organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1414-o1415

(2E)-3-(2-Chloro-7-methyl­quinolin-3-yl)-1-(6-chloro-2-methyl-4-phenyl­quinolin-3-yl)prop-2-en-1-one ethanol monosolvate

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bCentre for Organic and Medicinal Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, India, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 July 2013; accepted 7 August 2013; online 14 August 2013)

In the title ethanol solvate, C29H20Cl2N2O·C2H5OH, the quinolinyl residues form a dihedral angle of 46.41 (4)° with each other, and each is inclined [Cp—C—C=O and C=C—C—Cp (p = pyridyl) torsion angles = 54.8 (2) and 144.44 (19)°, respectively] with respect to the almost planar bridging prop-2-en-1-one residue [O=C—C=C torsion angle = −4.1 (3)°]. The ethanol solvent mol­ecule is disordered over two positions of equal occupancy and is located close to a centre of inversion. These mol­ecules reside in cavities defined by the organic mol­ecules, which are connected into a three-dimensional architecture by C—H⋯Cl, C—H⋯O and C—H⋯N inter­actions, as well as ππ contacts [inter-centroid distances = 3.5853 (10) and 3.8268 (11) Å], each involving pyridyl rings.

Related literature

For background details and the biological applications of quinolin­yl/chalcone derivatives, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.]).

[Scheme 1]

Experimental

Crystal data
  • C29H20Cl2N2O·C2H6O

  • Mr = 529.44

  • Triclinic, [P \overline 1]

  • a = 9.1621 (3) Å

  • b = 11.3598 (4) Å

  • c = 13.1879 (5) Å

  • α = 74.017 (3)°

  • β = 85.995 (3)°

  • γ = 77.683 (3)°

  • V = 1289.07 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.52 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.724, Tmax = 1.000

  • 9624 measured reflections

  • 5287 independent reflections

  • 4904 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.05

  • 5287 reflections

  • 365 parameters

  • 42 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N2i 0.95 2.55 3.335 (2) 140
C25—H25⋯O1ii 0.95 2.45 3.394 (3) 170
C26—H26⋯Cl1iii 0.95 2.75 3.654 (2) 159
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoline analogues, including chalcones, have gained much attention due to their bio-activities such as anti-bacterial, anti-fungal, anti-malarial and anti-cancer activities (Joshi et al., 2011; Prasath et al., 2013a). It was in this connection that the title compound, (I), was investigated.

The terminal quinolinyl residues in (I), Fig. 1, are inclined to each other forming a dihedral angle of 46.41 (4)°. The bridge between these, i.e. the prop-2-en-1-one residue, is planar as seen in the O1—C17—C18—C19 torsion angle of -4.1 (3)°. Each quinolinyl fused ring system is inclined to the central plane: the C9—C8—C17—O1 and C18—C19—C20—C21 torsion angles are 54.8 (2) and 144.44 (19)°, respectively. The phenyl ring is inclined to the pyridyl ring to which it is attached, forming a dihedral angle of 46.28 (9)°. The conformation about the C18C19 bond [1.337 (3) Å] is E.

In a closely related compound, (2E)-3-(2-chloro-8-methylquinolin-3-yl)-1-(5,7-dimethylquinolin-6-yl)πrop-2-en-1-one (Prasath et al. 2013b), the orientation of the N2-quinolinyl residue is to the other side of the molecule to that found in (I); the pyridyl-nitrogen atoms may be considered syn in (I).

The quiniolinyl molecules are connected by C—H···Cl, O and N interactions, Table 1, as well as ππ contacts [inter-centroid distances: Cg(N2-pyridyl)···Cg(N2-pyridyl)i = 3.5853 (10) Å and Cg(N1-pyridyl)···Cg(C1–C6)ii = 3.8268 (11) Å for symmetry operations i: 2 - x, 1 - y, -z and ii: 1 - x, -y, 1 - z] to form a three-dimensional architecture. This defines cavities in which residue the highly disordered ethanol molecules, Fig. 2.

Related literature top

For background details and the biological applications of quinolinyl/chalcone derivatives, see: Joshi et al. (2011); Prasath et al. (2013a). For a related structure, see: Prasath et al. (2013b).

Experimental top

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (300 mg, 0.001 M) and 2-chloro-7-methylquinoline-3-carbaldehyde (200 mg, 0.001 M) in methanol (20 ml) containing potassium hydroxide (0.2 g) was stirred at room temperature for 12 h. Then the reaction mixture was neutralized with dilute acetic acid and the solid that formed was filtered off, washed with distilled ethanol to remove excess of water (from dilute acetic acid), dried and purified by column chromatography using an ethyl acetate-hexane (4:1) mixture to afford compound (I). Re-crystallization was by slow evaporation of its acetone solution, which yielded prisms in 87% yield; M.pt: 453–455 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The oxygen-bound H-atoms were treated similarly with O—H = 0.84 Å, and with Uiso(H) = 1.5Ueq(O)]. A disordered ethanol molecule of solvation was found towards the final stages of the refinement. Two positions of half-weight were resolved and these are disordered over a centre of inversion. The 1,2- and 1,3- distances were refined with distance restraints of 1.500 (5) and 2.45 (1) Å, respectively. All atoms were refined with individual anisotropic displacement parameters but these were constrained to be nearly isotropic (ISOR command in SHELXL97). Owing to poor agreement, the (0 1 0) reflection was omitted from the final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The disordered ethanol molecule is not shown.
[Figure 2] Fig. 2. View in projection down the c axis of the unit-cell contents of (I). The disordered ethanol molecules, highlighted in space-filling mode, occupy cavities defined by the organic molecules which are connected by C—H···Cl, C—H···O, C—H···N and ππ interactions, shown as green, orange, blue and purple dashed lines, respectively.
(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one ethanol monosolvate top
Crystal data top
C29H20Cl2N2O·C2H6OZ = 2
Mr = 529.44F(000) = 552
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.1621 (3) ÅCell parameters from 5460 reflections
b = 11.3598 (4) Åθ = 3.5–76.2°
c = 13.1879 (5) ŵ = 2.52 mm1
α = 74.017 (3)°T = 100 K
β = 85.995 (3)°Prism, pale-yellow
γ = 77.683 (3)°0.40 × 0.30 × 0.20 mm
V = 1289.07 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5287 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4904 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 76.4°, θmin = 3.5°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1413
Tmin = 0.724, Tmax = 1.000l = 1616
9624 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.7931P]
where P = (Fo2 + 2Fc2)/3
5287 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.52 e Å3
42 restraintsΔρmin = 0.77 e Å3
Crystal data top
C29H20Cl2N2O·C2H6Oγ = 77.683 (3)°
Mr = 529.44V = 1289.07 (8) Å3
Triclinic, P1Z = 2
a = 9.1621 (3) ÅCu Kα radiation
b = 11.3598 (4) ŵ = 2.52 mm1
c = 13.1879 (5) ÅT = 100 K
α = 74.017 (3)°0.40 × 0.30 × 0.20 mm
β = 85.995 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5287 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
4904 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 1.000Rint = 0.020
9624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04442 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
5287 reflectionsΔρmin = 0.77 e Å3
365 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.34164 (6)0.17568 (5)0.73142 (4)0.03305 (15)
Cl21.30733 (5)0.25503 (4)0.02173 (4)0.02611 (13)
O10.88501 (16)0.05550 (13)0.19850 (11)0.0273 (3)
N10.83172 (17)0.10669 (14)0.52772 (12)0.0210 (3)
N21.27879 (17)0.48253 (14)0.03288 (12)0.0200 (3)
C10.7161 (2)0.03693 (16)0.57030 (14)0.0196 (3)
C20.6659 (2)0.09198 (17)0.67277 (15)0.0234 (4)
H20.71120.17530.70810.028*
C30.5532 (2)0.02705 (18)0.72179 (15)0.0249 (4)
H30.52150.06410.79120.030*
C40.4849 (2)0.09544 (18)0.66766 (15)0.0232 (4)
C50.5280 (2)0.15195 (17)0.56784 (14)0.0216 (4)
H50.47770.23380.53250.026*
C60.64822 (19)0.08754 (16)0.51745 (13)0.0187 (3)
C70.7056 (2)0.14158 (16)0.41531 (13)0.0186 (3)
C80.8184 (2)0.06739 (16)0.37231 (13)0.0190 (3)
C90.8792 (2)0.05784 (16)0.43182 (14)0.0197 (3)
C101.0070 (2)0.13943 (18)0.38962 (16)0.0259 (4)
H10A1.05600.20690.44820.039*
H10B1.07920.08910.35340.039*
H10C0.96880.17540.33990.039*
C110.6480 (2)0.27469 (16)0.35914 (14)0.0196 (3)
C120.6550 (2)0.36842 (18)0.40740 (15)0.0261 (4)
H120.68910.34640.47790.031*
C130.6126 (3)0.49367 (19)0.35312 (17)0.0322 (5)
H130.61850.55690.38630.039*
C140.5613 (2)0.52672 (18)0.25008 (16)0.0296 (4)
H140.53200.61230.21300.036*
C150.5532 (2)0.43448 (18)0.20205 (15)0.0244 (4)
H150.51850.45690.13170.029*
C160.5956 (2)0.30926 (17)0.25600 (14)0.0206 (4)
H160.58880.24650.22250.025*
C170.8820 (2)0.11464 (17)0.26361 (14)0.0206 (4)
C180.9451 (2)0.22873 (17)0.24087 (14)0.0211 (4)
H180.93510.27550.29150.025*
C191.0162 (2)0.26635 (17)0.14936 (14)0.0207 (4)
H191.02670.21700.10070.025*
C201.0786 (2)0.37970 (17)0.12036 (14)0.0199 (3)
C211.2140 (2)0.38775 (17)0.06073 (13)0.0189 (3)
C221.2102 (2)0.58889 (17)0.06146 (13)0.0201 (4)
C231.2797 (2)0.69349 (18)0.03304 (14)0.0230 (4)
H231.37250.68840.00410.028*
C241.2145 (2)0.80230 (18)0.05860 (15)0.0258 (4)
C251.0754 (2)0.80895 (19)0.11348 (16)0.0292 (4)
H251.02880.88460.13010.035*
C261.0070 (2)0.70854 (19)0.14279 (16)0.0282 (4)
H260.91440.71510.18000.034*
C271.0727 (2)0.59504 (18)0.11830 (14)0.0218 (4)
C281.0093 (2)0.48750 (17)0.14737 (14)0.0216 (4)
H280.91770.48930.18600.026*
C291.2868 (3)0.9150 (2)0.02904 (19)0.0341 (5)
H29A1.39260.88920.01190.051*
H29B1.27820.95240.08840.051*
H29C1.23660.97650.03240.051*
O20.0422 (5)0.5120 (4)0.5307 (3)0.0565 (10)0.50
H2O0.06100.44020.57260.085*0.50
C300.1004 (7)0.5851 (5)0.5640 (6)0.065 (2)0.50
H30A0.07870.62800.61550.078*0.50
H30B0.14810.64950.50200.078*0.50
C310.2032 (6)0.4996 (6)0.6125 (4)0.0459 (12)0.50
H31A0.29660.54780.63350.069*0.50
H31B0.15630.43710.67480.069*0.50
H31C0.22440.45740.56130.069*0.50
O2'0.0663 (4)0.4796 (6)0.6210 (3)0.0775 (16)0.50
H2O'0.14180.46180.58400.116*0.50
C30'0.0577 (5)0.5156 (6)0.5604 (4)0.0400 (11)0.50
H30C0.07430.43980.54370.048*0.50
H30D0.03150.57200.49290.048*0.50
C31'0.2023 (5)0.5774 (6)0.5941 (4)0.0415 (11)0.50
H31D0.27530.59590.53820.062*0.50
H31E0.19220.65550.60840.062*0.50
H31F0.23620.52230.65830.062*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0348 (3)0.0304 (3)0.0363 (3)0.0104 (2)0.0149 (2)0.0136 (2)
Cl20.0245 (2)0.0217 (2)0.0323 (2)0.00494 (17)0.00614 (17)0.00892 (18)
O10.0370 (8)0.0258 (7)0.0227 (6)0.0113 (6)0.0035 (6)0.0095 (5)
N10.0222 (7)0.0186 (7)0.0220 (7)0.0057 (6)0.0024 (6)0.0034 (6)
N20.0197 (7)0.0217 (7)0.0190 (7)0.0052 (6)0.0010 (6)0.0050 (6)
C10.0206 (8)0.0190 (8)0.0201 (8)0.0069 (7)0.0031 (7)0.0040 (7)
C20.0272 (9)0.0208 (9)0.0215 (9)0.0087 (7)0.0031 (7)0.0007 (7)
C30.0303 (10)0.0262 (9)0.0193 (8)0.0135 (8)0.0024 (7)0.0029 (7)
C40.0234 (9)0.0247 (9)0.0255 (9)0.0101 (7)0.0043 (7)0.0103 (7)
C50.0233 (9)0.0191 (8)0.0234 (9)0.0068 (7)0.0004 (7)0.0053 (7)
C60.0209 (8)0.0187 (8)0.0182 (8)0.0083 (7)0.0024 (6)0.0039 (6)
C70.0213 (8)0.0178 (8)0.0186 (8)0.0083 (7)0.0029 (6)0.0040 (6)
C80.0213 (8)0.0201 (8)0.0174 (8)0.0090 (7)0.0018 (6)0.0040 (7)
C90.0195 (8)0.0195 (8)0.0219 (8)0.0061 (7)0.0028 (7)0.0062 (7)
C100.0238 (9)0.0257 (9)0.0274 (9)0.0028 (7)0.0010 (7)0.0075 (8)
C110.0205 (8)0.0183 (8)0.0196 (8)0.0061 (7)0.0002 (6)0.0027 (7)
C120.0376 (11)0.0207 (9)0.0204 (8)0.0065 (8)0.0059 (8)0.0041 (7)
C130.0496 (13)0.0190 (9)0.0287 (10)0.0068 (8)0.0078 (9)0.0059 (8)
C140.0366 (11)0.0192 (9)0.0292 (10)0.0032 (8)0.0066 (8)0.0006 (7)
C150.0246 (9)0.0258 (9)0.0205 (8)0.0049 (7)0.0030 (7)0.0017 (7)
C160.0212 (8)0.0217 (9)0.0207 (8)0.0077 (7)0.0001 (7)0.0062 (7)
C170.0198 (8)0.0211 (8)0.0205 (8)0.0039 (7)0.0005 (7)0.0049 (7)
C180.0205 (8)0.0224 (9)0.0212 (8)0.0068 (7)0.0010 (7)0.0051 (7)
C190.0197 (8)0.0214 (8)0.0203 (8)0.0046 (7)0.0011 (6)0.0041 (7)
C200.0194 (8)0.0223 (8)0.0172 (8)0.0057 (7)0.0011 (6)0.0028 (6)
C210.0186 (8)0.0198 (8)0.0177 (8)0.0026 (6)0.0007 (6)0.0049 (6)
C220.0225 (9)0.0218 (9)0.0166 (8)0.0053 (7)0.0023 (6)0.0048 (7)
C230.0240 (9)0.0249 (9)0.0216 (9)0.0075 (7)0.0016 (7)0.0064 (7)
C240.0323 (10)0.0236 (9)0.0233 (9)0.0080 (8)0.0044 (8)0.0063 (7)
C250.0366 (11)0.0239 (9)0.0281 (10)0.0018 (8)0.0007 (8)0.0118 (8)
C260.0309 (10)0.0269 (10)0.0264 (9)0.0033 (8)0.0051 (8)0.0098 (8)
C270.0234 (9)0.0235 (9)0.0185 (8)0.0041 (7)0.0010 (7)0.0058 (7)
C280.0208 (8)0.0256 (9)0.0175 (8)0.0051 (7)0.0016 (7)0.0041 (7)
C290.0395 (12)0.0253 (10)0.0417 (12)0.0113 (9)0.0012 (9)0.0120 (9)
O20.053 (2)0.061 (2)0.064 (3)0.009 (2)0.025 (2)0.027 (2)
C300.085 (5)0.037 (3)0.084 (5)0.008 (3)0.007 (4)0.040 (3)
C310.065 (3)0.046 (3)0.033 (2)0.016 (3)0.006 (2)0.015 (2)
O2'0.038 (2)0.155 (5)0.034 (2)0.015 (3)0.0068 (16)0.018 (3)
C30'0.028 (2)0.053 (3)0.037 (2)0.017 (2)0.0039 (19)0.004 (2)
C31'0.034 (3)0.043 (3)0.047 (3)0.008 (2)0.004 (2)0.011 (2)
Geometric parameters (Å, º) top
Cl1—C41.7371 (19)C18—C191.337 (3)
Cl2—C211.7562 (18)C18—H180.9500
O1—C171.223 (2)C19—C201.464 (2)
N1—C91.318 (2)C19—H190.9500
N1—C11.367 (2)C20—C281.381 (3)
N2—C211.292 (2)C20—C211.428 (2)
N2—C221.375 (2)C22—C231.415 (3)
C1—C21.414 (3)C22—C271.419 (3)
C1—C61.419 (2)C23—C241.373 (3)
C2—C31.369 (3)C23—H230.9500
C2—H20.9500C24—C251.420 (3)
C3—C41.408 (3)C24—C291.510 (3)
C3—H30.9500C25—C261.368 (3)
C4—C51.368 (3)C25—H250.9500
C5—C61.419 (3)C26—C271.414 (3)
C5—H50.9500C26—H260.9500
C6—C71.432 (2)C27—C281.411 (3)
C7—C81.382 (3)C28—H280.9500
C7—C111.487 (2)C29—H29A0.9800
C8—C91.435 (2)C29—H29B0.9800
C8—C171.509 (2)C29—H29C0.9800
C9—C101.506 (3)O2—C301.498 (5)
C10—H10A0.9800O2—H2O0.8400
C10—H10B0.9800C30—C311.485 (5)
C10—H10C0.9800C30—H30A0.9900
C11—C161.397 (2)C30—H30B0.9900
C11—C121.397 (3)C31—H31A0.9800
C12—C131.389 (3)C31—H31B0.9800
C12—H120.9500C31—H31C0.9800
C13—C141.393 (3)O2'—C30'1.358 (4)
C13—H130.9500O2'—H2O'0.8400
C14—C151.382 (3)C30'—C31'1.462 (4)
C14—H140.9500C30'—H30C0.9900
C15—C161.388 (3)C30'—H30D0.9900
C15—H150.9500C31'—H31D0.9800
C16—H160.9500C31'—H31E0.9800
C17—C181.478 (2)C31'—H31F0.9800
C9—N1—C1118.61 (15)C18—C19—H19118.3
C21—N2—C22117.46 (16)C20—C19—H19118.3
N1—C1—C2117.55 (16)C28—C20—C21115.04 (16)
N1—C1—C6123.01 (16)C28—C20—C19122.32 (16)
C2—C1—C6119.43 (17)C21—C20—C19122.63 (16)
C3—C2—C1121.03 (17)N2—C21—C20127.10 (17)
C3—C2—H2119.5N2—C21—Cl2115.16 (13)
C1—C2—H2119.5C20—C21—Cl2117.73 (14)
C2—C3—C4118.94 (17)N2—C22—C23118.58 (16)
C2—C3—H3120.5N2—C22—C27121.35 (17)
C4—C3—H3120.5C23—C22—C27120.07 (17)
C5—C4—C3122.15 (18)C24—C23—C22120.69 (18)
C5—C4—Cl1119.79 (15)C24—C23—H23119.7
C3—C4—Cl1118.05 (14)C22—C23—H23119.7
C4—C5—C6119.56 (17)C23—C24—C25119.05 (18)
C4—C5—H5120.2C23—C24—C29121.56 (19)
C6—C5—H5120.2C25—C24—C29119.39 (18)
C5—C6—C1118.81 (16)C26—C25—C24121.22 (18)
C5—C6—C7123.40 (16)C26—C25—H25119.4
C1—C6—C7117.79 (16)C24—C25—H25119.4
C8—C7—C6118.00 (16)C25—C26—C27120.78 (19)
C8—C7—C11121.33 (16)C25—C26—H26119.6
C6—C7—C11120.65 (16)C27—C26—H26119.6
C7—C8—C9119.98 (16)C28—C27—C26123.67 (18)
C7—C8—C17121.81 (16)C28—C27—C22118.16 (17)
C9—C8—C17118.21 (16)C26—C27—C22118.17 (18)
N1—C9—C8122.50 (16)C20—C28—C27120.84 (17)
N1—C9—C10115.95 (16)C20—C28—H28119.6
C8—C9—C10121.49 (16)C27—C28—H28119.6
C9—C10—H10A109.5C24—C29—H29A109.5
C9—C10—H10B109.5C24—C29—H29B109.5
H10A—C10—H10B109.5H29A—C29—H29B109.5
C9—C10—H10C109.5C24—C29—H29C109.5
H10A—C10—H10C109.5H29A—C29—H29C109.5
H10B—C10—H10C109.5H29B—C29—H29C109.5
C16—C11—C12118.79 (16)C31—C30—O2109.7 (4)
C16—C11—C7121.46 (16)C31—C30—H30A109.7
C12—C11—C7119.61 (16)O2—C30—H30A109.7
C13—C12—C11120.48 (17)C31—C30—H30B109.7
C13—C12—H12119.8O2—C30—H30B109.7
C11—C12—H12119.8H30A—C30—H30B108.2
C12—C13—C14120.07 (18)C30—C31—H31A109.5
C12—C13—H13120.0C30—C31—H31B109.5
C14—C13—H13120.0H31A—C31—H31B109.5
C15—C14—C13119.75 (18)C30—C31—H31C109.5
C15—C14—H14120.1H31A—C31—H31C109.5
C13—C14—H14120.1H31B—C31—H31C109.5
C14—C15—C16120.35 (17)C30'—O2'—H2O'109.5
C14—C15—H15119.8O2'—C30'—C31'123.1 (5)
C16—C15—H15119.8O2'—C30'—H30C106.5
C15—C16—C11120.55 (17)C31'—C30'—H30C106.5
C15—C16—H16119.7O2'—C30'—H30D106.5
C11—C16—H16119.7C31'—C30'—H30D106.5
O1—C17—C18122.03 (17)H30C—C30'—H30D106.5
O1—C17—C8119.42 (16)C30'—C31'—H31D109.5
C18—C17—C8118.49 (15)C30'—C31'—H31E109.5
C19—C18—C17120.28 (17)H31D—C31'—H31E109.5
C19—C18—H18119.9C30'—C31'—H31F109.5
C17—C18—H18119.9H31D—C31'—H31F109.5
C18—C19—C20123.37 (17)H31E—C31'—H31F109.5
C9—N1—C1—C2179.21 (16)C14—C15—C16—C110.5 (3)
C9—N1—C1—C62.3 (3)C12—C11—C16—C150.9 (3)
N1—C1—C2—C3178.39 (16)C7—C11—C16—C15174.92 (17)
C6—C1—C2—C30.1 (3)C7—C8—C17—O1125.81 (19)
C1—C2—C3—C41.3 (3)C9—C8—C17—O154.8 (2)
C2—C3—C4—C50.3 (3)C7—C8—C17—C1856.8 (2)
C2—C3—C4—Cl1179.79 (14)C9—C8—C17—C18122.50 (18)
C3—C4—C5—C61.9 (3)O1—C17—C18—C194.1 (3)
Cl1—C4—C5—C6177.96 (13)C8—C17—C18—C19173.13 (17)
C4—C5—C6—C13.1 (3)C17—C18—C19—C20178.62 (16)
C4—C5—C6—C7176.86 (16)C18—C19—C20—C2836.6 (3)
N1—C1—C6—C5179.47 (16)C18—C19—C20—C21144.44 (19)
C2—C1—C6—C52.1 (3)C22—N2—C21—C201.2 (3)
N1—C1—C6—C70.6 (3)C22—N2—C21—Cl2179.98 (12)
C2—C1—C6—C7177.86 (16)C28—C20—C21—N22.1 (3)
C5—C6—C7—C8176.93 (16)C19—C20—C21—N2178.84 (17)
C1—C6—C7—C83.1 (2)C28—C20—C21—Cl2179.09 (13)
C5—C6—C7—C114.8 (3)C19—C20—C21—Cl20.1 (2)
C1—C6—C7—C11175.13 (15)C21—N2—C22—C23179.24 (16)
C6—C7—C8—C92.9 (2)C21—N2—C22—C270.7 (3)
C11—C7—C8—C9175.35 (15)N2—C22—C23—C24179.13 (16)
C6—C7—C8—C17177.79 (15)C27—C22—C23—C240.9 (3)
C11—C7—C8—C174.0 (3)C22—C23—C24—C250.5 (3)
C1—N1—C9—C82.6 (3)C22—C23—C24—C29180.00 (17)
C1—N1—C9—C10179.90 (15)C23—C24—C25—C261.2 (3)
C7—C8—C9—N10.0 (3)C29—C24—C25—C26179.23 (19)
C17—C8—C9—N1179.33 (16)C24—C25—C26—C270.6 (3)
C7—C8—C9—C10177.14 (16)C25—C26—C27—C28179.13 (18)
C17—C8—C9—C102.2 (2)C25—C26—C27—C220.8 (3)
C8—C7—C11—C1654.5 (2)N2—C22—C27—C281.6 (3)
C6—C7—C11—C16127.30 (18)C23—C22—C27—C28178.40 (16)
C8—C7—C11—C12121.2 (2)N2—C22—C27—C26178.53 (16)
C6—C7—C11—C1257.0 (2)C23—C22—C27—C261.5 (3)
C16—C11—C12—C130.9 (3)C21—C20—C28—C271.1 (3)
C7—C11—C12—C13174.99 (19)C19—C20—C28—C27179.88 (16)
C11—C12—C13—C140.5 (3)C26—C27—C28—C20179.54 (18)
C12—C13—C14—C150.2 (3)C22—C27—C28—C200.6 (3)
C13—C14—C15—C160.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N2i0.952.553.335 (2)140
C25—H25···O1ii0.952.453.394 (3)170
C26—H26···Cl1iii0.952.753.654 (2)159
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N2i0.952.553.335 (2)140
C25—H25···O1ii0.952.453.394 (3)170
C26—H26···Cl1iii0.952.753.654 (2)159
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: prasad24487@yahoo.co.in.

Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship (09/919/(0014)/2012 EMR-I). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationJoshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872–876.  Web of Science CrossRef CAS
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62–70.  Web of Science CSD CrossRef CAS
First citationPrasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1414-o1415
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds