supplementary materials


lh5645 scheme

Acta Cryst. (2013). E69, m527    [ doi:10.1107/S1600536813024288 ]

Tricarbonylchlorido(6',7'-dihydro-5'H-spiro[cyclohexane-1,6'-dipyrido[3,2-d:2',3'-f][1,3]diazepine]-[kappa]2N1,N11)rhenium(I)

O. R. Clegg, L. P. Harding, J. W. Miller and C. R. Rice

Abstract top

In the title compound, [ReCl(C16H18N4)(CO)3], the ReI ion is coordinated in a distorted octahedral geometry by one Cl atom, two N atoms of the bidentate ligand and three carbonyl groups. The cyclohexane group is orientated in a transoid fashion with respect to the chloride ligand. In the crystal, N-H...Cl hydrogen bonds link complex molecules, forming a two-dimensional network parallel to (100).

Comment top

The title complex was prepared as part of a larger study into conjugation of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] with oxo-steroids to form luminescent derivatives (Bullock et al. 2012). These steroids contain a cyclohexyl ring (ring A) with a ketone group in the 3-position; therefore, cyclohexanone was used as a model compound to examine the potential reactivity of such steroids with the rhenium complex.

Single-crystal X-ray analysis of the title complex gave the structure shown in Fig. 1. The rhenium centre adopts a distorted octahedral geometry which is coordinated by two nitrogen atoms from a 3,3'-diamino-2,2'-bipyridyl ligand and two carbonyl ligands in the equatorial sites and by a carbonyl ligand and a chloride ion in the axial sites. The cyclohexyl ring adopts a chair conformation and is orientated in a trans-oid fashion relative to the chloride ion on the rhenium centre. In the crystal, N—H···Cl hydrogen bonds (Table 1 & Fig. 2) link complex molecules to form a two-dimensional network parallel (100).

A similar compound has been prepared using cyclopentanone instead of cyclohexanone. The title compound compound is essentially isostructural with that compound (Clegg et al. 2013).

Related literature top

For a review of the photophysical properties of Re–polypyridyl complexes, see: Coleman et al. (2008). For the synthesis of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] and for the preparation of oxo-steroid derivatives of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl], see: Bullock et al. (2012). For the reaction of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] with ketones, see: Clayton et al. (2008). For the structure of the cyclopentane analogue of the title compound, see: Clegg et al. (2013).

Experimental top

To a solution of [Re(3,3'-diamino-2,2'-bipyridine)(CO)3Cl] in dichloromethane was added cyclohexanone (10 µL, ca. 2 eq.) and a few grains of camphorsulfonic acid. The solution was stirred at room temperature for 2 h. The resulting precipitate was filtered in vacuo, washed with dichloromethane and dried, giving the product as a yellow solid. Crystals suitable for X-ray analysis were prepared by slow evaporation of an acetonitrile solution of the complex.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on sp2 and sp3 C atoms were placed in calculated positions and refined with riding constraints and isotropic displacement parameters 1.2 × their parent carbon atoms. H atoms bonded to N atoms were refined independently with a bond length constraint of 0.91 (2)Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level.
Tricarbonylchlorido(6',7'-dihydro-5'H-spiro[cyclohexane-1,6'-dipyrido[3,2-d:2',3'-f][1,3]diazepine]-κ2N1,N11)rhenium(I) top
Crystal data top
[ReCl(C16H18N4)(CO)3]F(000) = 1104
Mr = 572.02Dx = 1.986 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6672 reflections
a = 12.6794 (6) Åθ = 2.4–30.2°
b = 11.9040 (6) ŵ = 6.52 mm1
c = 12.7732 (6) ÅT = 150 K
β = 97.066 (1)°Block, yellow
V = 1913.29 (16) Å30.10 × 0.10 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5590 independent reflections
Radiation source: fine-focus sealed tube4543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.562, Tmax = 0.828k = 1616
22579 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0164P)2 + 1.9168P]
where P = (Fo2 + 2Fc2)/3
5590 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 1.08 e Å3
2 restraintsΔρmin = 0.74 e Å3
Crystal data top
[ReCl(C16H18N4)(CO)3]V = 1913.29 (16) Å3
Mr = 572.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6794 (6) ŵ = 6.52 mm1
b = 11.9040 (6) ÅT = 150 K
c = 12.7732 (6) Å0.10 × 0.10 × 0.03 mm
β = 97.066 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5590 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4543 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.828Rint = 0.039
22579 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051Δρmax = 1.08 e Å3
S = 1.04Δρmin = 0.74 e Å3
5590 reflectionsAbsolute structure: ?
259 parametersAbsolute structure parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.209524 (11)0.453951 (10)0.250974 (9)0.01842 (4)
Cl10.33970 (7)0.60427 (7)0.21693 (7)0.02644 (18)
N10.3302 (2)0.4016 (2)0.37600 (19)0.0185 (5)
N20.1863 (2)0.5567 (2)0.38525 (19)0.0199 (5)
N30.3158 (2)0.6174 (2)0.6529 (2)0.0215 (6)
N40.4188 (2)0.4503 (3)0.6590 (2)0.0310 (7)
O10.0385 (2)0.5624 (2)0.09147 (18)0.0306 (6)
O20.2669 (3)0.3038 (2)0.0706 (2)0.0477 (8)
O30.0489 (2)0.2781 (2)0.3017 (2)0.0387 (7)
C10.1030 (3)0.5197 (3)0.1503 (2)0.0226 (7)
C20.2461 (3)0.3609 (3)0.1381 (3)0.0286 (8)
C30.1102 (3)0.3443 (3)0.2834 (2)0.0255 (7)
C40.3337 (2)0.4527 (3)0.4731 (2)0.0189 (6)
C50.4093 (3)0.4144 (3)0.5566 (2)0.0209 (7)
C60.4833 (3)0.3319 (3)0.5338 (3)0.0227 (7)
H60.53680.30800.58780.027*
C70.4792 (3)0.2859 (3)0.4357 (3)0.0255 (7)
H70.52930.23070.42060.031*
C80.4001 (3)0.3219 (3)0.3585 (3)0.0229 (7)
H80.39540.28870.29050.027*
C90.2552 (2)0.5444 (3)0.4760 (2)0.0175 (6)
C100.2467 (3)0.6191 (3)0.5607 (2)0.0195 (6)
C110.1681 (3)0.7017 (3)0.5486 (3)0.0268 (8)
H110.16170.75230.60500.032*
C120.1001 (3)0.7113 (3)0.4572 (3)0.0309 (8)
H120.04650.76750.44950.037*
C130.1117 (3)0.6367 (3)0.3764 (3)0.0273 (8)
H130.06510.64250.31250.033*
C140.3416 (3)0.5122 (3)0.7096 (2)0.0234 (7)
C150.2419 (3)0.4398 (3)0.7144 (3)0.0296 (8)
H15A0.20730.42530.64190.036*
H15B0.26280.36650.74740.036*
C160.1653 (4)0.4967 (4)0.7762 (3)0.0432 (10)
H16A0.10250.44800.77920.052*
H16B0.14110.56780.74100.052*
C170.2176 (4)0.5216 (4)0.8886 (3)0.0514 (13)
H17A0.16620.56100.92810.062*
H17B0.23740.45000.92540.062*
C180.3166 (4)0.5941 (4)0.8870 (3)0.0401 (10)
H18A0.29560.66910.85800.048*
H18B0.35160.60440.96000.048*
C190.3935 (3)0.5414 (3)0.8214 (3)0.0335 (8)
H19A0.42280.47200.85670.040*
H19B0.45340.59370.81650.040*
H30.305 (3)0.678 (2)0.691 (3)0.040*
H40.479 (2)0.433 (3)0.699 (3)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01938 (6)0.01328 (6)0.02209 (6)0.00027 (6)0.00050 (4)0.00139 (5)
Cl10.0213 (4)0.0212 (4)0.0355 (4)0.0005 (3)0.0016 (3)0.0099 (3)
N10.0202 (14)0.0109 (13)0.0243 (12)0.0002 (11)0.0020 (11)0.0016 (10)
N20.0188 (13)0.0153 (13)0.0243 (12)0.0019 (12)0.0032 (10)0.0022 (10)
N30.0240 (15)0.0139 (14)0.0251 (13)0.0009 (12)0.0037 (12)0.0009 (10)
N40.0241 (16)0.0336 (17)0.0322 (14)0.0131 (15)0.0091 (12)0.0073 (14)
O10.0313 (14)0.0297 (14)0.0285 (12)0.0044 (12)0.0052 (11)0.0035 (10)
O20.073 (2)0.0393 (17)0.0327 (14)0.0243 (16)0.0140 (15)0.0042 (12)
O30.0384 (17)0.0295 (15)0.0479 (15)0.0119 (13)0.0033 (13)0.0002 (12)
C10.0260 (18)0.0169 (17)0.0252 (15)0.0050 (14)0.0042 (14)0.0069 (12)
C20.035 (2)0.0219 (18)0.0287 (16)0.0060 (17)0.0044 (15)0.0051 (14)
C30.029 (2)0.0202 (18)0.0258 (15)0.0002 (15)0.0018 (14)0.0042 (13)
C40.0164 (14)0.0124 (14)0.0272 (14)0.0039 (14)0.0005 (12)0.0013 (12)
C50.0183 (16)0.0157 (15)0.0281 (15)0.0021 (13)0.0002 (13)0.0006 (12)
C60.0153 (16)0.0156 (16)0.0362 (17)0.0022 (13)0.0008 (14)0.0016 (12)
C70.0216 (18)0.0154 (16)0.0402 (18)0.0034 (14)0.0072 (15)0.0018 (13)
C80.0234 (18)0.0146 (16)0.0308 (16)0.0033 (14)0.0045 (14)0.0009 (12)
C90.0186 (15)0.0122 (14)0.0209 (12)0.0008 (14)0.0013 (11)0.0017 (12)
C100.0196 (16)0.0116 (15)0.0262 (14)0.0005 (13)0.0024 (13)0.0003 (11)
C110.029 (2)0.0181 (17)0.0319 (16)0.0064 (15)0.0016 (15)0.0077 (13)
C120.033 (2)0.0236 (19)0.0348 (18)0.0124 (17)0.0033 (16)0.0046 (14)
C130.0263 (19)0.0232 (18)0.0300 (16)0.0091 (16)0.0061 (14)0.0033 (14)
C140.0254 (18)0.0201 (17)0.0227 (14)0.0045 (14)0.0052 (13)0.0018 (12)
C150.040 (2)0.0168 (18)0.0308 (16)0.0015 (16)0.0001 (16)0.0025 (13)
C160.043 (3)0.039 (2)0.049 (2)0.009 (2)0.012 (2)0.0029 (19)
C170.071 (4)0.045 (3)0.042 (2)0.001 (2)0.022 (2)0.0035 (19)
C180.048 (3)0.040 (2)0.0311 (19)0.001 (2)0.0006 (18)0.0039 (16)
C190.037 (2)0.033 (2)0.0267 (15)0.0077 (19)0.0094 (15)0.0033 (15)
Geometric parameters (Å, º) top
Re1—C31.895 (4)C7—H70.9500
Re1—C11.914 (3)C8—H80.9500
Re1—C21.919 (4)C9—C101.414 (4)
Re1—N22.156 (3)C10—C111.395 (5)
Re1—N12.163 (3)C11—C121.368 (5)
Re1—Cl12.5083 (9)C11—H110.9500
N1—C81.335 (4)C12—C131.383 (5)
N1—C41.377 (4)C12—H120.9500
N2—C131.338 (4)C13—H130.9500
N2—C91.370 (4)C14—C191.537 (4)
N3—C101.378 (4)C14—C151.538 (5)
N3—C141.464 (4)C15—C161.488 (6)
N3—H30.895 (18)C15—H15A0.9900
N4—C51.367 (4)C15—H15B0.9900
N4—C141.440 (5)C16—C171.534 (6)
N4—H40.895 (19)C16—H16A0.9900
O1—C11.158 (4)C16—H16B0.9900
O2—C21.154 (4)C17—C181.526 (6)
O3—C31.151 (4)C17—H17A0.9900
C4—C51.418 (4)C17—H17B0.9900
C4—C91.482 (4)C18—C191.500 (5)
C5—C61.413 (5)C18—H18A0.9900
C6—C71.362 (5)C18—H18B0.9900
C6—H60.9500C19—H19A0.9900
C7—C81.386 (5)C19—H19B0.9900
C3—Re1—C189.74 (14)N3—C10—C11118.4 (3)
C3—Re1—C289.72 (15)N3—C10—C9122.9 (3)
C1—Re1—C286.96 (14)C11—C10—C9118.6 (3)
C3—Re1—N293.30 (12)C12—C11—C10121.3 (3)
C1—Re1—N298.55 (11)C12—C11—H11119.4
C2—Re1—N2173.72 (13)C10—C11—H11119.4
C3—Re1—N193.94 (12)C11—C12—C13118.0 (3)
C1—Re1—N1172.11 (11)C11—C12—H12121.0
C2—Re1—N1100.02 (13)C13—C12—H12121.0
N2—Re1—N174.30 (10)N2—C13—C12122.2 (3)
C3—Re1—Cl1176.99 (10)N2—C13—H13118.9
C1—Re1—Cl190.96 (10)C12—C13—H13118.9
C2—Re1—Cl193.23 (12)N4—C14—N3109.8 (3)
N2—Re1—Cl183.70 (8)N4—C14—C19107.2 (3)
N1—Re1—Cl185.01 (7)N3—C14—C19108.1 (3)
C8—N1—C4121.0 (3)N4—C14—C15109.8 (3)
C8—N1—Re1120.3 (2)N3—C14—C15111.4 (3)
C4—N1—Re1118.6 (2)C19—C14—C15110.5 (3)
C13—N2—C9121.2 (3)C16—C15—C14111.1 (3)
C13—N2—Re1120.1 (2)C16—C15—H15A109.4
C9—N2—Re1118.5 (2)C14—C15—H15A109.4
C10—N3—C14121.0 (3)C16—C15—H15B109.4
C10—N3—H3110 (3)C14—C15—H15B109.4
C14—N3—H3117 (3)H15A—C15—H15B108.0
C5—N4—C14127.2 (3)C15—C16—C17110.5 (4)
C5—N4—H4116 (3)C15—C16—H16A109.6
C14—N4—H4116 (3)C17—C16—H16A109.6
O1—C1—Re1177.8 (3)C15—C16—H16B109.6
O2—C2—Re1178.9 (4)C17—C16—H16B109.6
O3—C3—Re1179.0 (3)H16A—C16—H16B108.1
N1—C4—C5118.6 (3)C18—C17—C16111.0 (3)
N1—C4—C9113.6 (3)C18—C17—H17A109.4
C5—C4—C9127.8 (3)C16—C17—H17A109.4
N4—C5—C6115.6 (3)C18—C17—H17B109.4
N4—C5—C4126.2 (3)C16—C17—H17B109.4
C6—C5—C4118.2 (3)H17A—C17—H17B108.0
C7—C6—C5121.2 (3)C19—C18—C17111.3 (3)
C7—C6—H6119.4C19—C18—H18A109.4
C5—C6—H6119.4C17—C18—H18A109.4
C6—C7—C8118.2 (3)C19—C18—H18B109.4
C6—C7—H7120.9C17—C18—H18B109.4
C8—C7—H7120.9H18A—C18—H18B108.0
N1—C8—C7122.5 (3)C18—C19—C14112.4 (3)
N1—C8—H8118.7C18—C19—H19A109.1
C7—C8—H8118.7C14—C19—H19A109.1
N2—C9—C10118.7 (3)C18—C19—H19B109.1
N2—C9—C4114.7 (3)C14—C19—H19B109.1
C10—C9—C4126.6 (3)H19A—C19—H19B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl1i0.89 (3)2.64 (2)3.417 (3)146 (3)
N4—H4···Cl1ii0.89 (3)2.46 (3)3.334 (3)171 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl1i0.89 (3)2.64 (2)3.417 (3)146 (3)
N4—H4···Cl1ii0.89 (3)2.46 (3)3.334 (3)171 (3)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1.
references
References top

Bruker (2009). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.

Bullock, S., Hallett, A. J., Harding, L. P., Higginson, J. J., Piela, S. A. F., Pope, S. J. A. & Rice, C. R. (2012). Dalton Trans. 41, 14690–14696.

Clayton, H. J., Harding, L. P., Irvine, J. P., Jeffery, J. C., Riis-Johannessen, T., Laws, A. P., Rice, C. R. & Whitehead, M. (2008). Chem. Commun. pp. 108–110.

Clegg, O. R., Harding, L. P., Miller, J. W. & Rice, C. R. (2013). Acta Cryst. E69. [LH5644]

Coleman, A., Brennan, C., Vos, J. G. & Pryce, M. T. (2008). Coord. Chem. Rev. 252, 2585–2595.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.