.8812 (3)0.0931 (17)
H31A0.33670.47880.82840.112*
H31B0.26890.47650.91400.112*
C320.5411 (9)0.4616 (4)0.9009 (4)0.120 (2)
H32A0.57150.42090.95120.181*
H32B0.53830.53700.90050.181*
H32C0.63080.43860.86400.181*
N10.5638 (5)0.3873 (3)0.6585 (2)0.0711 (11)
N20.5710 (6)0.0624 (3)0.6863 (2)0.0819 (13)
N31.0878 (6)0.3863 (3)0.1002 (2)0.0855 (13)
N41.1447 (6)0.0573 (3)0.1433 (2)0.0788 (13)
N50.2860 (4)0.2673 (3)0.4330 (2)0.0513 (9)
N60.0723 (5)0.2883 (3)0.8109 (2)0.0716 (11)
N70.3506 (5)0.3244 (3)0.8906 (2)0.0708 (11)
N80.3154 (6)0.2354 (4)0.9367 (3)0.0889 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0509 (3)0.0353 (3)0.0370 (3)0.0089 (2)0.0064 (2)0.0055 (2)
S10.0639 (7)0.0369 (5)0.0446 (6)0.0108 (5)0.0060 (5)0.0085 (4)
S20.0809 (8)0.0356 (6)0.0452 (7)0.0104 (5)0.0182 (6)0.0072 (5)
S30.0705 (8)0.0391 (6)0.0450 (7)0.0087 (5)0.0151 (6)0.0043 (5)
S40.0992 (10)0.0382 (6)0.0447 (7)0.0145 (6)0.0226 (6)0.0081 (5)
C20.045 (2)0.046 (2)0.041 (2)0.0056 (18)0.0023 (19)0.0091 (18)
C10.055 (3)0.049 (2)0.045 (3)0.006 (2)0.001 (2)0.009 (2)
C30.051 (3)0.041 (2)0.037 (2)0.0031 (19)0.0066 (19)0.0056 (18)
C40.069 (3)0.048 (2)0.045 (3)0.005 (2)0.014 (2)0.009 (2)
C60.054 (3)0.049 (2)0.034 (2)0.009 (2)0.003 (2)0.0032 (18)
C50.077 (3)0.048 (3)0.043 (3)0.008 (2)0.010 (2)0.010 (2)
C70.065 (3)0.044 (2)0.036 (2)0.010 (2)0.009 (2)0.0108 (18)
C80.079 (3)0.050 (3)0.035 (3)0.012 (2)0.002 (2)0.000 (2)
C90.064 (3)0.047 (3)0.070 (3)0.015 (2)0.001 (3)0.004 (2)
C100.066 (3)0.035 (2)0.074 (3)0.014 (2)0.003 (3)0.011 (2)
C110.047 (2)0.035 (2)0.057 (3)0.0102 (18)0.007 (2)0.0064 (19)
C120.075 (3)0.040 (2)0.059 (3)0.015 (2)0.002 (3)0.007 (2)
C130.077 (3)0.046 (3)0.061 (3)0.012 (2)0.002 (3)0.011 (2)
C140.045 (2)0.041 (2)0.058 (3)0.0047 (19)0.000 (2)0.011 (2)
C150.086 (4)0.048 (3)0.070 (3)0.014 (2)0.012 (3)0.018 (2)
C160.089 (4)0.054 (3)0.075 (4)0.016 (3)0.004 (3)0.021 (3)
C170.101 (4)0.057 (3)0.076 (4)0.019 (3)0.014 (3)0.008 (3)
C180.083 (3)0.046 (3)0.064 (3)0.013 (2)0.003 (3)0.009 (2)
C190.056 (3)0.092 (4)0.053 (3)0.020 (3)0.005 (2)0.005 (3)
C200.098 (4)0.098 (4)0.093 (4)0.020 (3)0.003 (3)0.021 (4)
C210.083 (4)0.089 (4)0.047 (3)0.003 (3)0.016 (3)0.010 (3)
C220.078 (3)0.080 (3)0.041 (3)0.007 (3)0.017 (2)0.007 (2)
C230.049 (3)0.075 (3)0.042 (3)0.002 (2)0.002 (2)0.009 (2)
C240.086 (4)0.077 (3)0.043 (3)0.016 (3)0.017 (3)0.012 (2)
C250.090 (4)0.088 (4)0.054 (3)0.013 (3)0.020 (3)0.007 (3)
C260.049 (3)0.081 (3)0.041 (3)0.010 (2)0.003 (2)0.013 (2)
C270.066 (3)0.085 (4)0.049 (3)0.014 (3)0.012 (2)0.008 (3)
C280.071 (4)0.090 (4)0.064 (4)0.018 (3)0.001 (3)0.007 (3)
C290.121 (5)0.095 (4)0.086 (4)0.027 (4)0.033 (4)0.031 (4)
C300.100 (4)0.082 (4)0.053 (3)0.017 (3)0.022 (3)0.017 (3)
C310.109 (5)0.070 (4)0.084 (4)0.010 (3)0.003 (4)0.005 (3)
C320.144 (6)0.083 (4)0.137 (6)0.017 (4)0.003 (5)0.026 (4)
N10.094 (3)0.067 (3)0.054 (3)0.006 (2)0.009 (2)0.026 (2)
N20.112 (3)0.075 (3)0.051 (3)0.016 (2)0.025 (2)0.001 (2)
N30.124 (4)0.074 (3)0.053 (3)0.024 (3)0.029 (3)0.001 (2)
N40.123 (4)0.062 (3)0.052 (3)0.014 (2)0.023 (2)0.021 (2)
N50.046 (2)0.047 (2)0.060 (2)0.0098 (17)0.0047 (18)0.0043 (18)
N60.088 (3)0.062 (3)0.068 (3)0.011 (2)0.006 (2)0.020 (2)
N70.078 (3)0.073 (3)0.052 (3)0.001 (2)0.005 (2)0.003 (2)
N80.101 (4)0.087 (3)0.080 (3)0.022 (3)0.013 (3)0.018 (3)
Geometric parameters (Å, º) top
Ni1—S12.1796 (11)C17—H170.9300
Ni1—S22.1668 (11)C18—H180.9300
Ni1—S42.1703 (11)C19—C201.485 (6)
Ni1—S32.1760 (11)C19—N51.515 (5)
S1—C21.740 (4)C19—H19A0.9700
S2—C31.723 (4)C19—H19B0.9700
S3—C61.731 (4)C20—H20A0.9600
S4—C71.730 (4)C20—H20B0.9600
C2—C31.362 (5)C20—H20C0.9600
C2—C11.431 (5)C21—N71.331 (5)
C1—N11.149 (4)C21—C221.367 (6)
C3—C41.422 (5)C21—H210.9300
C4—N21.148 (5)C22—C231.398 (5)
C6—C71.362 (5)C22—H220.9300
C6—C51.440 (5)C23—C241.388 (5)
C5—N31.143 (5)C23—C261.496 (6)
C7—C81.434 (5)C24—C251.362 (6)
C8—N41.145 (5)C24—H240.9300
C9—N51.346 (5)C25—N71.350 (5)
C9—C101.374 (5)C25—H250.9300
C9—H90.9300C26—C271.390 (5)
C10—C111.395 (5)C26—C301.390 (5)
C10—H100.9300C27—C281.374 (6)
C11—C121.378 (5)C27—H270.9300
C11—C141.498 (5)C28—N81.326 (5)
C12—C131.366 (5)C28—H280.9300
C12—H120.9300C29—N81.317 (6)
C13—N51.338 (5)C29—C301.394 (6)
C13—H130.9300C29—H290.9300
C14—C181.370 (5)C30—H300.9300
C14—C151.379 (5)C31—C321.468 (7)
C15—C161.380 (6)C31—N71.519 (6)
C15—H150.9300C31—H31A0.9700
C16—N61.316 (5)C31—H31B0.9700
C16—H160.9300C32—H32A0.9600
C17—N61.346 (5)C32—H32B0.9600
C17—C181.388 (6)C32—H32C0.9600
S2—Ni1—S487.25 (4)C20—C19—H19B108.9
S2—Ni1—S3175.30 (5)N5—C19—H19B108.9
S4—Ni1—S391.97 (4)H19A—C19—H19B107.7
S2—Ni1—S192.18 (4)C19—C20—H20A109.5
S4—Ni1—S1175.51 (5)C19—C20—H20B109.5
S3—Ni1—S188.96 (4)H20A—C20—H20B109.5
C2—S1—Ni1102.87 (13)C19—C20—H20C109.5
C3—S2—Ni1103.49 (13)H20A—C20—H20C109.5
C6—S3—Ni1103.08 (13)H20B—C20—H20C109.5
C7—S4—Ni1103.58 (13)N7—C21—C22121.2 (4)
C3—C2—C1121.6 (3)N7—C21—H21119.4
C3—C2—S1120.4 (3)C22—C21—H21119.4
C1—C2—S1117.9 (3)C21—C22—C23121.3 (4)
N1—C1—C2179.2 (5)C21—C22—H22119.4
C2—C3—C4121.5 (3)C23—C22—H22119.4
C2—C3—S2121.0 (3)C24—C23—C22115.5 (4)
C4—C3—S2117.5 (3)C24—C23—C26122.8 (4)
N2—C4—C3177.3 (5)C22—C23—C26121.7 (4)
C7—C6—C5121.0 (3)C25—C24—C23121.6 (4)
C7—C6—S3121.0 (3)C25—C24—H24119.2
C5—C6—S3118.0 (3)C23—C24—H24119.2
N3—C5—C6177.9 (5)N7—C25—C24120.8 (5)
C6—C7—C8121.7 (3)N7—C25—H25119.6
C6—C7—S4120.3 (3)C24—C25—H25119.6
C8—C7—S4118.0 (3)C27—C26—C30117.4 (4)
N4—C8—C7179.4 (5)C27—C26—C23122.0 (4)
N5—C9—C10120.8 (4)C30—C26—C23120.6 (4)
N5—C9—H9119.6C28—C27—C26118.4 (5)
C10—C9—H9119.6C28—C27—H27120.8
C9—C10—C11121.6 (4)C26—C27—H27120.8
C9—C10—H10119.2N8—C28—C27125.9 (5)
C11—C10—H10119.2N8—C28—H28117.0
C12—C11—C10115.7 (4)C27—C28—H28117.0
C12—C11—C14122.7 (3)N8—C29—C30125.5 (5)
C10—C11—C14121.6 (3)N8—C29—H29117.3
C13—C12—C11121.0 (4)C30—C29—H29117.3
C13—C12—H12119.5C26—C30—C29118.0 (5)
C11—C12—H12119.5C26—C30—H30121.0
N5—C13—C12122.4 (4)C29—C30—H30121.0
N5—C13—H13118.8C32—C31—N7111.8 (4)
C12—C13—H13118.8C32—C31—H31A109.3
C18—C14—C15117.0 (4)N7—C31—H31A109.3
C18—C14—C11120.9 (4)C32—C31—H31B109.3
C15—C14—C11122.0 (4)N7—C31—H31B109.3
C14—C15—C16119.7 (4)H31A—C31—H31B107.9
C14—C15—H15120.1C31—C32—H32A109.5
C16—C15—H15120.1C31—C32—H32B109.5
N6—C16—C15124.8 (4)H32A—C32—H32B109.5
N6—C16—H16117.6C31—C32—H32C109.5
C15—C16—H16117.6H32A—C32—H32C109.5
N6—C17—C18124.4 (4)H32B—C32—H32C109.5
N6—C17—H17117.8C13—N5—C9118.5 (4)
C18—C17—H17117.8C13—N5—C19117.0 (3)
C14—C18—C17119.1 (4)C9—N5—C19124.5 (4)
C14—C18—H18120.5C16—N6—C17114.9 (4)
C17—C18—H18120.5C21—N7—C25119.6 (4)
C20—C19—N5113.4 (4)C21—N7—C31120.4 (4)
C20—C19—H19A108.9C25—N7—C31120.0 (4)
N5—C19—H19A108.9C29—N8—C28114.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S2i0.932.783.549 (4)141
C17—H17···N4i0.932.553.441 (6)161
C21—H21···N3ii0.932.423.342 (6)170
C22—H22···N4ii0.932.503.372 (5)156
C24—H24···N20.932.463.364 (5)163
C25—H25···N10.932.523.411 (6)161
C27—H27···N4ii0.932.583.498 (6)172
C30—H30···N20.932.603.526 (6)176
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formula(C12H13N2)[Ni(C4N2S2)2]
Mr709.58
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.4505 (13), 12.793 (2), 17.745 (3)
α, β, γ (°)78.664 (2), 86.558 (2), 80.344 (2)
V3)1634.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.808, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
14954, 7631, 3616
Rint0.050
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 0.97
No. of reflections7631
No. of parameters408
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S2i0.932.783.549 (4)141
C17—H17···N4i0.932.553.441 (6)161
C21—H21···N3ii0.932.423.342 (6)170
C22—H22···N4ii0.932.503.372 (5)156
C24—H24···N20.932.463.364 (5)163
C25—H25···N10.932.523.411 (6)161
C27—H27···N4ii0.932.583.498 (6)172
C30—H30···N20.932.603.526 (6)176
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1.
Acknowledgements top

The authors thank the Center of Testing and Analysis, Nanjing University of Technology, for support.

references
References top

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Duan, H.-B., Ren, X.-M. & Meng, Q.-J. (2010). Coord. Chem. Rev. 254, 1509–1522.

Duan, H.-B., Ren, X.-M., Shen, L.-J., Jin, W.-Q. & Zhou, S.-M. (2011). Dalton Trans. 40, 3622–3630.

Kato, R. (2004). Chem. Rev. 104, 5319–5346.

Liu, X., Liu, J.-L., Cai, B. & Ren, X.-M. (2011). Inorg. Chem. Commun. 14, 1428–1431.

Pei, W.-B., Wu, J.-S., Liu, J.-L., Ren, X.-M. & Shen, L.-J. (2010). Spectrochim. Acta Part A, 75, 191–197.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.