organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(4-Methyl-2-phenyl­imidazolidine-1,3-di­yl)bis­­(methyl­ene)]diphenol

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No.45-03, Bogotá, Código Postal 111321, Colombia, bDepartment of Solid State Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic, and cInstitute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 27 June 2013; accepted 28 June 2013; online 3 July 2013)

The methyl-substituted imidazolidine ring of the title compound, C24H26N2O2, adopts an envelope conformation with the N atom adjacent to the methyl­ene group as the flap. The meth­yl–ethyl­ene fragment in this ring is disordered over two positions with an occupancy ratio of 0.899 (4):0.101 (4). The hy­droxy­benzyl groups are inclined at 71.57 (15) and 69.97 (19)° to the mean plane of major disorder component of the heterocyclic ring with an inter­planar angle between the two hy­droxy­benzyl groups of 66.00 (5)°. The phenyl substit­uent approaches a nearly perpendicular orientation relative to the mean plane of the imidazolidine ring, making a dihedral angle of 75.60 (12)°. This conformation is stabilized by two intra­molecular O—H⋯N bonds, which generate S(6) ring motifs.

Related literature

For related structures, see: Rivera et al. (2012a[Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170-o171.],b[Rivera, A., Pacheco, D., Ríos-Motta, J., Fejfarová, K. & Dusek, M. (2012b). Tetrahedron Lett. 53, 6132-6135.]). For the synthesis of the precursor, see: Rivera et al. (2013[Rivera, A., Cárdenas, L. & Ríos-Motta, J. (2013). Curr. Org. Chem. Accepted. ]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N2O2

  • Mr = 374.5

  • Monoclinic, P 21 /c

  • a = 16.8974 (8) Å

  • b = 9.4893 (5) Å

  • c = 12.5287 (6) Å

  • β = 92.928 (4)°

  • V = 2006.29 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 120 K

  • 0.35 × 0.25 × 0.09 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.886, Tmax = 0.952

  • 8259 measured reflections

  • 3491 independent reflections

  • 2704 reflections with I > 3σ(I)

  • Rint = 0.03

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.51

  • 3491 reflections

  • 276 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o1⋯N9 0.98 (2) 1.88 (2) 2.7569 (18) 147.7 (19)
O19—H1o19⋯N11 1.00 (2) 1.79 (2) 2.709 (2) 152 (2)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al. 2006[Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

We have recently synthesized for the first time a series of tetrasubstituted imidazolidines by the reaction of N,N'-dibenzylpropane-1,2-diamine with substituted benzaldehydes, and we have provided evidence that they display intramolecular O—H···N hydrogen bonds (Rivera et al., 2013). In this article, we further advance these investigations by presenting the crystal structure of the title compound.

In the title compound, C24H26N2O2, the methyl-substituted imidazolidine ring exhibits molecular disorder over two orientations, with a refined occupancy ratio of 0.899 (4):0.101 (4) for atoms (C26, C27, C28):(C26', C27', C28'). For the major component, the imidazolidine ring (N9/C10/N11/C26/C27) adopts an envelope conformation with atom N11 as the flap: puckering parameters (Cremer & Pople, 1975) being Q2 = 0.4429 (19) Å and Φ = 75.0 (2)°. The bond lengths (Allen et al., 1987) and angles are close to standard values. Within the imidazolidine ring, bond distances and angles are comparable to those found in related structures (Rivera et al., 2012a,b). The C2—O1 and C18—O19 bond lengths are 1.374 (2) and 1.369 (2) Å, respectively, which are comparable to other C—O bond lengths in di-Mannich bases reported by us (Rivera et al., 2012a,b). The hydroxybenzyl groups makes an angle of 71.57 (15)° and 69.97 (19)° with the mean plane of heterocyclic ring defined by N9,C10,C26 and C27. With reference to this plane, the phenyl ring is almost perpendicular with a dihedral angle of 75.60 (12)°. The interplanar angle between the two hydroxybenzyl groups is 66.00 (5)°.

Single-crystal X-ray diffraction analysis reveals the existence of intramolecular O—H··· N hydrogen-bonding interactions between the two N atoms of the imidazolidine ring and the hydroxyl groups in the aromatic rings with S(6) set graph motifs (Bernstein et al. 1995) (Table 1). However, the two observed intramolecular hydrogen bond distances were different (Table 1). It is then surprising to observe the difference in O···N distances between O1···N9 [O···N = 2.757 (2) Å] and O19···N11[O···N = 2.709 (2) Å], which are longer than those observed in a related structure (Rivera et al., 2012a). Because the length of hydrogen bonds depends on bond strength, these results indicated that the nitrogen atoms in the title compound are weaker hydrogen bond acceptors than the nitrogen in related structure (Rivera et al., 2012a). This fact can be explained by the presence of the aryl group at the aminal carbon, where the imidazolidine ring adopts a conformation that causes an increase in unfavorable through-space interactions between the two nitrogen lone pairs. Thus, one of the possible consequences of these structural features is the reduction in electronic density around the nitrogen atoms.

Related literature top

For related structures, see: Rivera et al. (2012a,b). For the synthesis of the precursor, see: Rivera et al. (2013). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

For the originally reported synthesis, see: Rivera et al. (2013). The title compound (I) were recrystallized from ethanol.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å while the coordinates of the H atoms bonded to O were refined freely. In both cases Uiso(H) was set to 1.2Ueq(C,O). All non-hydrogen atoms were refined using harmonic refinement. The disordered part of molecule was refined with bond lengths kept equal for both groups. The resulting occupancy ratio was 0.899 (4):0.101 (4).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis 2007); program(s) used to refine structure: JANA2006 (Petříček et al. 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al. 2006).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines and only the major disorder component of the disordered section of the imidazolidine ring is shown.
2,2'-[(4-Methyl-2-phenylimidazolidine-1,3-diyl)bis(methylene)]diphenol top
Crystal data top
C24H26N2O2F(000) = 800
Mr = 374.5Dx = 1.239 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ycbCell parameters from 3676 reflections
a = 16.8974 (8) Åθ = 3.5–66.9°
b = 9.4893 (5) ŵ = 0.62 mm1
c = 12.5287 (6) ÅT = 120 K
β = 92.928 (4)°Polygon shape, colorless
V = 2006.29 (17) Å30.35 × 0.25 × 0.09 mm
Z = 4
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3491 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2704 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.03
Detector resolution: 10.3784 pixels mm-1θmax = 67.0°, θmin = 5.2°
ω scansh = 1619
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.886, Tmax = 0.952l = 1412
8259 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.113(Δ/σ)max = 0.049
S = 1.51Δρmax = 0.25 e Å3
3491 reflectionsΔρmin = 0.18 e Å3
276 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
5 restraintsExtinction coefficient: 3200 (500)
151 constraints
Crystal data top
C24H26N2O2V = 2006.29 (17) Å3
Mr = 374.5Z = 4
Monoclinic, P21/cCu Kα radiation
a = 16.8974 (8) ŵ = 0.62 mm1
b = 9.4893 (5) ÅT = 120 K
c = 12.5287 (6) Å0.35 × 0.25 × 0.09 mm
β = 92.928 (4)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3491 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
2704 reflections with I > 3σ(I)
Tmin = 0.886, Tmax = 0.952Rint = 0.03
8259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0425 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.51Δρmax = 0.25 e Å3
3491 reflectionsΔρmin = 0.18 e Å3
276 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.10968 (7)0.77621 (13)0.14452 (10)0.0335 (4)
O190.40788 (9)1.04207 (16)0.27300 (11)0.0460 (5)
N110.28125 (8)0.99956 (14)0.39327 (11)0.0262 (4)
N90.16113 (8)0.91720 (14)0.32755 (11)0.0262 (4)
C30.01906 (11)0.84850 (19)0.08234 (15)0.0323 (5)
C170.49554 (10)1.2217 (2)0.33593 (15)0.0335 (6)
C220.33481 (10)0.58293 (19)0.28115 (14)0.0303 (5)
C20.03749 (10)0.83400 (18)0.16509 (14)0.0282 (5)
C180.43614 (10)1.12529 (19)0.35565 (13)0.0301 (5)
C210.29810 (10)0.71116 (18)0.29487 (13)0.0277 (5)
C40.09159 (11)0.91012 (19)0.10146 (15)0.0355 (6)
C160.52487 (10)1.3093 (2)0.41629 (15)0.0360 (6)
C130.40514 (10)1.11650 (18)0.45702 (13)0.0276 (5)
C250.26334 (10)0.63967 (18)0.46963 (13)0.0274 (5)
C100.22524 (10)0.88368 (17)0.40711 (13)0.0261 (5)
C200.26239 (9)0.74138 (17)0.39014 (12)0.0241 (5)
C120.34266 (11)1.00921 (19)0.47984 (13)0.0311 (5)
C140.43528 (11)1.2068 (2)0.53588 (14)0.0340 (6)
C70.02229 (10)0.87866 (17)0.26891 (13)0.0275 (5)
C280.17720 (14)1.1089 (2)0.19419 (16)0.0394 (7)0.899 (4)
C230.33604 (10)0.48228 (19)0.36133 (14)0.0315 (5)
C240.29998 (10)0.51088 (19)0.45540 (14)0.0310 (5)
C80.08435 (10)0.86041 (19)0.35794 (13)0.0311 (5)
C60.05061 (10)0.94177 (19)0.28506 (15)0.0333 (6)
C50.10736 (11)0.95685 (19)0.20251 (15)0.0357 (6)
C270.16255 (12)1.07345 (19)0.30988 (16)0.0280 (6)0.899 (4)
C260.22944 (12)1.1238 (2)0.38684 (17)0.0288 (6)0.899 (4)
C26'0.1443 (9)1.0661 (5)0.3488 (14)0.0280 (6)0.101 (4)
C27'0.2300 (7)1.1160 (12)0.3475 (10)0.0288 (6)0.101 (4)
C150.49529 (11)1.3021 (2)0.51673 (15)0.0383 (6)
H1c30.0083310.8161750.0119280.0387*
H1c170.5162221.2272940.2661030.0402*
H1c220.3596660.5633450.215560.0364*
H1c210.297150.7798450.2385620.0333*
H1c40.1309880.9202370.0440060.0426*
H1c160.5660131.3755470.4023060.0432*
H1c250.2383540.6586690.5352250.0329*
H1c100.2070320.8765590.4782410.0313*
H1c120.3670210.9186410.4909240.0373*
H2c120.318691.0331020.5452880.0373*
H1c140.4141411.2034820.605520.0408*
H1c280.1774341.209370.1852080.0473*0.899 (4)
H2c280.2274761.0711950.1759720.0473*0.899 (4)
H3c280.1359481.0685320.1483570.0473*0.899 (4)
H1c230.3617690.3933430.3515770.0378*
H1c240.3002970.4413510.5110810.0373*
H1c80.067960.9082290.4206180.0373*
H2c80.0900060.7621140.3747920.0373*
H1c60.0616150.9754610.355010.04*
H1c50.1574760.99960.2153510.0429*
H1c270.1130891.1184730.3228950.0336*0.899 (4)
H1c260.2568221.2005870.3550950.0346*0.899 (4)
H2c260.2089531.1416340.4556320.0346*0.899 (4)
H1c150.5160291.3624750.5729380.046*
C28'0.2525 (10)1.162 (2)0.2369 (11)0.042 (6)0.101 (4)
H1o10.1465 (13)0.812 (2)0.2010 (16)0.0402*
H1o190.3584 (15)1.002 (2)0.3010 (17)0.0552*
H1c26'0.1259221.0756650.4197020.0336*0.101 (4)
H2c26'0.1143371.1056450.2888880.0336*0.101 (4)
H1c27'0.2375541.199090.3904530.0346*0.101 (4)
H1c28'0.2527531.0820830.1902660.0509*0.101 (4)
H2c28'0.2146861.2301370.2089280.0509*0.101 (4)
H3c28'0.3043011.2042010.2415750.0509*0.101 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (6)0.0372 (7)0.0383 (7)0.0031 (5)0.0046 (5)0.0046 (5)
O190.0470 (8)0.0509 (9)0.0409 (8)0.0076 (7)0.0101 (7)0.0169 (6)
N110.0290 (7)0.0204 (7)0.0290 (7)0.0013 (6)0.0014 (6)0.0009 (6)
N90.0251 (7)0.0219 (7)0.0314 (7)0.0004 (6)0.0008 (6)0.0031 (6)
C30.0309 (9)0.0308 (9)0.0353 (9)0.0024 (7)0.0035 (7)0.0023 (7)
C170.0241 (8)0.0393 (11)0.0373 (10)0.0043 (8)0.0043 (7)0.0022 (8)
C220.0260 (8)0.0305 (9)0.0348 (9)0.0043 (7)0.0045 (7)0.0092 (7)
C20.0250 (8)0.0234 (8)0.0366 (9)0.0016 (7)0.0048 (7)0.0012 (7)
C180.0269 (8)0.0295 (9)0.0336 (9)0.0071 (7)0.0008 (7)0.0054 (7)
C210.0282 (8)0.0271 (9)0.0278 (8)0.0047 (7)0.0003 (7)0.0002 (7)
C40.0286 (9)0.0318 (10)0.0455 (11)0.0007 (8)0.0045 (8)0.0070 (8)
C160.0252 (9)0.0362 (10)0.0459 (11)0.0027 (8)0.0037 (8)0.0094 (9)
C130.0283 (8)0.0252 (9)0.0287 (8)0.0028 (7)0.0034 (7)0.0024 (7)
C250.0243 (8)0.0265 (9)0.0315 (9)0.0021 (7)0.0024 (7)0.0013 (7)
C100.0285 (8)0.0250 (9)0.0248 (8)0.0010 (7)0.0022 (7)0.0013 (7)
C200.0222 (8)0.0228 (8)0.0271 (8)0.0028 (7)0.0003 (6)0.0018 (6)
C120.0377 (10)0.0288 (9)0.0263 (8)0.0036 (8)0.0031 (7)0.0019 (7)
C140.0382 (10)0.0365 (10)0.0269 (9)0.0061 (8)0.0034 (7)0.0017 (7)
C70.0244 (8)0.0245 (9)0.0339 (9)0.0008 (7)0.0042 (7)0.0018 (7)
C280.0519 (14)0.0285 (11)0.0372 (11)0.0055 (10)0.0041 (10)0.0045 (9)
C230.0228 (8)0.0243 (9)0.0473 (10)0.0008 (7)0.0011 (7)0.0053 (8)
C240.0272 (8)0.0257 (9)0.0402 (10)0.0012 (7)0.0014 (7)0.0053 (7)
C80.0265 (9)0.0350 (10)0.0322 (9)0.0002 (8)0.0066 (7)0.0009 (7)
C60.0278 (9)0.0306 (10)0.0420 (10)0.0023 (7)0.0069 (8)0.0016 (8)
C50.0256 (9)0.0319 (10)0.0499 (11)0.0037 (8)0.0041 (8)0.0004 (8)
C270.0277 (11)0.0219 (9)0.0344 (13)0.0017 (8)0.0008 (9)0.0021 (8)
C260.0352 (10)0.0208 (9)0.0304 (13)0.0011 (8)0.0013 (9)0.0022 (8)
C26'0.0277 (11)0.0219 (9)0.0344 (13)0.0017 (8)0.0008 (9)0.0021 (8)
C27'0.0352 (10)0.0208 (9)0.0304 (13)0.0011 (8)0.0013 (9)0.0022 (8)
C150.0405 (10)0.0361 (11)0.0372 (10)0.0099 (9)0.0084 (8)0.0007 (8)
C28'0.036 (10)0.052 (13)0.039 (11)0.021 (9)0.002 (8)0.016 (9)
Geometric parameters (Å, º) top
O1—C21.374 (2)C10—H1c100.96
O19—C181.369 (2)C12—H1c120.96
N11—C101.467 (2)C12—H2c120.96
N11—C121.465 (2)C14—C151.389 (3)
N11—C261.469 (2)C14—H1c140.96
N11—C27'1.500 (12)C7—C81.501 (2)
N9—C101.469 (2)C7—C61.394 (2)
N9—C81.473 (2)C28—C271.521 (3)
N9—C271.500 (2)C28—H1c280.96
N9—C26'1.469 (6)C28—H2c280.96
C3—C21.380 (2)C28—H3c280.96
C3—C41.390 (3)C23—C241.381 (3)
C3—H1c30.96C23—H1c230.96
C17—C181.389 (2)C24—H1c240.96
C17—C161.378 (3)C8—H1c80.96
C17—H1c170.96C8—H2c80.96
C22—C211.381 (2)C6—C51.381 (3)
C22—C231.385 (3)C6—H1c60.96
C22—H1c220.96C5—H1c50.96
C2—C71.404 (2)C27—C261.525 (3)
C18—C131.401 (2)C27—H1c270.96
C21—C201.395 (2)C26—H1c260.96
C21—H1c210.96C26—H2c260.96
C4—C51.380 (3)C26'—C27'1.525 (19)
C4—H1c40.96C26'—H1c26'0.96
C16—C151.379 (3)C26'—H2c26'0.96
C16—H1c160.96C27'—C28'1.52 (2)
C13—C121.505 (2)C27'—H1c27'0.96
C13—C141.385 (2)C15—H1c150.96
C25—C201.386 (2)C28'—H1c28'0.96
C25—C241.386 (2)C28'—H2c28'0.96
C25—H1c250.96C28'—H3c28'0.96
C10—C201.509 (2)
C10—N11—C12113.34 (13)C2—C7—C6117.97 (15)
C10—N11—C26102.83 (13)C8—C7—C6122.06 (16)
C10—N11—C27'103.5 (5)C27—C28—H1c28109.47
C12—N11—C26112.84 (13)C27—C28—H2c28109.47
C12—N11—C27'127.6 (5)C27—C28—H3c28109.47
C10—N9—C8111.98 (13)H1c28—C28—H2c28109.47
C10—N9—C27107.30 (13)H1c28—C28—H3c28109.47
C10—N9—C26'103.2 (6)H2c28—C28—H3c28109.47
C8—N9—C27114.89 (14)C22—C23—C24119.49 (16)
C8—N9—C26'97.1 (6)C22—C23—H1c23120.25
C2—C3—C4119.68 (17)C24—C23—H1c23120.25
C2—C3—H1c3120.16C25—C24—C23120.18 (16)
C4—C3—H1c3120.16C25—C24—H1c24119.91
C18—C17—C16120.22 (17)C23—C24—H1c24119.91
C18—C17—H1c17119.89N9—C8—C7110.91 (14)
C16—C17—H1c17119.89N9—C8—H1c8109.47
C21—C22—C23120.50 (16)N9—C8—H2c8109.47
C21—C22—H1c22119.75C7—C8—H1c8109.47
C23—C22—H1c22119.75C7—C8—H2c8109.47
O1—C2—C3119.08 (15)H1c8—C8—H2c8108
O1—C2—C7120.03 (14)C7—C6—C5121.38 (17)
C3—C2—C7120.89 (16)C7—C6—H1c6119.31
O19—C18—C17118.21 (16)C5—C6—H1c6119.31
O19—C18—C13121.29 (15)C4—C5—C6119.63 (17)
C17—C18—C13120.49 (16)C4—C5—H1c5120.19
C22—C21—C20120.31 (15)C6—C5—H1c5120.19
C22—C21—H1c21119.85N9—C27—C28111.35 (15)
C20—C21—H1c21119.85N9—C27—C26103.51 (14)
C3—C4—C5120.43 (17)N9—C27—H1c27113.22
C3—C4—H1c4119.78C28—C27—C26112.46 (17)
C5—C4—H1c4119.78C28—C27—H1c27104.42
C17—C16—C15120.21 (17)C26—C27—H1c27112.13
C17—C16—H1c16119.9N11—C26—C27101.74 (14)
C15—C16—H1c16119.9N11—C26—H1c26109.47
C18—C13—C12120.74 (15)N11—C26—H2c26109.47
C18—C13—C14117.97 (16)C27—C26—H1c26109.47
C12—C13—C14121.27 (15)C27—C26—H2c26109.47
C20—C25—C24120.70 (16)H1c26—C26—H2c26116.23
C20—C25—H1c25119.65N9—C26'—H1c26'109.47
C24—C25—H1c25119.65N9—C26'—H2c26'109.47
N11—C10—N9102.44 (12)C27'—C26'—H1c26'109.47
N11—C10—C20112.26 (13)C27'—C26'—H2c26'109.47
N11—C10—H1c10113.69H1c26'—C26'—H2c26'120.28
N9—C10—C20113.32 (13)N11—C27'—C26'107.3 (8)
N9—C10—H1c10112.64N11—C27'—C28'113.3 (11)
C20—C10—H1c10102.9N11—C27'—H1c27'109.44
C21—C20—C25118.82 (15)C26'—C27'—C28'112.5 (12)
C21—C20—C10120.40 (14)C26'—C27'—H1c27'110.35
C25—C20—C10120.77 (14)C28'—C27'—H1c27'103.96
N11—C12—C13112.27 (13)C16—C15—C14119.45 (17)
N11—C12—H1c12109.47C16—C15—H1c15120.27
N11—C12—H2c12109.47C14—C15—H1c15120.27
C13—C12—H1c12109.47C27'—C28'—H1c28'109.47
C13—C12—H2c12109.47C27'—C28'—H2c28'109.47
H1c12—C12—H2c12106.52C27'—C28'—H3c28'109.47
C13—C14—C15121.65 (17)H1c28'—C28'—H2c28'109.47
C13—C14—H1c14119.18H1c28'—C28'—H3c28'109.47
C15—C14—H1c14119.17H2c28'—C28'—H3c28'109.47
C2—C7—C8119.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o1···N90.98 (2)1.88 (2)2.7569 (18)147.7 (19)
O19—H1o19···N111.00 (2)1.79 (2)2.709 (2)152 (2)
O1—H1o1···C80.98 (2)2.32 (2)2.844 (2)112.5 (16)
O19—H1o19···C121.00 (2)2.27 (2)2.884 (2)118.6 (16)
O19—H1o19···C281.00 (2)2.45 (3)2.877 (18)105.1 (16)
C26—H2c26···C280.961.632.082 (17)103.83
C28—H3c28···O190.962.352.877 (18)114.12
C26—H1c26···C280.961.521.973 (15)102.84

Experimental details

Crystal data
Chemical formulaC24H26N2O2
Mr374.5
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)16.8974 (8), 9.4893 (5), 12.5287 (6)
β (°) 92.928 (4)
V3)2006.29 (17)
Z4
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.35 × 0.25 × 0.09
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.886, 0.952
No. of measured, independent and
observed [I > 3σ(I)] reflections
8259, 3491, 2704
Rint0.03
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.51
No. of reflections3491
No. of parameters276
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis 2007), JANA2006 (Petříček et al. 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o1···N90.98 (2)1.88 (2)2.7569 (18)147.7 (19)
O19—H1o19···N111.00 (2)1.79 (2)2.709 (2)152 (2)
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB), and the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences (ASCR).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals
First citationPetříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
First citationRivera, A., Cárdenas, L. & Ríos-Motta, J. (2013). Curr. Org. Chem. Accepted.
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170–o171.  Web of Science CSD CrossRef CAS IUCr Journals
First citationRivera, A., Pacheco, D., Ríos-Motta, J., Fejfarová, K. & Dusek, M. (2012b). Tetrahedron Lett. 53, 6132–6135.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds