organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1485-o1486

2-(4-Hy­dr­oxy­phen­yl)-1H-benzimidazol-3-ium chloride monohydrate

aLaboratorio de Biofisica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás, México, DF 11340, Mexico, bLaboratorio de Investigación en Química, Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la laguna Ticoman, México, DF 07340, Mexico, and cCentro de Investigaciones Químicas, Universidad Autonoma del Estado de Hidalgo, km. 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma, Hidalgo 42184, Mexico
*Correspondence e-mail: ipadillamar@ipn.mx

(Received 15 August 2013; accepted 20 August 2013; online 31 August 2013)

The title mol­ecular salt, C13H11N2O+·Cl·H2O, crystallizes as a monohydrate. In the cation, the phenol and benzimidazole rings are almost coplanar, making a dihedral angle of 3.18 (4)°. The chloride anion and benzimidazole cation are linked by two N+—H⋯Cl hydrogen bonds, forming chains propagating along [010]. These chains are linked through O—H⋯Cl hydrogen bonds involving the water mol­ecule and the chloride anion, which form a diamond core, giving rise to the formation of two-dimensional networks lying parallel to (10-2). Two ππ inter­actions involving the imidazolium ring with the benzene and phenol rings [centroid–centroid distances = 3.859 (3) and 3.602 (3) Å, respectively], contribute to this second dimension. A strong O—H⋯O hydrogen bond involving the water mol­ecule and the phenol substituent on the benzimidazole unit links the networks, forming a three-dimensional structure.

Related literature

For biological properties of benzimidazoles and their applications, see: Ansari & Lal (2009[Ansari, K. F. & Lal, C. (2009). J. Chem. Sci. 121 , 1017-1025.]); Laryea et al. (2010[Laryea, D., Gullbo, J., Isakssoon, A., Larsson, R. & Nygren, P. (2010). Anti-Cancer Drugs, 21, 33-42.]); Mohan et al. (2011[Mohan, V. G., Sreenivasulu, N., Rao, A. S. & Chigiri, S. (2011). Der Pharma Chem., 3, 446-452.]); Refaat (2010[Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949-2956.]); Zhou et al. (2013[Zhou, B., Li, B., Yi, W., Bu, X. & Ma, L. (2013). Bioorg. Med. Chem. Lett. 23, 3759-3763.]); Khan et al. (2012[Khan, K.-M., Khan, M., Ambreen, N., Rahim, F., Naureen, S., Perveen, S., Choudhary, M. I. & Voelter, W. (2012). Med. Chem. 8, 421-427.]). For their use in crystal-engineering, see: Cai et al. (2002[Cai, C.-X., Tian, Y.-Q., Li, Y.-Z. & You, X.-Z. (2002). Acta Cryst. C58, m459-m460.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the structures of benzimidazole halohydrates, see: Akkurt et al. (2010[Akkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1770-o1771.]); Baktır et al. (2010[Baktır, Z., Akkurt, M., Şireci, N. & Küçükbay, H. (2010). Acta Cryst. E66, o2393-o2394.]). For the microwave synthesis of neutral 4-(1H-benzimidazol-2-yl)phenol, see: Navarrete-Vázquez et al. (2006[Navarrete-Vázquez, G., Moreno-Díaz, H., Aguirre-Crespo, F., León-Rivera, I., Villalobos-Molina, R., Muñoz-Muñiz, O. & Estrada-Soto, S. (2006). Bioorg. Med. Chem. Lett. 16, 4169-4173.]). For its crystal structure, see: Zhan et al. (2007[Zhan, Q.-G., Liu, M.-S., Zeng, R.-H., Yang, D.-Q. & Cai, Y.-P. (2007). Acta Cryst. E63, o3470.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N2O+·Cl·H2O

  • Mr = 264.70

  • Monoclinic, C 2/c

  • a = 10.3225 (5) Å

  • b = 16.3159 (5) Å

  • c = 15.4618 (8) Å

  • β = 101.071 (5)°

  • V = 2555.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.38 × 0.33 × 0.28 × 0.15 (radius) mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: for a sphere [the interpolation procedure of (Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) was used with some modification] Tmin = 0.861, Tmax = 0.862

  • 12720 measured reflections

  • 2519 independent reflections

  • 2032 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.06

  • 2519 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.86 2.29 3.1167 (16) 162
N3—H3⋯Cl1i 0.86 2.32 3.1625 (16) 168
O1—H1A⋯Cl1ii 0.89 2.39 3.266 (2) 167
O1—H1B⋯Cl1 0.92 2.33 3.243 (2) 171
O13—H13⋯O1iii 0.82 1.86 2.666 (3) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazoles are a class of compounds with a wide variety of biological properties (Mohan et al., 2011; Refaat, 2010; Laryea et al., 2010; Ansari & Lal, 2009) and have applications in crystal-engineering (Cai et al., 2002). Particularly, the neutral derivative of the title compound has recently been reported as having good antimicrobial (Zhou et al., 2013) and β-glucuronidase inhibitory activity (Khan et al., 2012). Herein we report on the crystal structure of the title compound.

The title compound crystallizes as the monohydrate of a hydrochloride salt, Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The phenol and benzimidazole rings are almost coplanar with a dihedral angle of 3.18 (4) °.

One water molecule was included in the asymmetric unit which, besides the chloride anion, directs the organization in the lattice forming hydrogen bonding interactions (Table 1 and Fig. 2), as has been observed in other halohydrates (Akkurt et al., 2010; Baktır et al., 2010).

In the crystal, the chloride anion and the benzimidazole molecule give rise to the first dimension through two N+—H···Cl- interactions (Table 1); forming chains propagating along [010].

The water molecule and chloride anion form a diamond core through O—H···Cl hydrogen bonds, giving rise to the second dimension (Table 1); forming two-dimensional networks lying parallel to plane (10-2).

Two contributions from aromatic systems of the type ππ between the electronic deficient imidazolium ring, [N1/N2/C2/C8/C9 with centroid Cg1], with both electronic rich benzene, [C4-C9 with centroid Cg2], and phenol, [C10-C15 with centroid Cg3], rings contribute to the development in the second dimension [Cg1···Cg2i = 3.6017 (13) Å and Cg1···Cg3ii = 3.8593 (12) Å; symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x, y, -z+1/2].

The third dimension is built by a strong O-H···O hydrogen bond between the water molecule, as the acceptor, with the phenol group of benzimidazole, as donor (Table 1 and Fig. 2); forming a three-dimensional structure.

The molecular structure of the title compound is similar to that of the neutral compound 4-(1H-benzimidazol-2-yl)phenol (Zhan et al., 2007), where the dihedral angle between the benzimidazole ring system and the phenol ring is 8.11 (5) °. In the crystal lattice, only N—H···O and O—H···N (benzimidazole-phenol) hydrogen bonds are present.

Related literature top

For biological properties of benzimidazoles and their applications, see: Ansari & Lal (2009); Laryea et al. (2010); Mohan et al. (2011); Refaat (2010); Zhou et al. (2013); Khan et al. (2012). For their use in crystal-engineering, see: Cai et al. (2002). For standard bond lengths, see: Allen et al. (1987). For the structures of benzimidazole halohydrates, see: Akkurt et al. (2010); Baktır et al. (2010). For the microwave synthesis of neutral 4-(1H-benzimidazol-2-yl)phenol, see: Navarrete-Vázquez et al. (2006). For its crystal structure, see: Zhan et al. (2007).

Experimental top

The neutral derivative of the title compound, 4-(1H-benzimidazol-2-yl)phenol, was synthesized following a reported procedure (Navarrete-Vázquez et al., 2006). The reaction of 0.257 g (2.38 mmol) of 1,3-phenylenediamine, 0.290 g (2.38 mmol) of 4-hydroxybenzaldehyde and 0.452 g (2.38 mmol) of Na2S2O5 in 4 ml of DMSO as solvent, heated at 423 K for 15 min in a microwave oven gave a 94% yield of the neutral compound. Colourless block-like crystals of the title compound were obtained by crystallization of this neutral compound in a THF solution with a few drops of an aqueous solution of HCl (10%).

Refinement top

The OH, water and NH H atoms could be located in Fourier difference maps. The water H atoms were refined as riding atoms with Uiso(H)= 1.5Ueq(O). In the final cycles of refinement the OH, NH and C-bound H atoms were positioned geometrically and treated as riding atoms: O-H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 Å for CH H atoms, with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along direction [101]. The hydrogen bonds and centroid-centroid interactions are shown as dashed lines (see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.
2-(4-Hydroxyphenyl)-1H-benzimidazol-3-ium chloride monohydrate top
Crystal data top
C13H11N2O+·Cl·H2OF(000) = 1104
Mr = 264.70Dx = 1.376 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 600 reflections
a = 10.3225 (5) Åθ = 20–25°
b = 16.3159 (5) ŵ = 0.29 mm1
c = 15.4618 (8) ÅT = 293 K
β = 101.071 (5)°Block, colourless
V = 2555.6 (2) Å30.38 × 0.33 × 0.28 × 0.15 (radius) mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2519 independent reflections
Graphite monochromator2032 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.028
ω scansθmax = 26.2°, θmin = 2.4°
Absorption correction: for a sphere
[the interpolation procedure of (Dwiggins, 1975) was used with some modification]
h = 1210
Tmin = 0.861, Tmax = 0.862k = 2020
12720 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0595P)2 + 1.2001P]
where P = (Fo2 + 2Fc2)/3
2519 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H11N2O+·Cl·H2OV = 2555.6 (2) Å3
Mr = 264.70Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.3225 (5) ŵ = 0.29 mm1
b = 16.3159 (5) ÅT = 293 K
c = 15.4618 (8) Å0.38 × 0.33 × 0.28 × 0.15 (radius) mm
β = 101.071 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2519 independent reflections
Absorption correction: for a sphere
[the interpolation procedure of (Dwiggins, 1975) was used with some modification]
2032 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.862Rint = 0.028
12720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
2519 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O130.24260 (17)0.03354 (10)0.00034 (11)0.0774 (6)
N10.26708 (17)0.19303 (9)0.25356 (11)0.0574 (5)
N30.30346 (16)0.06482 (9)0.28407 (11)0.0555 (5)
C20.2213 (2)0.11736 (10)0.23396 (13)0.0513 (6)
C40.5115 (2)0.08213 (13)0.39988 (15)0.0675 (8)
C50.5938 (3)0.14242 (15)0.44198 (17)0.0740 (9)
C60.5692 (3)0.22515 (15)0.42173 (17)0.0773 (9)
C70.4630 (3)0.25048 (13)0.35978 (17)0.0724 (8)
C80.3799 (2)0.19009 (11)0.31768 (13)0.0565 (6)
C90.4039 (2)0.10732 (11)0.33766 (13)0.0559 (6)
C100.1031 (2)0.09650 (11)0.17127 (12)0.0522 (6)
C110.0230 (2)0.15718 (12)0.12455 (15)0.0647 (7)
C120.0923 (2)0.13790 (13)0.06684 (15)0.0661 (8)
C130.1307 (2)0.05700 (13)0.05431 (13)0.0587 (7)
C140.0528 (2)0.00400 (12)0.10052 (15)0.0643 (7)
C150.0623 (2)0.01506 (11)0.15739 (14)0.0585 (7)
O10.12352 (19)0.35642 (11)0.39008 (13)0.0917 (7)
Cl10.19078 (6)0.37204 (3)0.19429 (4)0.0720 (2)
H10.231330.237180.229610.0688*
H30.294900.012370.282990.0665*
H40.527580.026940.412710.0809*
H50.666660.127850.484480.0888*
H60.626650.264360.451200.0927*
H70.447710.305690.346710.0868*
H110.048050.211830.132570.0776*
H120.144030.179270.036460.0793*
H130.273180.072380.031300.1160*
H140.079040.058470.092800.0771*
H150.113820.026710.187110.0702*
H1A0.039950.353690.361370.1376*
H1B0.151770.359700.337300.1376*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O130.0655 (11)0.0665 (10)0.0901 (11)0.0031 (7)0.0101 (8)0.0040 (8)
N10.0608 (11)0.0332 (7)0.0725 (10)0.0002 (6)0.0011 (8)0.0030 (6)
N30.0593 (11)0.0332 (7)0.0704 (10)0.0001 (6)0.0036 (8)0.0027 (6)
C20.0570 (12)0.0358 (8)0.0613 (10)0.0001 (7)0.0116 (9)0.0013 (7)
C40.0654 (15)0.0513 (11)0.0802 (14)0.0045 (9)0.0003 (11)0.0078 (10)
C50.0639 (16)0.0714 (14)0.0795 (15)0.0028 (11)0.0043 (12)0.0006 (11)
C60.0703 (17)0.0622 (13)0.0914 (16)0.0098 (11)0.0043 (12)0.0126 (11)
C70.0752 (16)0.0419 (10)0.0929 (15)0.0047 (9)0.0016 (12)0.0066 (10)
C80.0580 (13)0.0413 (9)0.0676 (11)0.0001 (8)0.0053 (9)0.0012 (8)
C90.0573 (13)0.0423 (9)0.0662 (11)0.0003 (8)0.0072 (9)0.0020 (8)
C100.0565 (12)0.0399 (9)0.0596 (10)0.0007 (8)0.0097 (9)0.0016 (7)
C110.0710 (15)0.0389 (9)0.0784 (13)0.0029 (9)0.0002 (11)0.0037 (9)
C120.0643 (15)0.0545 (11)0.0738 (13)0.0066 (9)0.0010 (11)0.0102 (9)
C130.0531 (13)0.0574 (11)0.0633 (11)0.0001 (9)0.0056 (9)0.0040 (8)
C140.0651 (14)0.0437 (10)0.0799 (13)0.0025 (9)0.0034 (11)0.0049 (9)
C150.0589 (13)0.0410 (9)0.0719 (12)0.0026 (8)0.0030 (10)0.0009 (8)
O10.0786 (13)0.0885 (12)0.0977 (13)0.0048 (9)0.0090 (10)0.0099 (10)
Cl10.0792 (4)0.0328 (3)0.0941 (4)0.0001 (2)0.0079 (3)0.0024 (2)
Geometric parameters (Å, º) top
O13—C131.349 (3)C8—C91.397 (3)
O13—H130.8200C10—C111.399 (3)
O1—H1B0.9200C10—C151.398 (3)
O1—H1A0.8900C11—C121.380 (3)
N1—C81.378 (3)C12—C131.381 (3)
N1—C21.336 (2)C13—C141.388 (3)
N3—C91.383 (3)C14—C151.371 (3)
N3—C21.342 (2)C4—H40.9300
N1—H10.8600C5—H50.9300
N3—H30.8600C6—H60.9300
C2—C101.446 (3)C7—H70.9300
C4—C51.379 (3)C11—H110.9300
C4—C91.385 (3)C12—H120.9300
C5—C61.398 (3)C14—H140.9300
C6—C71.374 (4)C15—H150.9300
C7—C81.384 (3)
C13—O13—H13109.00C10—C11—C12121.57 (18)
H1A—O1—H1B90.00C11—C12—C13119.82 (19)
C2—N1—C8110.15 (16)C12—C13—C14119.39 (19)
C2—N3—C9110.09 (15)O13—C13—C12123.18 (19)
C2—N1—H1125.00O13—C13—C14117.43 (19)
C8—N1—H1125.00C13—C14—C15120.82 (18)
C2—N3—H3125.00C10—C15—C14120.82 (18)
C9—N3—H3125.00C5—C4—H4121.00
N1—C2—N3107.61 (17)C9—C4—H4121.00
N1—C2—C10125.87 (17)C6—C5—H5120.00
N3—C2—C10126.51 (16)C4—C5—H5120.00
C5—C4—C9117.1 (2)C5—C6—H6119.00
C4—C5—C6121.0 (3)C7—C6—H6119.00
C5—C6—C7122.2 (2)C8—C7—H7122.00
C6—C7—C8117.0 (2)C6—C7—H7121.00
N1—C8—C7132.49 (18)C10—C11—H11119.00
C7—C8—C9121.1 (2)C12—C11—H11119.00
N1—C8—C9106.40 (16)C13—C12—H12120.00
N3—C9—C4132.57 (17)C11—C12—H12120.00
C4—C9—C8121.68 (18)C13—C14—H14120.00
N3—C9—C8105.76 (17)C15—C14—H14120.00
C11—C10—C15117.56 (18)C10—C15—H15120.00
C2—C10—C15121.15 (17)C14—C15—H15120.00
C2—C10—C11121.25 (17)
C8—N1—C2—N30.5 (2)C6—C7—C8—N1179.9 (2)
C8—N1—C2—C10178.44 (19)C6—C7—C8—C90.1 (4)
C2—N1—C8—C7179.9 (3)N1—C8—C9—N30.0 (2)
C2—N1—C8—C90.3 (2)N1—C8—C9—C4179.59 (19)
C9—N3—C2—N10.5 (2)C7—C8—C9—N3179.8 (2)
C9—N3—C2—C10178.43 (19)C7—C8—C9—C40.2 (3)
C2—N3—C9—C4179.8 (2)C2—C10—C11—C12177.8 (2)
C2—N3—C9—C80.3 (2)C15—C10—C11—C120.1 (3)
N1—C2—C10—C110.6 (3)C2—C10—C15—C14177.3 (2)
N1—C2—C10—C15178.4 (2)C11—C10—C15—C140.6 (3)
N3—C2—C10—C11178.1 (2)C10—C11—C12—C130.0 (3)
N3—C2—C10—C150.3 (3)C11—C12—C13—O13179.4 (2)
C9—C4—C5—C60.4 (4)C11—C12—C13—C140.4 (3)
C5—C4—C9—N3180.0 (2)O13—C13—C14—C15179.9 (2)
C5—C4—C9—C80.5 (3)C12—C13—C14—C150.9 (3)
C4—C5—C6—C70.1 (4)C13—C14—C15—C101.0 (3)
C5—C6—C7—C80.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.293.1167 (16)162
N3—H3···Cl1i0.862.323.1625 (16)168
O1—H1A···Cl1ii0.892.393.266 (2)167
O1—H1B···Cl10.922.333.243 (2)171
O13—H13···O1iii0.821.862.666 (3)166
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.293.1167 (16)162
N3—H3···Cl1i0.862.323.1625 (16)168
O1—H1A···Cl1ii0.892.393.266 (2)167
O1—H1B···Cl10.922.333.243 (2)171
O13—H13···O1iii0.821.862.666 (3)166
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from Conacyt and SIP-IPN.

References

First citationAkkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1770–o1771.  Web of Science CSD CrossRef CAS IUCr Journals
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationAnsari, K. F. & Lal, C. (2009). J. Chem. Sci. 121 , 1017–1025.  Web of Science CrossRef CAS
First citationBaktır, Z., Akkurt, M., Şireci, N. & Küçükbay, H. (2010). Acta Cryst. E66, o2393–o2394.  Web of Science CSD CrossRef IUCr Journals
First citationCai, C.-X., Tian, Y.-Q., Li, Y.-Z. & You, X.-Z. (2002). Acta Cryst. C58, m459–m460.  Web of Science CSD CrossRef CAS IUCr Journals
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationKhan, K.-M., Khan, M., Ambreen, N., Rahim, F., Naureen, S., Perveen, S., Choudhary, M. I. & Voelter, W. (2012). Med. Chem. 8, 421–427.  Web of Science CAS PubMed
First citationLaryea, D., Gullbo, J., Isakssoon, A., Larsson, R. & Nygren, P. (2010). Anti-Cancer Drugs, 21, 33–42.  Web of Science CrossRef PubMed CAS
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationMohan, V. G., Sreenivasulu, N., Rao, A. S. & Chigiri, S. (2011). Der Pharma Chem., 3, 446–452.
First citationNavarrete-Vázquez, G., Moreno-Díaz, H., Aguirre-Crespo, F., León-Rivera, I., Villalobos-Molina, R., Muñoz-Muñiz, O. & Estrada-Soto, S. (2006). Bioorg. Med. Chem. Lett. 16, 4169–4173.  Web of Science PubMed
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
First citationRefaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956.  Web of Science CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationZhan, Q.-G., Liu, M.-S., Zeng, R.-H., Yang, D.-Q. & Cai, Y.-P. (2007). Acta Cryst. E63, o3470.  Web of Science CSD CrossRef IUCr Journals
First citationZhou, B., Li, B., Yi, W., Bu, X. & Ma, L. (2013). Bioorg. Med. Chem. Lett. 23, 3759–3763.  Web of Science CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1485-o1486
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds