supplementary materials


bt6932 scheme

Acta Cryst. (2013). E69, o1551-o1552    [ doi:10.1107/S1600536813025336 ]

(3aR,6S,7aR)-7a-Chloro-2-[(4-nitrophenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole

E. Temel, A. Demircan, M. K. Kandemir, M. Çolak and O. Büyükgüngör

Abstract top

In the title compound, C14H13ClN2O5S, the chlorine-substituted tetrahydrofuran ring adopts a twist conformation and the other tetrahydrofuran ring an envelope conformation with the O atom as the flap. The pyrrolidine ring adopts a twist conformation. In the crystal, C-H...O hydrogen bonds link the molecules into zigzag chains running along the b-axis direction.

Comment top

The Diels Alder reaction is one of the most powerful and useful cycloaddition reactions in synthetic organic chemistry (Winkler, 1996; Paulvannan, 2004; Norton, 1942). Intra-molecular Diels Alder (IMDA) reaction should be taken into account for synthesis of a molecule containing a six membered ring fused to a second ring. The feasibility of employing IMDA has been considered the main application often becomes the preparation of the substrates in synthetic pathways (Fraile et al., 2001; Padwa et al., 2003). Thermal intramolecular Diels Alder reaction has also been popular and facile methodology since early 1980's Furan is also one of the most used diene part in thermal IMDA cycloaddition (Medimagh et al., 2008; Avalos et al., 2003).

We have been working on thermal IMDA reaction of furan cored compounds in which side chain of furan includes oxygen, sulfur and nitrogen (Karaarslan et al., 2006; Koşar et al., 2006, 2007, 2011; Arslan et al., 2008; Temel et al., 2012). Here, we report that the new isoxazol cycloadduct, 3 in aqueous condition is furnished in one pot reaction from seconder amine, 1. We assume that the protective group on nitrogen; p-Nosyl behaves as steric buttress and accelerates the cycloaddition progress right after the protection stage, 2. The improvement of the technology and economic reaction are achieved, two processes; protection and IMDA cycloaddition stages are performed in one pot process. We consider that the improvement of this methodology will possibly allow organic chemist to a facile access to important classes of azaheterocycles (Figure 1).

The title compound contains epoxyisoindole and phenyly rings linked through N—S—C bridge in the unit cell (Fig. 2). Epoxyisoindole moiety is formed with fused a six-membered ring and three five-membered rings which are puckered. Of the tetrahydrofuran rings, the one which is attached to chloride, O5/C11–13/C8, adopts a half-chair conformation while the other one, O5/C8–11, adopts an envelope conformation with the puckering parameters of Q=0.6011 (18) Å, 0.5037 (19) Å and φ=1.95 (19)°, 180.8 (3)°, respectively. The five-membered pyrrolidine ring twisted on C8—C13 atoms deviated from the mean plane by about -0.1804 (11) Å and 0.1969 (11) Å, respectively, with the puckering parameters of Q=0.3177 (18) Å and φ=278.7 (3)°. The six-membered ring, C8–13, has a boat conformation, according to the puckering parameters [Q=0.948 (2) Å, θ=89.29 (12)° and φ=180.53 (13)°] (Cremer & Pople, 1975).

The crystal packing of (I) is provided by inter-molecular C2—H2—O4 and C14—H14B···O5 hydrogen bonds which are generate dimeric R22(10) rings running parallel to the b axis (Bernstein et al., 1995) (Fig. 3).

Related literature top

For Diels–Alder reactions, see: Winkler (1996); Paulvannan (2004); Norton (1942); Fraile et al. (2001); Padwa et al. (2003); Medimagh et al. (2008); Avalos et al. (2003). For the thermal IMDA reaction of furan-cored compounds, see: Karaarslan & Demircan (2006); Koşar et al. (2006, 2007, 2011); Arslan et al. (2008); Temel et al. (2012). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

2-chloro-N-(furan-2-ylmethyl)prop-2-en-1-amine, 1 (0.92 g, 5.38 mmol) in water (50 ml) was added p-nitrobenzenesulfonyl chloride (1.43 g, 6.45 mmol) portion wise followed by potassium carbonate (0.9 g, 6.45 mol). The reaction mixture was stirred for 48 h at 396 K. The reaction mixture was allowed to room temperature and added NaOH 10% (35 ml). The mixture was then extracted with ethyl acetate (3x35 ml) and brine (35 ml). Combined organic phases was dried over magnesium sulfate, filtered and evaporated. The purification by column chromatography afforded colourless crystals (1.17 g, 61% yield). Recrystallization was performed in DCM:Hexane. t.l.c., (Hexane:Ethylacetate); (7:3), Rf; 0.49. Melting Point: 421–423 K.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.97, 0.98 and 0.93 Å for CH2, CH and CH(aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic, methylene or methine C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the formation of R22(10) rings.
(3aR,6S,7aR)-7a-Chloro-2-[(4-nitrophenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole top
Crystal data top
C14H13ClN2O5SF(000) = 736
Mr = 356.77Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11192 reflections
a = 7.5193 (3) Åθ = 2.0–28.0°
b = 9.7278 (4) ŵ = 0.42 mm1
c = 20.7616 (7) ÅT = 296 K
β = 93.659 (3)°Prism, colorless
V = 1515.54 (10) Å30.68 × 0.63 × 0.60 mm
Z = 4
Data collection top
STOE IPDS 2
diffractometer
3151 independent reflections
Radiation source: fine-focus sealed tube2494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.242
rotation method scansθmax = 26.5°, θmin = 2.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 99
Tmin = 0.811, Tmax = 0.850k = 1212
11192 measured reflectionsl = 2622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.085P]
where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H13ClN2O5SV = 1515.54 (10) Å3
Mr = 356.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5193 (3) ŵ = 0.42 mm1
b = 9.7278 (4) ÅT = 296 K
c = 20.7616 (7) Å0.68 × 0.63 × 0.60 mm
β = 93.659 (3)°
Data collection top
STOE IPDS 2
diffractometer
3151 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2494 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.850Rint = 0.242
11192 measured reflectionsθmax = 26.5°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.26 e Å3
S = 1.03Δρmin = 0.23 e Å3
3151 reflectionsAbsolute structure: ?
208 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1690 (2)0.43022 (19)0.57226 (9)0.0532 (4)
C20.2809 (3)0.5425 (2)0.57988 (11)0.0647 (5)
H20.38070.54920.55580.078*
C30.2448 (3)0.6445 (2)0.62308 (11)0.0638 (5)
H30.31680.72200.62770.077*
C40.0984 (2)0.62852 (18)0.65935 (9)0.0530 (4)
C50.0099 (3)0.5154 (2)0.65435 (10)0.0627 (5)
H50.10460.50610.68070.075*
C60.0234 (3)0.4159 (2)0.60974 (11)0.0619 (5)
H60.05070.33960.60470.074*
C70.2824 (2)0.1007 (2)0.60045 (9)0.0551 (4)
H7A0.20720.02700.58290.066*
H7B0.21760.15260.63120.066*
C80.4526 (2)0.04597 (17)0.63097 (8)0.0462 (4)
C90.4822 (3)0.0021 (2)0.70034 (10)0.0629 (5)
H90.41320.02460.73440.075*
C100.6266 (3)0.0750 (2)0.70250 (11)0.0708 (6)
H100.68120.11730.73870.085*
C110.6856 (3)0.0808 (2)0.63474 (10)0.0631 (5)
H110.75820.16090.62510.076*
C120.7690 (2)0.0595 (2)0.61967 (10)0.0578 (5)
H12A0.85370.08910.65410.069*
H12B0.82690.05760.57920.069*
C130.6017 (2)0.15046 (18)0.61523 (8)0.0470 (4)
C140.5380 (2)0.2031 (2)0.54972 (9)0.0566 (5)
H14A0.57330.29800.54420.068*
H14B0.58560.14800.51590.068*
N10.0537 (2)0.73809 (18)0.70409 (9)0.0641 (4)
N20.3418 (2)0.19055 (17)0.54859 (7)0.0551 (4)
O10.1109 (2)0.85355 (16)0.69498 (9)0.0860 (5)
O20.0412 (3)0.70905 (18)0.74790 (9)0.0837 (5)
O30.0442 (2)0.23390 (18)0.49970 (8)0.0769 (4)
O40.3033 (2)0.36571 (18)0.46492 (7)0.0810 (5)
O50.51741 (17)0.07105 (13)0.59750 (7)0.0592 (3)
S10.20917 (7)0.30168 (5)0.51441 (2)0.06001 (17)
Cl10.60735 (7)0.28908 (5)0.67199 (3)0.06988 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0534 (10)0.0544 (10)0.0520 (9)0.0054 (8)0.0040 (8)0.0121 (8)
C20.0608 (11)0.0608 (11)0.0743 (13)0.0031 (9)0.0195 (10)0.0156 (10)
C30.0578 (11)0.0519 (10)0.0817 (13)0.0070 (9)0.0052 (10)0.0105 (10)
C40.0515 (10)0.0492 (9)0.0571 (10)0.0048 (8)0.0047 (8)0.0084 (8)
C50.0535 (10)0.0635 (11)0.0726 (12)0.0029 (9)0.0158 (9)0.0020 (10)
C60.0525 (10)0.0574 (10)0.0769 (13)0.0088 (9)0.0119 (9)0.0017 (9)
C70.0448 (9)0.0584 (10)0.0620 (11)0.0040 (8)0.0040 (8)0.0106 (8)
C80.0424 (8)0.0477 (8)0.0487 (9)0.0034 (7)0.0035 (7)0.0019 (7)
C90.0616 (12)0.0735 (12)0.0541 (10)0.0033 (10)0.0082 (9)0.0153 (9)
C100.0661 (13)0.0782 (14)0.0667 (12)0.0053 (11)0.0059 (10)0.0215 (11)
C110.0549 (11)0.0626 (11)0.0704 (12)0.0109 (9)0.0069 (9)0.0058 (9)
C120.0417 (9)0.0758 (12)0.0559 (10)0.0016 (9)0.0027 (7)0.0089 (9)
C130.0434 (9)0.0529 (9)0.0452 (8)0.0062 (7)0.0068 (7)0.0058 (7)
C140.0493 (10)0.0691 (11)0.0523 (10)0.0022 (9)0.0104 (8)0.0087 (8)
N10.0616 (10)0.0597 (10)0.0688 (11)0.0112 (8)0.0126 (8)0.0010 (8)
N20.0484 (8)0.0640 (9)0.0531 (8)0.0057 (7)0.0055 (7)0.0119 (7)
O10.0916 (12)0.0555 (9)0.1090 (13)0.0002 (8)0.0077 (10)0.0062 (9)
O20.0914 (12)0.0848 (11)0.0759 (10)0.0132 (9)0.0141 (9)0.0065 (8)
O30.0687 (10)0.0855 (10)0.0735 (9)0.0134 (8)0.0203 (7)0.0094 (8)
O40.1031 (13)0.0910 (11)0.0507 (8)0.0235 (10)0.0181 (8)0.0212 (8)
O50.0568 (8)0.0521 (7)0.0672 (8)0.0010 (6)0.0074 (6)0.0104 (6)
S10.0645 (3)0.0674 (3)0.0475 (3)0.0122 (2)0.0015 (2)0.0068 (2)
Cl10.0700 (3)0.0652 (3)0.0748 (3)0.0109 (2)0.0081 (3)0.0243 (2)
Geometric parameters (Å, º) top
C1—C21.382 (3)C9—H90.9300
C1—C61.390 (3)C10—C111.503 (3)
C1—S11.773 (2)C10—H100.9300
C2—C31.376 (3)C11—O51.443 (2)
C2—H20.9300C11—C121.542 (3)
C3—C41.381 (3)C11—H110.9800
C3—H30.9300C12—C131.536 (3)
C4—C51.369 (3)C12—H12A0.9700
C4—N11.467 (3)C12—H12B0.9700
C5—C61.374 (3)C13—C141.503 (3)
C5—H50.9300C13—Cl11.7896 (17)
C6—H60.9300C14—N21.479 (2)
C7—N21.478 (2)C14—H14A0.9700
C7—C81.490 (3)C14—H14B0.9700
C7—H7A0.9700N1—O11.222 (2)
C7—H7B0.9700N1—O21.225 (2)
C8—O51.435 (2)N2—S11.6050 (16)
C8—C91.505 (3)O3—S11.4208 (17)
C8—C131.563 (2)O4—S11.4272 (15)
C9—C101.318 (3)
C2—C1—C6120.70 (19)O5—C11—C12100.80 (15)
C2—C1—S1120.42 (14)C10—C11—C12107.76 (17)
C6—C1—S1118.88 (15)O5—C11—H11115.0
C3—C2—C1120.03 (18)C10—C11—H11115.0
C3—C2—H2120.0C12—C11—H11115.0
C1—C2—H2120.0C13—C12—C11100.37 (14)
C2—C3—C4118.14 (19)C13—C12—H12A111.7
C2—C3—H3120.9C11—C12—H12A111.7
C4—C3—H3120.9C13—C12—H12B111.7
C5—C4—C3122.68 (18)C11—C12—H12B111.7
C5—C4—N1118.22 (17)H12A—C12—H12B109.5
C3—C4—N1119.08 (18)C14—C13—C12117.59 (14)
C4—C5—C6118.95 (17)C14—C13—C8102.66 (14)
C4—C5—H5120.5C12—C13—C8102.01 (14)
C6—C5—H5120.5C14—C13—Cl1109.40 (13)
C5—C6—C1119.42 (18)C12—C13—Cl1114.20 (13)
C5—C6—H6120.3C8—C13—Cl1109.84 (11)
C1—C6—H6120.3N2—C14—C13104.26 (13)
N2—C7—C8103.29 (13)N2—C14—H14A110.9
N2—C7—H7A111.1C13—C14—H14A110.9
C8—C7—H7A111.1N2—C14—H14B110.9
N2—C7—H7B111.1C13—C14—H14B110.9
C8—C7—H7B111.1H14A—C14—H14B108.9
H7A—C7—H7B109.1O1—N1—O2123.69 (19)
O5—C8—C7112.73 (15)O1—N1—C4118.23 (19)
O5—C8—C9101.80 (14)O2—N1—C4118.07 (18)
C7—C8—C9125.36 (15)C7—N2—C14112.62 (14)
O5—C8—C1398.31 (12)C7—N2—S1120.83 (12)
C7—C8—C13106.67 (14)C14—N2—S1122.85 (13)
C9—C8—C13108.70 (15)C8—O5—C1196.05 (13)
C10—C9—C8105.36 (17)O3—S1—O4120.93 (11)
C10—C9—H9127.3O3—S1—N2106.96 (10)
C8—C9—H9127.3O4—S1—N2106.85 (9)
C9—C10—C11106.33 (18)O3—S1—C1106.78 (10)
C9—C10—H10126.8O4—S1—C1107.07 (10)
C11—C10—H10126.8N2—S1—C1107.66 (9)
O5—C11—C10101.43 (16)
C6—C1—C2—C32.6 (3)C7—C8—C13—Cl183.44 (16)
S1—C1—C2—C3177.44 (17)C9—C8—C13—Cl154.21 (17)
C1—C2—C3—C42.0 (3)C12—C13—C14—N2139.34 (16)
C2—C3—C4—C50.6 (3)C8—C13—C14—N228.35 (18)
C2—C3—C4—N1177.90 (18)Cl1—C13—C14—N288.26 (15)
C3—C4—C5—C62.6 (3)C5—C4—N1—O1157.46 (19)
N1—C4—C5—C6175.92 (19)C3—C4—N1—O121.1 (3)
C4—C5—C6—C11.9 (3)C5—C4—N1—O221.4 (3)
C2—C1—C6—C50.6 (3)C3—C4—N1—O2159.99 (19)
S1—C1—C6—C5179.46 (16)C8—C7—N2—C145.1 (2)
N2—C7—C8—O583.60 (17)C8—C7—N2—S1164.04 (13)
N2—C7—C8—C9151.72 (18)C13—C14—N2—C715.5 (2)
N2—C7—C8—C1323.20 (18)C13—C14—N2—S1142.87 (14)
O5—C8—C9—C1032.8 (2)C7—C8—O5—C11173.09 (15)
C7—C8—C9—C10162.04 (19)C9—C8—O5—C1150.15 (16)
C13—C8—C9—C1070.3 (2)C13—C8—O5—C1161.04 (15)
C8—C9—C10—C110.7 (2)C10—C11—O5—C849.46 (17)
C9—C10—C11—O531.3 (2)C12—C11—O5—C861.35 (16)
C9—C10—C11—C1274.1 (2)C7—N2—S1—O346.28 (18)
O5—C11—C12—C1335.15 (17)C14—N2—S1—O3157.01 (15)
C10—C11—C12—C1370.69 (18)C7—N2—S1—O4177.11 (15)
C11—C12—C13—C14109.52 (18)C14—N2—S1—O426.18 (18)
C11—C12—C13—C81.83 (17)C7—N2—S1—C168.16 (17)
C11—C12—C13—Cl1120.25 (14)C14—N2—S1—C188.54 (16)
O5—C8—C13—C1483.97 (15)C2—C1—S1—O3157.40 (17)
C7—C8—C13—C1432.86 (17)C6—C1—S1—O322.68 (19)
C9—C8—C13—C14170.51 (15)C2—C1—S1—O426.55 (19)
O5—C8—C13—C1238.24 (15)C6—C1—S1—O4153.53 (16)
C7—C8—C13—C12155.07 (15)C2—C1—S1—N288.03 (17)
C9—C8—C13—C1267.28 (17)C6—C1—S1—N291.89 (17)
O5—C8—C13—Cl1159.73 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.583.437 (3)154
C14—H14B···O5ii0.972.543.317 (2)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.583.437 (3)153.6
C14—H14B···O5ii0.972.543.317 (2)136.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Acknowledgements top

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also The Scientific & Technological Research Council of Turkey (TÜBİTAK) for the financial support of this work (PN: 107 T831).

references
References top

Arslan, H., Demircan, A. & Göktürk, E. (2008). Spect. Chim. Act. Part A. A69, 105–112.

Avalos, M., Babiano, R., Cabello, N., Cintas, P., Hursthouse, M. B., Jiménez, J. L., Light, M. E. & Palacios, J. C. (2003). J. Org. Chem. 68, 7193–7203.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Fraile, J. M., Garcia, J. I., Gómez, M. A., de la Hoz, A., Mayoral, J. A., Moreno, A., Prieto, P., Salvatella, L. & Vázquez, E. (2001). Eur. J. Org. Chem. pp. 2891–2899.

Karaarslan, M. & Demircan, A. (2006). Asian J. Chem. 18, 645–649.

Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995.

Koşar, B., Demircan, A., Karaarslan, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o765–o767.

Koşar, B., Karaarslan, M., Yıldız, Y. K., Demircan, A. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1169–o1170.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Medimagh, R., Marque, S., Prim, D., Chatti, S. & Zarrouk, H. (2008). J. Org. Chem. 73, 2191–2198.

Norton, J. A. (1942). Chem. Rev. 31, 319–523.

Padwa, A., Crawford, K. R., Rashatasakhon, P. & Rose, M. (2003). J. Org. Chem. 68, 2609–2617.

Paulvannan, K. (2004). J. Org. Chem. 69, 1207–1214.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103.

Winkler, J. D. (1996). Chem. Rev. 96, 167–176.