supplementary materials


aa2096 scheme

Acta Cryst. (2013). E69, o1555    [ doi:10.1107/S1600536813025129 ]

rac-Methyl (3aR*,4S*,5R*,7aR*)-5,7a-bis(acetyloxy)-3-oxo-2-phenyloctahydro-1H-isoindole-4-carboxylate

F. A. A. Toze, E. V. Nikitina, V. P. Zaytsev, F. I. Zubkov and V. N. Khrustalev

Abstract top

The title molecule, C20H23NO7, the product of nucleophilic cleavage of the 3a,6-epoxy bridge in 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate, comprises a cis-fused bicyclic system containing a 2-pyrrolidinone ring in an envelope conformation (with the C atom bearing the carboxylate substituent as the flap) and a cyclohexane ring in a chair conformation. The carboxylate substituent occupies the equatorial position, whereas the two acetyloxy substituents are in axial positions. The N atom has a trigonal-planar geometry, the sum of the bond angles being 359.3 (3)°. The dihedral angle between the mean plane of the four planar atoms of the pyrrolidinone ring and the phenyl ring is 25.98 (6)°. In the crystal, molecules are linked into zigzag chains along the c-axis direction by C-H...O hydrogen bonds.

Comment top

3a,6-Epoxyisoindoles, which are very easy prepared by intramolecular Diels-Alder reaction of furan (IMDAF) (Vogel et al., 1999; Zubkov et al., 2005), find a wide application for synthesis of various complicated natural-like molecules (Balthaser et al., 2011; Zubkov et al., 2011). Most of these transformations proceed via electrophilic or nucleophilic opening of the epoxy bridge. As a rule, the first leads to aromatic compounds, whereas the latter gives rise to perhydroisoindoles with several (three or four) asymmetric centers in mild conditions (Zubkov et al., 2009, 2012; Claeys et al., 2010). Stereochemistry of the nucleophilic process is hardly predictable, because it depends on mechanism of the reaction (SN1 or SN2).

This work clarifies a question concerning mechanism (SN2) and stereochemistry of a nucleophilic cleavage of 3a,6-epoxy bridge in 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate (Fig. 1). The structure of final product – methyl 5,7a-bis(acetyloxy)-3-oxo-2-phenyloctahydro-1H-isoindole- 4-carboxylate, C20H23NO7, was established by X-ray diffraction study.

Molecule of the title compound comprises a cis-fused bicyclic system containing one five-membered (2-pyrrolidinone) and one six-membered (cyclohexane) rings (Fig. 2). The five-membered ring has envelope conformation (the C7A carbon atom is out of the plane through the other atoms of the ring by 0.540 (2) Å), and the six-membered ring adopts chair conformation. The carboxylate substituent at the C4 carbon atom occupies the equatorial position, whereas the two acetyloxy substituents at the C5 and C7A carbon atoms are in the sterically unfavorable axial positions. Such disposition is explained by the direction of the nucleophilic cleavage of 3a,6-epoxy bridge in the initial 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate. The nitrogen N2 atom has a trigonal-planar geometry (sum of the bond angles is 359.3 (3)°). The dihedral angle between the planar part of the pyrrolidinone ring and phenyl ring plane is 25.98 (6)°.

The molecule of the title compound> possesses four asymmetric centers at the C3A, C4, C5 and C7A carbon atoms and can have potentially numerous diastereomers. The crystal of the title compound is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-3aR*,4S*,5R*,7aR*.

In the crystal, the molecules of the title compound are bound into the zigzag chains along the c axis by the intermolecular C—H···O hydrogen bonds (Figure 3, Table 1).

Related literature top

For the synthesis of 3a,6-epoxyisoindoles by intramolecular Diels–Alder reactions of furan, see: Vogel et al. (1999); Zubkov et al. (2005). For the synthesis of 2-phenyloctahydroisoindoles and their analogues, see: Balthaser et al. (2011); Zubkov et al. (2011). For related compounds, see: Zubkov et al. (2009, 2012); Claeys et al. (2010).

Experimental top

BF3\ctdotEt2O (0.22 ml, 1.7 mmol) was added to a solution of the methyl 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate (0.2 g, 0.7 mmol) in acetic anhydride (5 ml) with stirring at room temperature during 24 h (monitoring by thin-layer chromatography). At the end of the reaction, the mixture was poured into water (50 ml), treated by aqueous sodium bicarbonate and extracted with chloroform (3 x 20 ml). The extract was dried over anhydrous magnesium sulfate. The residue was purified by crystallization from hexane – ethyl acetate to give product I (0.05 g, 0.13 mmol) as colourless solid. Yield 18%. The single-crystals of I were obtained by slow crystallization from a hexane – ethyl acetate mixture. M.p. = 418–419 K. IR (KBr), ν/cm-1: 1726, 1745 (NCO, CO2CH3, COCH3). 1H NMR (400 MHz, CDCl3, 293 K): δ = 7.54 (d, 2H, H2'(6'), J2'(6'),3'(5') = 7.6), 7.35 (t, 2H, H3'(5'), J2'(6'),3'(5') = J4',3'(5') = 7.6), 7.14 (t, 1H, H4', J3',4' = J4',5' = 7.6), 5.59 (br. s, 1H, H5), 4.21 (d, 1H, H1A, J1 A,1B = 10.2), 4.01 (d, 1H, H1B, J1 A,1B = 10.2), 3.75 (s, 3H, CO2Me), 3.59 (d, 1H, H3a, J3a,4 = 5.7), 2.91 (dd, 1H, H4, J4,5 = 1.9, J3a,4 = 5.7), 2.13 (s, 3H, COMe), 2.05 (s, 3H, COMe), 1.57–1.66, 1.89–2.03, 2.37–2.45, (m, 4H, H6, H7). 13C NMR (100 MHz, CDCl3, 293 K): δ = 170.5, 170.2, 170.0, 168.3 (C3, 2 x COCH3, CO2CH3), 138.9 (C1'), 129.0 (C3'(5')), 124.9 (C4'), 119.9 (C2'(6')), 79.0 (C7a), 65.5 (C5), 57.2 (C1), 52.0 (CO2Me), 48.3 (C3a), 40.9 (C4), 24.9, 23.9 (C6, C7), 21.2, 21.6 (2 x COMe). Mass spectrum (EI—MS, 70 eV), m/z (Ir, (%)): 389 [M+] (33), 329 (100), 287 (28), 269 (22), 242 (26), 227 (16), 210 (68), 191 (33), 182 (33), 172 (16), 163 (16), 113 (15), 105 (52), 91 (67), 80 (47), 76 (83), 59 (43), 43 (52). Anal. Calcd. for C20H23NO7: C, 61.69; H, 5.95; N, 3.60. Found: C, 61.49; H, 6.04; N, 3.83.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-groups and Uiso(H) = 1.2Ueq(C) for the other groups].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of a nucleophilic cleavage of 3a,6-epoxy bridge in 1-oxo-2-phenyloctahydro-3a,6-epoxyisoindole-7-carboxylate.
[Figure 2] Fig. 2. Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A portion of the crystal packing of the title compound demonstrating the H-bonded zigzag chains along the c axis. Dashed lines indicate the intermolecular C—H···O hydrogen bonds.
rac-Methyl (3aR*,4S*,5R*,7aR*)-5,7a-bis(acetyloxy)-3-oxo-2-phenyloctahydro-1H-isoindole-4-carboxylate top
Crystal data top
C20H23NO7F(000) = 1648
Mr = 389.39Dx = 1.345 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6890 reflections
a = 12.3802 (7) Åθ = 2.2–32.6°
b = 18.3516 (10) ŵ = 0.10 mm1
c = 17.3596 (9) ÅT = 120 K
β = 102.749 (1)°Prism, colourless
V = 3846.8 (4) Å30.24 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
5633 independent reflections
Radiation source: fine-focus sealed tube4521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS, Bruker, 2003)
h = 1717
Tmin = 0.976, Tmax = 0.982k = 2525
24538 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0547P)2 + 1.6602P]
where P = (Fo2 + 2Fc2)/3
5633 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H23NO7V = 3846.8 (4) Å3
Mr = 389.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.3802 (7) ŵ = 0.10 mm1
b = 18.3516 (10) ÅT = 120 K
c = 17.3596 (9) Å0.24 × 0.20 × 0.18 mm
β = 102.749 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5633 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2003)
4521 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.982Rint = 0.031
24538 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.34 e Å3
S = 1.04Δρmin = 0.27 e Å3
5633 reflectionsAbsolute structure: ?
256 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56464 (7)0.07894 (4)0.60114 (5)0.02273 (18)
O20.29290 (7)0.12128 (5)0.54848 (6)0.0303 (2)
O30.37833 (7)0.11721 (4)0.67737 (5)0.02327 (18)
O40.45957 (7)0.19171 (5)0.47486 (5)0.02225 (18)
O50.32731 (9)0.21367 (6)0.36585 (6)0.0436 (3)
O60.61038 (6)0.31985 (4)0.69818 (5)0.01906 (17)
O70.76385 (7)0.38200 (5)0.68767 (5)0.02475 (18)
C10.73913 (9)0.23138 (6)0.65747 (7)0.0180 (2)
H1A0.79200.25690.63160.022*
H1B0.76970.22990.71520.022*
N20.71434 (7)0.15773 (5)0.62498 (6)0.01699 (18)
C30.60532 (9)0.13840 (6)0.61919 (6)0.0167 (2)
C3A0.54746 (8)0.20432 (5)0.64506 (6)0.01519 (19)
H3A0.54930.19790.70250.018*
C40.42576 (9)0.21450 (6)0.60303 (6)0.0169 (2)
H40.39450.25180.63400.020*
C50.41288 (9)0.24521 (6)0.52002 (6)0.0200 (2)
H50.33290.25360.49540.024*
C60.47768 (10)0.31571 (6)0.52277 (7)0.0230 (2)
H6A0.44950.35160.55620.028*
H6B0.46670.33620.46880.028*
C70.60063 (10)0.30302 (6)0.55594 (7)0.0207 (2)
H7A0.64000.35030.55900.025*
H7B0.63000.27120.51930.025*
C7A0.62497 (9)0.26789 (5)0.63798 (6)0.0160 (2)
C80.79927 (9)0.11026 (6)0.61369 (6)0.0165 (2)
C90.90772 (9)0.12300 (6)0.65522 (7)0.0196 (2)
H90.92340.16300.69060.023*
C100.99269 (10)0.07721 (6)0.64477 (7)0.0220 (2)
H101.06620.08580.67350.026*
C110.97091 (10)0.01913 (6)0.59273 (7)0.0220 (2)
H111.02910.01220.58590.026*
C120.86307 (10)0.00707 (6)0.55054 (7)0.0214 (2)
H120.84810.03240.51440.026*
C130.77700 (9)0.05211 (6)0.56061 (6)0.0190 (2)
H130.70360.04340.53160.023*
C140.35836 (9)0.14570 (6)0.60423 (7)0.0205 (2)
C150.33283 (11)0.04564 (7)0.68386 (9)0.0309 (3)
H15A0.35230.02960.73910.046*
H15B0.36330.01130.65100.046*
H15C0.25210.04740.66590.046*
C160.40743 (10)0.17976 (7)0.39944 (7)0.0265 (3)
C170.46300 (12)0.11914 (8)0.36509 (8)0.0348 (3)
H17A0.43010.11480.30850.052*
H17B0.45310.07330.39170.052*
H17C0.54220.12970.37260.052*
C180.68623 (10)0.37373 (6)0.71805 (7)0.0199 (2)
C190.65958 (11)0.42028 (7)0.78205 (8)0.0273 (3)
H19A0.72740.44360.81150.041*
H19B0.62790.38990.81800.041*
H19C0.60590.45780.75860.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (4)0.0148 (4)0.0313 (4)0.0026 (3)0.0054 (3)0.0028 (3)
O20.0248 (4)0.0285 (5)0.0336 (5)0.0059 (4)0.0025 (4)0.0037 (4)
O30.0257 (4)0.0189 (4)0.0263 (4)0.0069 (3)0.0080 (3)0.0004 (3)
O40.0203 (4)0.0270 (4)0.0184 (4)0.0050 (3)0.0018 (3)0.0028 (3)
O50.0446 (6)0.0527 (7)0.0259 (5)0.0213 (5)0.0089 (4)0.0071 (4)
O60.0214 (4)0.0154 (4)0.0221 (4)0.0019 (3)0.0086 (3)0.0049 (3)
O70.0274 (4)0.0197 (4)0.0288 (4)0.0068 (3)0.0099 (4)0.0040 (3)
C10.0179 (5)0.0146 (5)0.0215 (5)0.0019 (4)0.0045 (4)0.0033 (4)
N20.0161 (4)0.0130 (4)0.0216 (4)0.0002 (3)0.0037 (3)0.0028 (3)
C30.0171 (5)0.0154 (5)0.0170 (5)0.0004 (4)0.0024 (4)0.0014 (4)
C3A0.0159 (5)0.0141 (4)0.0155 (5)0.0009 (4)0.0033 (4)0.0004 (4)
C40.0162 (5)0.0149 (5)0.0197 (5)0.0005 (4)0.0043 (4)0.0010 (4)
C50.0189 (5)0.0218 (5)0.0187 (5)0.0057 (4)0.0026 (4)0.0001 (4)
C60.0276 (6)0.0197 (5)0.0219 (5)0.0043 (4)0.0058 (4)0.0064 (4)
C70.0251 (6)0.0176 (5)0.0206 (5)0.0011 (4)0.0076 (4)0.0032 (4)
C7A0.0199 (5)0.0121 (4)0.0168 (5)0.0010 (4)0.0062 (4)0.0016 (4)
C80.0186 (5)0.0146 (5)0.0168 (5)0.0016 (4)0.0049 (4)0.0014 (4)
C90.0198 (5)0.0204 (5)0.0184 (5)0.0002 (4)0.0038 (4)0.0022 (4)
C100.0193 (5)0.0250 (6)0.0221 (5)0.0026 (4)0.0054 (4)0.0013 (4)
C110.0248 (6)0.0204 (5)0.0237 (5)0.0050 (4)0.0114 (4)0.0028 (4)
C120.0284 (6)0.0162 (5)0.0215 (5)0.0003 (4)0.0099 (4)0.0008 (4)
C130.0223 (5)0.0159 (5)0.0190 (5)0.0008 (4)0.0053 (4)0.0003 (4)
C140.0160 (5)0.0193 (5)0.0263 (6)0.0002 (4)0.0053 (4)0.0027 (4)
C150.0310 (7)0.0203 (6)0.0432 (8)0.0081 (5)0.0118 (6)0.0019 (5)
C160.0265 (6)0.0311 (6)0.0201 (5)0.0015 (5)0.0012 (4)0.0032 (5)
C170.0345 (7)0.0412 (8)0.0265 (6)0.0057 (6)0.0023 (5)0.0109 (6)
C180.0236 (5)0.0140 (5)0.0222 (5)0.0007 (4)0.0048 (4)0.0016 (4)
C190.0324 (6)0.0205 (5)0.0307 (6)0.0020 (5)0.0104 (5)0.0097 (5)
Geometric parameters (Å, º) top
O1—C31.2137 (13)C6—H6B0.9900
O2—C141.2034 (14)C7—C7A1.5315 (15)
O3—C141.3446 (14)C7—H7A0.9900
O3—C151.4433 (14)C7—H7B0.9900
O4—C161.3438 (14)C8—C91.3964 (15)
O4—C51.4536 (13)C8—C131.3970 (15)
O5—C161.2066 (15)C9—C101.3893 (15)
O6—C181.3548 (13)C9—H90.9500
O6—C7A1.4552 (12)C10—C111.3847 (17)
O7—C181.2034 (14)C10—H100.9500
C1—N21.4705 (13)C11—C121.3915 (17)
C1—C7A1.5329 (15)C11—H110.9500
C1—H1A0.9900C12—C131.3897 (16)
C1—H1B0.9900C12—H120.9500
N2—C31.3776 (14)C13—H130.9500
N2—C81.4121 (13)C15—H15A0.9800
C3—C3A1.5232 (15)C15—H15B0.9800
C3A—C7A1.5326 (14)C15—H15C0.9800
C3A—C41.5336 (15)C16—C171.4992 (18)
C3A—H3A1.0000C17—H17A0.9800
C4—C141.5161 (15)C17—H17B0.9800
C4—C51.5226 (15)C17—H17C0.9800
C4—H41.0000C18—C191.4949 (16)
C5—C61.5176 (17)C19—H19A0.9800
C5—H51.0000C19—H19B0.9800
C6—C71.5218 (16)C19—H19C0.9800
C6—H6A0.9900
C14—O3—C15115.72 (10)O6—C7A—C1112.49 (9)
C16—O4—C5118.23 (9)C7—C7A—C1111.83 (9)
C18—O6—C7A118.17 (8)C3A—C7A—C1102.28 (8)
N2—C1—C7A102.29 (8)C9—C8—C13119.72 (10)
N2—C1—H1A111.3C9—C8—N2119.05 (9)
C7A—C1—H1A111.3C13—C8—N2121.21 (10)
N2—C1—H1B111.3C10—C9—C8120.05 (10)
C7A—C1—H1B111.3C10—C9—H9120.0
H1A—C1—H1B109.2C8—C9—H9120.0
C3—N2—C8125.34 (9)C11—C10—C9120.45 (11)
C3—N2—C1112.51 (9)C11—C10—H10119.8
C8—N2—C1121.44 (9)C9—C10—H10119.8
O1—C3—N2126.48 (10)C10—C11—C12119.46 (10)
O1—C3—C3A126.50 (10)C10—C11—H11120.3
N2—C3—C3A106.91 (9)C12—C11—H11120.3
C3—C3A—C7A103.73 (8)C13—C12—C11120.83 (10)
C3—C3A—C4115.66 (9)C13—C12—H12119.6
C7A—C3A—C4115.84 (8)C11—C12—H12119.6
C3—C3A—H3A107.0C12—C13—C8119.48 (10)
C7A—C3A—H3A107.0C12—C13—H13120.3
C4—C3A—H3A107.0C8—C13—H13120.3
C14—C4—C5112.22 (9)O2—C14—O3124.43 (11)
C14—C4—C3A112.21 (9)O2—C14—C4125.04 (11)
C5—C4—C3A112.46 (9)O3—C14—C4110.47 (9)
C14—C4—H4106.5O3—C15—H15A109.5
C5—C4—H4106.5O3—C15—H15B109.5
C3A—C4—H4106.5H15A—C15—H15B109.5
O4—C5—C6108.81 (9)O3—C15—H15C109.5
O4—C5—C4106.82 (9)H15A—C15—H15C109.5
C6—C5—C4109.97 (9)H15B—C15—H15C109.5
O4—C5—H5110.4O5—C16—O4123.61 (12)
C6—C5—H5110.4O5—C16—C17126.23 (12)
C4—C5—H5110.4O4—C16—C17110.16 (10)
C5—C6—C7111.04 (9)C16—C17—H17A109.5
C5—C6—H6A109.4C16—C17—H17B109.5
C7—C6—H6A109.4H17A—C17—H17B109.5
C5—C6—H6B109.4C16—C17—H17C109.5
C7—C6—H6B109.4H17A—C17—H17C109.5
H6A—C6—H6B108.0H17B—C17—H17C109.5
C6—C7—C7A113.04 (9)O7—C18—O6123.80 (10)
C6—C7—H7A109.0O7—C18—C19125.60 (11)
C7A—C7—H7A109.0O6—C18—C19110.60 (10)
C6—C7—H7B109.0C18—C19—H19A109.5
C7A—C7—H7B109.0C18—C19—H19B109.5
H7A—C7—H7B107.8H19A—C19—H19B109.5
O6—C7A—C7111.22 (8)C18—C19—H19C109.5
O6—C7A—C3A105.19 (8)H19A—C19—H19C109.5
C7—C7A—C3A113.38 (9)H19B—C19—H19C109.5
C7A—C1—N2—C323.81 (11)C4—C3A—C7A—O682.25 (10)
C7A—C1—N2—C8165.34 (9)C3—C3A—C7A—C788.38 (10)
C8—N2—C3—O12.61 (18)C4—C3A—C7A—C739.48 (12)
C1—N2—C3—O1173.04 (11)C3—C3A—C7A—C132.19 (10)
C8—N2—C3—C3A173.69 (9)C4—C3A—C7A—C1160.05 (9)
C1—N2—C3—C3A3.26 (12)N2—C1—C7A—O6145.93 (8)
O1—C3—C3A—C7A164.92 (11)N2—C1—C7A—C788.07 (10)
N2—C3—C3A—C7A18.78 (11)N2—C1—C7A—C3A33.57 (10)
O1—C3—C3A—C436.95 (15)C3—N2—C8—C9149.57 (11)
N2—C3—C3A—C4146.75 (9)C1—N2—C8—C920.06 (15)
C3—C3A—C4—C1451.02 (12)C3—N2—C8—C1331.90 (16)
C7A—C3A—C4—C14172.71 (9)C1—N2—C8—C13158.47 (10)
C3—C3A—C4—C576.63 (11)C13—C8—C9—C101.15 (16)
C7A—C3A—C4—C545.06 (12)N2—C8—C9—C10179.70 (10)
C16—O4—C5—C6100.66 (11)C8—C9—C10—C110.60 (17)
C16—O4—C5—C4140.66 (10)C9—C10—C11—C120.30 (17)
C14—C4—C5—O464.68 (11)C10—C11—C12—C130.66 (17)
C3A—C4—C5—O462.96 (11)C11—C12—C13—C80.11 (16)
C14—C4—C5—C6177.40 (9)C9—C8—C13—C120.79 (16)
C3A—C4—C5—C654.96 (12)N2—C8—C13—C12179.31 (10)
O4—C5—C6—C755.63 (12)C15—O3—C14—O212.04 (17)
C4—C5—C6—C761.05 (12)C15—O3—C14—C4170.57 (9)
C5—C6—C7—C7A56.34 (13)C5—C4—C14—O27.30 (16)
C18—O6—C7A—C771.68 (12)C3A—C4—C14—O2135.08 (12)
C18—O6—C7A—C3A165.19 (9)C5—C4—C14—O3175.33 (9)
C18—O6—C7A—C154.65 (12)C3A—C4—C14—O347.55 (12)
C6—C7—C7A—O673.57 (11)C5—O4—C16—O54.05 (19)
C6—C7—C7A—C3A44.73 (12)C5—O4—C16—C17175.72 (11)
C6—C7—C7A—C1159.74 (9)C7A—O6—C18—O71.55 (16)
C3—C3A—C7A—O6149.89 (8)C7A—O6—C18—C19178.41 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A···O3i1.002.553.4135 (13)144
C12—H12···O2ii0.952.463.2812 (15)145
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A···O3i1.002.553.4135 (13)144
C12—H12···O2ii0.952.463.2812 (15)145
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1.
Acknowledgements top

The authors are grateful to the Russian Foundation for Basic Research for financial support of this work (grant No. 12-03-31088-a).

references
References top

Balthaser, B. R., Maloney, M. C., Beeler, A. B., Porco, J. A. Jr & Snyder, J. K. (2011). Nat. Chem. 3, 969–973.

Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Claeys, D. D., Stevens, C. V., Roman, B. I., Caveye, P. van D., Waroquier, M. & Speybroeck, V. V. (2010). Org. Biomol. Chem. 8, 3644–3654.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642.

Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789–3803.

Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.

Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Boltukhina, E. V., Varlamov, A. V., Khrustalev, V. N. & Gozun, S. V. (2011). Tetrahedron, 67, 9148–9163.

Zubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Varlamov, A. V., Khrustalev, V. N. & Novikov, R. A. (2012). Chem. Heterocycl. Compd, 48, 514–524.