supplementary materials


sj5342 scheme

Acta Cryst. (2013). E69, m450-m451    [ doi:10.1107/S1600536813018643 ]

Tetrakis(pyridine-[kappa]N)bis(tetrafluoridoborato-[kappa]F)copper(II)

N. De Silva, A. P. S. Pannu and P. G. Plieger

Abstract top

In the title complex, [Cu(BF4)2(C5H5N)2], the CuII ion is in an octahedral coordination environment and is surrounded by four pyridine and two tetrafluoridoborate molecules. The four pyridine molecules are coordinated to the copper ion through their N atoms in the equatorial plane and display a right-handed screw arrangement around the CuII ion. The remaining two trans positions in the octahedron are occupied by the BF4- anions, each coordinating weakly through an F atom. The crystal packing shows a two-dimensional sheet structure parallel to the ab plane that is formed by C-H...F hydrogen-bonding interactions.

Comment top

X-ray data on complexes of the type [Cu(C5H5N)4Y2] (Y = ClO4-, NO3-, BF4-, PF6-, NCS-, I3-, SO3CF3-, CF3CO2-) started appearing from the 1950's onwards (Ibers, 1953; Brown et al., 1966; Alleyne et al., 1974; Pradilla et al., 1979; Barker et al., 1980; Haynes et al., 1988; Agnus et al., 1994; Beurskens et al., 1995; Li et al., 2004; Bowmaker et al., 2011). Among these complexes, preliminary structural investigations on [Cu(C5H5N)2(BF4)2] were carried out by Ibers (Ibers, 1953) but were limited to the unit cell and space group determination. At that time because of the size and complexity of the unit cell no further work was completed. Based on Ibers' analysis, Agnus and co-workers in their paper on the structural determination of the related complex [Cu(C5H5N)4(ClO4)2], predicted that the tetrafluoridoborate analogue would also crystalize as a structural enantiomer. A CCDC search reveals that although there have been many reports on CuII complexes with the [Cu(C5H5N)4Y2] structural motif there are no single-crystal X-ray reports with BF4 as the counter ion (Y = BF4). Therefore, in the present work we report the single-crystal X-ray analysis of this complex, [Cu(C5H5N)2(BF4)2].

The molecular structure of present complex is shown in Fig. 1 along with the atom labelling scheme. In this complex, the four pyridine ligand molecules are coordinating through their nitrogen atoms forming a square plane around the CuII center while the remaining two trans positions in the distorted octahedron are occupied by the BF4 molecules, each coordinating through an F atom. The Cu—N distance varies from 2.009 (4) Å to 2.037 (4) Å while the two long Cu—F trans distances of 2.406 (4) Å and 2.476 (3) Å are consistent with other hexacoordinate CuII complexes containing an N4F2 donor set (2.394 (3) Å, Su et al., 1994; 2.452 (3) Å, Heier et al., 1998; 2.376 (2) Å, Conner et al., 2006; 2.501 (3) – 2.503 (3) Å, Noro et al., 2011; 2.528 (3) – 2.587 (2) Å, Noro et al., 2009). The dihedral angle values of 47.6 (3)° (N1—Cu1—N4—C25), 58.4 (3)° (N2—Cu1—N1—C6), 40.7 (2)° (N3—Cu1—N2—C1) and 58.3 (3)° (N4—Cu1—N3—C20) indicate a similar orientation for each pyridine ring with respect to the equatorial plane (plane containing the CuII and the four coordinated nitrogen atoms). Fig. 2. gives a pictorial view of this similarity in orientation along with confirming the right handed screw arrangement of all the four coordinated pyridine rings. This as predicted by Agnus and co-workers is very similar to the isomorphous perchlorate complex [Cu(C5H5N)4(ClO4)2] (Agnus et al., 1994) which also crystalizes in orthorhombic crystal system with P212121 space group and similar unit-cell parameters. The crystal packing investigations in present complex show a two-dimensional sheet structure parallel to the ab plane is formed by C—H···F hydrogen bonding interactions (Fig. 3, Table 1).

Related literature top

For related [Cu(C5H5N)4Y2] complexes (where Y = ClO4-, NO3-, BF4-, PF6-, SO3CF3-) see: Ibers (1953); Brown et al. (1966); Alleyne et al. (1974); Pradilla et al. (1979); Barker & Stobart (1980); Haynes et al. (1988); Agnus et al. (1994); Beurskens et al. (1995); Li & Zhang (2004); Bowmaker et al. (2011). For CuII complexes containing an N4F2 donor set, see: Su & Li (1994); Heier et al. (1998); Conner et al. (2006); Noro et al. (2009, 2011).

Experimental top

Crystals of [Cu(C5H5N)4(BF4)2] were obtained by the slow evaporation of a mixed solvent solution (MeOH: H2O: pyridine, 15: 10: 5 ml respectively) containing copper(II) tetrafluoridoborate hexahydrate (0.345 g, 1.0 mmol). Blue crystals of [Cu(C5H5N)2(BF4)2] were obtained after 2–3 weeks from the filtrate.

Refinement top

All non-hydrogen atoms were refined anisotropically. All H atoms were positioned geometrically with C–H = 0.93 and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The crystal studied was an inversion twin with a 0.78 (7):0.22 (7) domain ratio.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2005); cell refinement: CrystalClear-SM Expert (Rigaku, 2005); data reduction: CrystalClear-SM Expert (Rigaku, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram showing the molecular structure of the title complex. The ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Showing the similarity in orientation and right handed screw arrangement of all the four coordinated pyridine rings with respect to the central metal ion.
[Figure 3] Fig. 3. A two-dimensional sheet structure parallel to ab plane is formed by C—H···F hydrogen bonding interactions. The hydrogen atoms other than those involved in H-bonding have been omitted for clarity. Hydrogen bonds are shown in dashed lines.
Tetrakis(pyridine-κN)bis(tetrafluoridoborato-κF)copper(II) top
Crystal data top
[Cu(BF4)2(C5H5N)4]F(000) = 1116
Mr = 553.56Dx = 1.6 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2453 reflections
a = 10.162 (3) Åθ = 7–71.4°
b = 13.831 (5) ŵ = 2.10 mm1
c = 16.350 (4) ÅT = 295 K
V = 2298.0 (12) Å3Block, blue
Z = 40.2 × 0.14 × 0.14 mm
Data collection top
Rigaku Spider X-ray
diffractometer
4378 independent reflections
Radiation source: Rotating Anode3186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 10 pixels mm-1θmax = 71.8°, θmin = 7.0°
profile data from ω–scansh = 1012
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2005)
k = 1616
Tmin = 0.769, Tmax = 1l = 1920
17937 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.030P)2 + 2.2291P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4378 reflectionsΔρmax = 0.39 e Å3
317 parametersΔρmin = 0.68 e Å3
0 restraintsAbsolute structure: Flack (1983), 1868 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.22 (5)
Crystal data top
[Cu(BF4)2(C5H5N)4]V = 2298.0 (12) Å3
Mr = 553.56Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.162 (3) ŵ = 2.10 mm1
b = 13.831 (5) ÅT = 295 K
c = 16.350 (4) Å0.2 × 0.14 × 0.14 mm
Data collection top
Rigaku Spider X-ray
diffractometer
4378 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2005)
3186 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 1Rint = 0.065
17937 measured reflectionsθmax = 71.8°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.39 e Å3
S = 1.01Δρmin = 0.68 e Å3
4378 reflectionsAbsolute structure: Flack (1983), 1868 Friedel pairs
317 parametersAbsolute structure parameter: 0.22 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8793 (5)0.0901 (4)0.1770 (3)0.0447 (12)
H10.95580.11390.20080.054*
C20.8868 (5)0.0101 (3)0.1268 (3)0.0484 (13)
H20.96760.01920.11680.058*
C30.7746 (5)0.0259 (3)0.0918 (3)0.0473 (12)
H30.77870.07890.05680.057*
C40.6545 (5)0.0176 (4)0.1092 (3)0.0474 (13)
H40.57640.00680.0880.057*
C50.6548 (5)0.0982 (4)0.1591 (3)0.0424 (12)
H50.5750.12850.170.051*
C60.6032 (5)0.1434 (3)0.3647 (3)0.0449 (12)
H60.68020.10720.3680.054*
C70.4944 (5)0.1140 (4)0.4088 (3)0.0454 (12)
H70.49820.05940.44180.054*
C80.3803 (5)0.1671 (4)0.4029 (3)0.0465 (12)
H80.30570.14890.43220.056*
C90.3779 (4)0.2478 (3)0.3530 (3)0.0428 (11)
H90.30120.28380.34730.051*
C100.4888 (4)0.2738 (3)0.3124 (3)0.0422 (11)
H100.48710.32910.280.051*
C200.9163 (5)0.3097 (4)0.1054 (3)0.0471 (13)
H200.84190.28780.0780.057*
C191.0217 (5)0.3422 (4)0.0604 (3)0.0523 (14)
H191.01720.34360.00360.063*
C181.1332 (5)0.3726 (4)0.0996 (3)0.0500 (13)
H181.20530.39450.06980.06*
C171.1373 (5)0.3703 (4)0.1849 (3)0.0500 (13)
H171.21210.38970.21320.06*
C161.0275 (5)0.3384 (3)0.2257 (3)0.0456 (12)
H161.02940.33750.28260.055*
C150.7589 (4)0.4783 (3)0.2670 (3)0.0424 (10)
H150.76780.47530.21040.051*
C140.7524 (5)0.5676 (3)0.3032 (3)0.0470 (11)
H140.75540.62360.27180.056*
C130.7415 (5)0.5726 (3)0.3870 (3)0.0503 (12)
H130.73950.63240.4130.06*
C120.7335 (5)0.4887 (3)0.4318 (3)0.0487 (12)
H120.72450.49080.48840.058*
C110.7390 (5)0.4010 (3)0.3908 (3)0.0431 (11)
H110.73290.34420.4210.052*
B11.0010 (6)0.1685 (5)0.4073 (4)0.0490 (15)
B20.4990 (6)0.3467 (4)0.1079 (4)0.0454 (14)
N20.6013 (4)0.2225 (3)0.3173 (2)0.0385 (9)
N10.7637 (4)0.1349 (3)0.1924 (2)0.0381 (8)
N40.9169 (4)0.3084 (3)0.1878 (2)0.0397 (9)
N30.7529 (4)0.3950 (2)0.30907 (19)0.0341 (8)
F10.8975 (3)0.1997 (3)0.3593 (2)0.0807 (11)
F20.9527 (5)0.1251 (3)0.4732 (2)0.1131 (15)
F31.0755 (3)0.1081 (3)0.3611 (3)0.1038 (14)
F41.0738 (3)0.2493 (3)0.4275 (2)0.0841 (11)
F50.4395 (3)0.41614 (19)0.15695 (18)0.0565 (8)
F60.4263 (3)0.2628 (2)0.1097 (2)0.0658 (9)
F70.6239 (3)0.3276 (2)0.13865 (18)0.0545 (7)
F80.5108 (4)0.3811 (2)0.02866 (18)0.0716 (10)
Cu10.75983 (6)0.26389 (4)0.25232 (4)0.03806 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.040 (3)0.056 (3)0.001 (2)0.005 (2)0.009 (2)
C20.043 (3)0.041 (3)0.062 (3)0.006 (2)0.010 (3)0.009 (3)
C30.055 (3)0.040 (3)0.047 (3)0.001 (3)0.004 (2)0.002 (2)
C40.049 (3)0.042 (3)0.052 (3)0.003 (3)0.003 (2)0.004 (2)
C50.034 (3)0.042 (3)0.051 (3)0.001 (2)0.002 (2)0.002 (2)
C60.041 (3)0.039 (3)0.054 (3)0.002 (2)0.000 (2)0.001 (2)
C70.049 (3)0.040 (3)0.048 (3)0.005 (3)0.003 (2)0.003 (2)
C80.043 (3)0.052 (3)0.045 (3)0.006 (3)0.008 (2)0.006 (2)
C90.034 (2)0.047 (3)0.048 (2)0.005 (2)0.004 (2)0.002 (2)
C100.040 (3)0.039 (3)0.047 (2)0.003 (2)0.003 (2)0.003 (2)
C200.033 (3)0.052 (3)0.057 (3)0.006 (2)0.003 (2)0.002 (3)
C190.042 (3)0.066 (4)0.048 (3)0.006 (3)0.002 (2)0.007 (3)
C180.038 (3)0.064 (4)0.048 (3)0.003 (3)0.007 (2)0.007 (3)
C170.034 (3)0.063 (3)0.053 (3)0.008 (3)0.001 (2)0.003 (3)
C160.037 (3)0.050 (3)0.050 (3)0.005 (2)0.001 (2)0.001 (2)
C150.035 (3)0.042 (2)0.051 (3)0.000 (2)0.003 (2)0.004 (2)
C140.045 (3)0.041 (3)0.054 (3)0.005 (3)0.001 (3)0.009 (2)
C130.044 (3)0.039 (3)0.068 (3)0.005 (3)0.000 (3)0.002 (2)
C120.047 (3)0.051 (3)0.049 (3)0.004 (3)0.001 (3)0.007 (2)
C110.038 (3)0.043 (2)0.048 (2)0.001 (3)0.000 (2)0.009 (2)
B10.037 (4)0.056 (4)0.055 (3)0.003 (3)0.006 (3)0.000 (3)
B20.035 (3)0.044 (3)0.057 (3)0.001 (3)0.000 (3)0.005 (3)
N20.035 (2)0.036 (2)0.0443 (19)0.0009 (18)0.0007 (17)0.0012 (17)
N10.030 (2)0.038 (2)0.0459 (19)0.003 (2)0.0002 (18)0.0019 (16)
N40.037 (2)0.041 (2)0.041 (2)0.0015 (19)0.0015 (18)0.0003 (18)
N30.034 (2)0.0341 (18)0.0344 (16)0.0019 (19)0.0024 (18)0.0004 (14)
F10.055 (2)0.092 (3)0.095 (2)0.0015 (19)0.0267 (19)0.030 (2)
F20.164 (4)0.104 (3)0.071 (2)0.012 (3)0.017 (3)0.035 (2)
F30.054 (2)0.107 (3)0.149 (4)0.014 (2)0.011 (2)0.063 (3)
F40.060 (2)0.094 (3)0.098 (2)0.024 (2)0.0140 (18)0.044 (2)
F50.0586 (19)0.0407 (16)0.0703 (19)0.0070 (14)0.0111 (16)0.0029 (15)
F60.0495 (18)0.0472 (18)0.101 (2)0.0135 (15)0.0000 (16)0.0033 (18)
F70.0362 (16)0.0633 (19)0.0641 (18)0.0026 (14)0.0068 (14)0.0026 (15)
F80.103 (3)0.064 (2)0.0479 (16)0.007 (2)0.0089 (18)0.0095 (15)
Cu10.0327 (3)0.0364 (3)0.0450 (3)0.0019 (3)0.0014 (3)0.0001 (3)
Geometric parameters (Å, º) top
C1—N11.352 (6)C17—C161.373 (6)
C1—C21.380 (7)C17—H170.93
C1—H10.93C16—N41.349 (5)
C2—C31.370 (7)C16—H160.93
C2—H20.93C15—N31.344 (5)
C3—C41.391 (7)C15—C141.371 (6)
C3—H30.93C15—H150.93
C4—C51.381 (7)C14—C131.376 (6)
C4—H40.93C14—H140.93
C5—N11.333 (6)C13—C121.375 (6)
C5—H50.93C13—H130.93
C6—N21.341 (6)C12—C111.387 (6)
C6—C71.381 (6)C12—H120.93
C6—H60.93C11—N31.346 (5)
C7—C81.376 (7)C11—H110.93
C7—H70.93B1—F21.328 (7)
C8—C91.383 (7)B1—F31.357 (7)
C8—H80.93B1—F41.381 (7)
C9—C101.356 (6)B1—F11.382 (6)
C9—H90.93B2—F61.375 (6)
C10—N21.348 (5)B2—F51.390 (6)
C10—H100.93B2—F71.390 (6)
C20—N41.347 (6)B2—F81.386 (6)
C20—C191.375 (7)N2—Cu12.013 (4)
C20—H200.93N1—Cu12.036 (4)
C19—C181.368 (7)N4—Cu12.010 (4)
C19—H190.93N3—Cu12.038 (3)
C18—C171.396 (6)F1—Cu12.409 (3)
C18—H180.93
N1—C1—C2121.7 (5)C13—C14—C15118.7 (4)
N1—C1—H1119.1C13—C14—H14120.7
C2—C1—H1119.1C15—C14—H14120.7
C3—C2—C1119.6 (5)C14—C13—C12119.5 (4)
C3—C2—H2120.2C14—C13—H13120.2
C1—C2—H2120.2C12—C13—H13120.2
C2—C3—C4119.2 (4)C13—C12—C11118.5 (4)
C2—C3—H3120.4C13—C12—H12120.7
C4—C3—H3120.4C11—C12—H12120.7
C5—C4—C3118.0 (5)N3—C11—C12122.6 (4)
C5—C4—H4121N3—C11—H11118.7
C3—C4—H4121C12—C11—H11118.7
N1—C5—C4123.4 (5)F2—B1—F3112.3 (6)
N1—C5—H5118.3F2—B1—F4111.7 (5)
C4—C5—H5118.3F3—B1—F4109.5 (5)
N2—C6—C7122.0 (5)F2—B1—F1108.7 (5)
N2—C6—H6119F3—B1—F1107.5 (5)
C7—C6—H6119F4—B1—F1107.0 (5)
C8—C7—C6118.8 (5)F6—B2—F5109.7 (4)
C8—C7—H7120.6F6—B2—F7108.8 (4)
C6—C7—H7120.6F5—B2—F7108.7 (4)
C9—C8—C7119.1 (5)F6—B2—F8110.9 (5)
C9—C8—H8120.5F5—B2—F8109.8 (4)
C7—C8—H8120.5F7—B2—F8108.9 (5)
C10—C9—C8119.3 (4)C6—N2—C10118.4 (4)
C10—C9—H9120.4C6—N2—Cu1121.7 (3)
C8—C9—H9120.4C10—N2—Cu1119.9 (3)
N2—C10—C9122.4 (4)C5—N1—C1118.1 (4)
N2—C10—H10118.8C5—N1—Cu1120.9 (3)
C9—C10—H10118.8C1—N1—Cu1120.5 (3)
N4—C20—C19122.4 (5)C20—N4—C16117.3 (4)
N4—C20—H20118.8C20—N4—Cu1121.7 (3)
C19—C20—H20118.8C16—N4—Cu1121.0 (3)
C18—C19—C20119.6 (5)C15—N3—C11117.3 (4)
C18—C19—H19120.2C15—N3—Cu1121.9 (3)
C20—C19—H19120.2C11—N3—Cu1120.7 (3)
C19—C18—C17119.1 (5)B1—F1—Cu1165.8 (3)
C19—C18—H18120.5N4—Cu1—N2178.68 (15)
C17—C18—H18120.5N4—Cu1—N389.65 (15)
C16—C17—C18117.9 (5)N2—Cu1—N389.15 (14)
C16—C17—H17121N4—Cu1—N190.04 (15)
C18—C17—H17121N2—Cu1—N191.15 (15)
N4—C16—C17123.6 (4)N3—Cu1—N1178.11 (14)
N4—C16—H16118.2N4—Cu1—F191.87 (14)
C17—C16—H16118.2N2—Cu1—F188.69 (14)
N3—C15—C14123.3 (4)N3—Cu1—F191.01 (13)
N3—C15—H15118.3N1—Cu1—F190.87 (14)
C14—C15—H15118.3
N1—C1—C2—C30.4 (7)F2—B1—F1—Cu1173.6 (12)
C1—C2—C3—C41.6 (7)F3—B1—F1—Cu151.8 (17)
C2—C3—C4—C52.4 (7)F4—B1—F1—Cu165.6 (16)
C3—C4—C5—N11.4 (7)C20—N4—Cu1—N3121.7 (4)
N2—C6—C7—C80.8 (7)C16—N4—Cu1—N358.2 (4)
C6—C7—C8—C90.2 (7)C20—N4—Cu1—N156.5 (4)
C7—C8—C9—C101.4 (7)C16—N4—Cu1—N1123.6 (4)
C8—C9—C10—N21.6 (7)C20—N4—Cu1—F1147.3 (4)
N4—C20—C19—C181.6 (8)C16—N4—Cu1—F132.8 (4)
C20—C19—C18—C170.3 (8)C6—N2—Cu1—N3123.6 (4)
C19—C18—C17—C160.8 (8)C10—N2—Cu1—N357.7 (3)
C18—C17—C16—N40.7 (8)C6—N2—Cu1—N158.3 (4)
N3—C15—C14—C131.1 (8)C10—N2—Cu1—N1120.4 (3)
C15—C14—C13—C121.9 (9)C6—N2—Cu1—F132.6 (4)
C14—C13—C12—C111.1 (8)C10—N2—Cu1—F1148.7 (3)
C13—C12—C11—N30.5 (8)C15—N3—Cu1—N448.4 (4)
C7—C6—N2—C100.6 (7)C11—N3—Cu1—N4133.2 (4)
C7—C6—N2—Cu1179.3 (4)C15—N3—Cu1—N2131.1 (4)
C9—C10—N2—C60.6 (7)C11—N3—Cu1—N247.4 (4)
C9—C10—N2—Cu1178.1 (3)C15—N3—Cu1—F1140.2 (4)
C4—C5—N1—C10.6 (7)C11—N3—Cu1—F141.3 (4)
C4—C5—N1—Cu1171.6 (4)C5—N1—Cu1—N4130.8 (4)
C2—C1—N1—C51.5 (7)C1—N1—Cu1—N441.2 (4)
C2—C1—N1—Cu1170.7 (3)C5—N1—Cu1—N248.6 (4)
C19—C20—N4—C161.6 (8)C1—N1—Cu1—N2139.4 (3)
C19—C20—N4—Cu1178.3 (4)C5—N1—Cu1—F1137.3 (3)
C17—C16—N4—C200.4 (7)C1—N1—Cu1—F150.7 (3)
C17—C16—N4—Cu1179.5 (4)B1—F1—Cu1—N46.8 (15)
C14—C15—N3—C110.5 (7)B1—F1—Cu1—N2174.4 (15)
C14—C15—N3—Cu1179.0 (4)B1—F1—Cu1—N396.5 (15)
C12—C11—N3—C151.3 (8)B1—F1—Cu1—N183.2 (15)
C12—C11—N3—Cu1179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F5i0.932.633.016 (6)105
C7—H7···F8i0.932.513.380 (6)155
C13—H13···F6ii0.932.53.135 (6)126
C17—H17···F5iii0.932.513.169 (6)128
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(BF4)2(C5H5N)4]
Mr553.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)10.162 (3), 13.831 (5), 16.350 (4)
V3)2298.0 (12)
Z4
Radiation typeCu Kα
µ (mm1)2.10
Crystal size (mm)0.2 × 0.14 × 0.14
Data collection
DiffractometerRigaku Spider X-ray
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2005)
Tmin, Tmax0.769, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
17937, 4378, 3186
Rint0.065
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.117, 1.01
No. of reflections4378
No. of parameters317
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.68
Absolute structureFlack (1983), 1868 Friedel pairs
Absolute structure parameter0.22 (5)

Computer programs: CrystalClear-SM Expert (Rigaku, 2005), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F5i0.932.633.016 (6)105.4
C7—H7···F8i0.932.513.380 (6)155.1
C13—H13···F6ii0.932.53.135 (6)126
C17—H17···F5iii0.932.513.169 (6)127.7
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z.
Acknowledgements top

APSP would like to acknowledge Massey University for the Post-Doctoral fellowship. PGP would like to acknowledge financial assistance from the Massey University Research Fund.

references
References top

Agnus, Y., Labarelle, M., Louis, R. & Metz, B. (1994). Acta Cryst. C50, 536–538.

Alleyne, C. S. & Thompson, R. C. (1974). Can. J. Chem. 52, 3218–3228.

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Barker, P. J. & Stobart, S. R. (1980). Inorg. Chim. Acta, 45, L197–L198.

Beurskens, G., Martens, C. F., Nolte, R. J. M., Beurskens, P. T. & Smits, J. M. M. (1995). J. Chem. Crystallogr. 25, 425–427.

Bowmaker, G. A., Di Nicola, C., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2011). Dalton Trans. 40, 5102–5115.

Brown, D. H., Nuttall, R. H., McAvoy, J. & Sharp, D. W. A. (1966). J. Chem. Soc. A, pp. 892–896.

Conner, M., McConnell, A., Schlueter, J. A. & Manson, J. L. (2006). J. Low Temp. Phys. 142, 273–278.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Haynes, J. S., Rettig, S. J., Sams, J. R., Trotter, J. & Thompson, R. C. (1988). Inorg. Chem. 27, 1237–1241.

Heier, K. R., Norquist, A. J., Wilson, C. G., Stern, C. L. & Poeppelmeier, K. R. (1998). Inorg. Chem. 37, 76–80.

Ibers, J. A. (1953). Acta Cryst. 6, 367.

Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1597–m1598.

Noro, S., Ohba, T., Fukuhara, K., Takahashi, Y., Akutagawa, T. & Nakamura, T. (2011). Dalton Trans. 40, 2268–2274.

Noro, S., Tanaka, D., Sakamoto, H., Shimomura, S., Kitagawa, S., Takeda, S., Uemura, K., Kita, H., Akutagawa, T. & Nakamura, T. (2009). Chem. Mater. 21, 3346–3355.

Pradilla Sorzano, J., Chen, H. W., Koknat, F. W. & Fackler, J. P. Jr (1979). Inorg. Chem. 18, 3519–3522.

Rigaku, (2005). CrystalClear.. Rigaku Americas Corporation, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Su, C. & Li, C. (1994). Polyhedron 13, 825–834.