supplementary materials


hb7132 scheme

Acta Cryst. (2013). E69, o1524    [ doi:10.1107/S1600536813024732 ]

N-(2-Fluorophenyl)-2,6-dimethyl-1,3-dioxan-4-amine

Z. Fatima, G. Rambabu, B. P. Reddy, V. Vijayakumar and D. Velmurugan

Abstract top

In the title compound, C12H16FNO3, the dioxane ring adopts a chair conformation with the methyl groups and amine N atom in equatorial positions. The best plane through the dioxane ring makes a dihedral angle of 43.16 (8)° with the phenyl ring. In the crystal, pairs of C-H...O hydrogen bonds link the molecules into centrosymmetric R22(8) dimers, which are linked into [100] chains by further C-H...O hydrogen bonds. The N-H group does not participate in hydrogen bonding.

Comment top

Oxygen heterocycles play a vital role as basic building blocks in pharmaceutical preparations. This class of compounds has useful insecticidal as well as anti-foaming properties (Yuan et al., 2005). Dioxane rings are frequently encountered in structural motifs in many bioactive molecules such as cytotoxic agents (Aubele et al., 2005) and antimuscarinic agents (Marucci et al., 2005). As part of our studies in this area, we have undertaken a single-crystal structure determination of the title compound.

In the title compound, C12H16F1N1O3 (Fig.1), pairs of C—H···O hydrogen bonds link the molecules into centrosymmetric R22(8) dimers (Fig.2). The dimers are linked into an infinite chain propagating along the 'a' axis by further C—H···O hydrogen bonds. The dioxane ring adopts a chair conformation and the best plane through the dioxane ring makes a dihedral angle of 43.16 (8)° with the phenyl ring.

Related literature top

Dioxane rings are frequently encountered in structural motifs in many bioactive molecules such as cytotoxic agents (Aubele et al., 2005) and antimuscarinic agents (Marucci et al., 2005). For applications of this class of compounds, see: Wang, Yuan, Liu et al. (1996); Wang, Yuan, Lei & Liu (1996); Yuan et al. (2005). For related crystal structures, see: Chuprunov et al. (1981).

Experimental top

To 2-fluoroaniline (1 mmol), acetaldehyde (3 mmol) was added dropwise and stirred for about 4 h at 0 °C. The progress of the reaction was monitored through TLC. The reaction mixture was washed with petroleum ether. Resultant was dissolved in diethylether and allowed to evaporate. Solid product obtained was recrystallized for diethylether solution to yield colourless blocks.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.98 Å refined in the riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down b axis. H-atoms not involved in H-bonds have been excluded for clarity.
N-(2-Fluorophenyl)-2,6-dimethyl-1,3-dioxan-4-amine top
Crystal data top
C12H16FNO2F(000) = 960
Mr = 225.26Dx = 1.233 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3020 reflections
a = 19.6219 (13) Åθ = 2.7–28.4°
b = 8.1603 (6) ŵ = 0.09 mm1
c = 15.2396 (10) ÅT = 293 K
β = 95.950 (3)°Block, colourless
V = 2427.0 (3) Å30.25 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
3020 independent reflections
Radiation source: fine-focus sealed tube1973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2625
Tmin = 0.617, Tmax = 0.746k = 1010
11540 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.5739P]
where P = (Fo2 + 2Fc2)/3
3020 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H16FNO2V = 2427.0 (3) Å3
Mr = 225.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.6219 (13) ŵ = 0.09 mm1
b = 8.1603 (6) ÅT = 293 K
c = 15.2396 (10) Å0.25 × 0.20 × 0.15 mm
β = 95.950 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3020 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1973 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.746Rint = 0.026
11540 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137Δρmax = 0.18 e Å3
S = 1.03Δρmin = 0.23 e Å3
3020 reflectionsAbsolute structure: ?
153 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.0550 (9)0.220 (2)1.0096 (12)0.074 (5)*
H30.1172 (8)0.1912 (19)0.8533 (10)0.058 (4)*
O10.13369 (5)0.02783 (12)0.94558 (6)0.0592 (3)
O20.02809 (4)0.13036 (11)0.88947 (6)0.0535 (3)
C40.02808 (7)0.25397 (16)0.95733 (9)0.0526 (3)
H40.04760.35520.93600.063*
C50.07197 (7)0.19735 (17)1.03878 (9)0.0545 (3)
H5A0.05000.10561.06490.065*
H5B0.07670.28541.08170.065*
N10.04050 (7)0.28505 (17)0.97514 (9)0.0617 (3)
C20.14205 (7)0.14617 (18)1.01572 (9)0.0561 (3)
H20.16570.24250.99530.067*
C30.09501 (7)0.0917 (2)0.87025 (9)0.0562 (4)
C70.08824 (7)0.35496 (17)0.91321 (10)0.0598 (4)
F10.16772 (6)0.33920 (15)1.01790 (9)0.1024 (4)
C60.09070 (10)0.0353 (3)0.79920 (11)0.0828 (6)
H6A0.13600.06200.78520.124*
H6B0.06420.00640.74750.124*
H6C0.06910.13200.81920.124*
C120.15451 (8)0.3829 (2)0.93551 (13)0.0723 (5)
C10.18616 (9)0.0692 (2)1.09141 (10)0.0745 (5)
H1A0.22960.03941.07250.112*
H1B0.16390.02701.11080.112*
H1C0.19310.14601.13920.112*
C80.07505 (9)0.4054 (2)0.83014 (11)0.0733 (5)
H80.03180.38850.81200.088*
C90.12519 (11)0.4808 (2)0.77326 (12)0.0899 (6)
H90.11510.51580.71800.108*
C110.20465 (10)0.4542 (3)0.88042 (17)0.0926 (7)
H110.24820.46920.89790.111*
C100.18988 (12)0.5039 (3)0.79822 (16)0.0989 (7)
H100.22360.55320.75960.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0587 (6)0.0740 (6)0.0451 (5)0.0204 (5)0.0063 (4)0.0013 (4)
O20.0435 (5)0.0652 (5)0.0531 (5)0.0060 (4)0.0112 (4)0.0052 (4)
C40.0477 (8)0.0510 (7)0.0608 (8)0.0028 (6)0.0144 (6)0.0025 (6)
C50.0596 (9)0.0530 (7)0.0523 (8)0.0005 (6)0.0128 (6)0.0070 (6)
N10.0521 (7)0.0665 (7)0.0695 (8)0.0106 (6)0.0208 (6)0.0006 (7)
C20.0533 (8)0.0627 (8)0.0526 (8)0.0015 (6)0.0068 (6)0.0016 (6)
C30.0474 (8)0.0767 (9)0.0461 (7)0.0128 (7)0.0113 (6)0.0061 (7)
C70.0516 (8)0.0563 (7)0.0721 (10)0.0061 (6)0.0093 (7)0.0185 (7)
F10.0756 (7)0.1085 (8)0.1316 (10)0.0213 (6)0.0513 (7)0.0091 (7)
C60.0734 (11)0.1247 (15)0.0507 (8)0.0338 (10)0.0076 (8)0.0165 (9)
C120.0542 (9)0.0690 (9)0.0948 (12)0.0079 (7)0.0129 (9)0.0202 (9)
C10.0746 (11)0.0911 (11)0.0554 (9)0.0164 (9)0.0043 (8)0.0047 (8)
C80.0689 (10)0.0814 (10)0.0697 (10)0.0192 (8)0.0081 (8)0.0148 (8)
C90.1005 (16)0.0957 (13)0.0703 (11)0.0248 (11)0.0069 (10)0.0226 (10)
C110.0544 (10)0.0973 (13)0.1236 (18)0.0145 (9)0.0033 (11)0.0348 (13)
C100.0798 (14)0.1034 (14)0.1047 (16)0.0290 (11)0.0316 (12)0.0404 (13)
Geometric parameters (Å, º) top
O1—C31.4087 (16)C7—C121.396 (2)
O1—C21.4373 (17)F1—C121.356 (2)
O2—C31.4105 (16)C6—H6A0.9600
O2—C41.4446 (16)C6—H6B0.9600
C4—N11.4228 (17)C6—H6C0.9600
C4—C51.508 (2)C12—C111.357 (3)
C4—H40.9800C1—H1A0.9600
C5—C21.513 (2)C1—H1B0.9600
C5—H5A0.9700C1—H1C0.9600
C5—H5B0.9700C8—C91.386 (2)
N1—C71.382 (2)C8—H80.9300
N1—H10.820 (18)C9—C101.375 (3)
C2—C11.506 (2)C9—H90.9300
C2—H20.9800C11—C101.376 (3)
C3—C61.495 (2)C11—H110.9300
C3—H30.969 (16)C10—H100.9300
C7—C81.381 (2)
C3—O1—C2111.59 (11)C8—C7—C12116.24 (16)
C3—O2—C4111.98 (10)N1—C7—C12118.92 (15)
N1—C4—O2109.35 (11)C3—C6—H6A109.5
N1—C4—C5111.61 (11)C3—C6—H6B109.5
O2—C4—C5109.44 (10)H6A—C6—H6B109.5
N1—C4—H4108.8C3—C6—H6C109.5
O2—C4—H4108.8H6A—C6—H6C109.5
C5—C4—H4108.8H6B—C6—H6C109.5
C4—C5—C2110.40 (11)F1—C12—C11119.33 (17)
C4—C5—H5A109.6F1—C12—C7117.05 (16)
C2—C5—H5A109.6C11—C12—C7123.6 (2)
C4—C5—H5B109.6C2—C1—H1A109.5
C2—C5—H5B109.6C2—C1—H1B109.5
H5A—C5—H5B108.1H1A—C1—H1B109.5
C7—N1—C4122.05 (13)C2—C1—H1C109.5
C7—N1—H1116.8 (13)H1A—C1—H1C109.5
C4—N1—H1113.9 (13)H1B—C1—H1C109.5
O1—C2—C1107.55 (12)C7—C8—C9121.15 (18)
O1—C2—C5108.78 (11)C7—C8—H8119.4
C1—C2—C5113.66 (12)C9—C8—H8119.4
O1—C2—H2108.9C10—C9—C8120.2 (2)
C1—C2—H2108.9C10—C9—H9119.9
C5—C2—H2108.9C8—C9—H9119.9
O1—C3—O2110.36 (10)C12—C11—C10118.84 (19)
O1—C3—C6108.61 (13)C12—C11—H11120.6
O2—C3—C6108.76 (13)C10—C11—H11120.6
O1—C3—H3107.9 (9)C9—C10—C11119.91 (19)
O2—C3—H3108.7 (9)C9—C10—H10120.0
C6—C3—H3112.5 (9)C11—C10—H10120.0
C8—C7—N1124.81 (14)
C3—O2—C4—N1178.72 (11)C4—N1—C7—C81.8 (2)
C3—O2—C4—C556.18 (14)C4—N1—C7—C12179.59 (13)
N1—C4—C5—C2173.31 (11)C8—C7—C12—F1177.83 (14)
O2—C4—C5—C252.12 (15)N1—C7—C12—F10.2 (2)
O2—C4—N1—C765.93 (17)C8—C7—C12—C110.4 (2)
C5—C4—N1—C7172.83 (12)N1—C7—C12—C11178.40 (16)
C3—O1—C2—C1177.76 (12)N1—C7—C8—C9177.28 (16)
C3—O1—C2—C558.73 (14)C12—C7—C8—C90.6 (2)
C4—C5—C2—O153.33 (14)C7—C8—C9—C101.2 (3)
C4—C5—C2—C1173.11 (12)F1—C12—C11—C10177.44 (17)
C2—O1—C3—O262.98 (16)C7—C12—C11—C100.7 (3)
C2—O1—C3—C6177.87 (13)C8—C9—C10—C110.9 (3)
C4—O2—C3—O161.46 (15)C12—C11—C10—C90.1 (3)
C4—O2—C3—C6179.49 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.972.603.5563 (17)169
C11—H11···O1ii0.932.543.473 (2)177
Symmetry codes: (i) x, y, z+2; (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.972.603.5563 (17)169
C11—H11···O1ii0.932.543.473 (2)177
Symmetry codes: (i) x, y, z+2; (ii) x1/2, y+1/2, z.
Acknowledgements top

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF and DV acknowledge the UGC (SAP–CAS) for the departmental facilties. ZF also thanks the UGC for a meritorious fellowship.

references
References top

Aubele, D. L., Wan, S. & Floreancig, P. E. (2005). Angew. Chem. Int. Ed. 44, 3485–3488.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chuprunov, E. V., Tarkhova, T. N., Korallova, T. Y., Simonov, M. A. & Belov, W. V. (1981). Zh. Strukt. Khim. 22, 191–192.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Marucci, G., Piero, A., Brasili, L., Buccioni, M., Giardinà, D., Gulini, U., Piergentili, A. & Sagratini, G. (2005). Med. Chem. Res. 14, 274–296.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Wang, G. W., Yuan, X. Y., Lei, X. G. & Liu, Y. C. (1996). Chin. J. Appl. Chem. 11, 114–115.

Wang, G. W., Yuan, X. Y., Liu, Y. C., Guo, Q. X. & Lei, X. G. (1996). Indian J. Chem. Sect. B, 35, 583–585.

Yuan, X. Y., Yang, N. F., Luo, H. A. & Liu, Y. J. (2005). Chin. J. Org. Chem. 25, 1049–1052.