supplementary materials


lh5647 scheme

Acta Cryst. (2013). E69, m537    [ doi:10.1107/S1600536813024653 ]

Bis[1-methoxy-2,2,2-tris(pyrazol-1-yl-[kappa]N2)ethane]nickel(II) bis(trifluoromethanesulfonate) methanol disolvate

G. Lyubartseva, S. Parkin and U. P. Mallik

Abstract top

In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2CH3OH, the NiII ion is coordinated by six N atoms from two tridentate 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane ligands in a distorted octahedral geometry. The NiII ion is situated on an inversion centre. The Ni-N distances range from 2.0589 (19) to 2.0757 (19) Å, intra-ligand N-Ni-N angles range from 84.50 (8) to 85.15 (8)°, and adjacent inter-ligand N-Ni-N angles range between 94.85 (8) and 95.50 (8)°. In the crystal, O-H...O hydrogen bonds between methanol solvent molecules and trifluoromethanesulfonate anions are observed.

Comment top

In an attempt to prepare mononuclear [L2NiII]+2, where L is 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane, a tridentate neutral nitrogen donor ligand, we isolated the major product [Ni(C12H14N60)2][CF3SO3]2·2CH3OH as pink triclinic crystals. In the crystal, the nickel ion is coordinated by six N atoms from the two tridentate tpmOMe ligands (average Ni—N distance = 2.0653 Å) in a distorted octahedral geometry. The Ni atom is situated on an inversion centre. The average N—Ni—N angle between adjacent pyrazole-ring-coordinated N atoms is 84.81° for the six acute angles and 95.19° for the six obtuse angles. Intramolecular O—H···O hydrogen bonds are present between methanol solvent molecules and trifluoromethanesulfonate anions.

Related literature top

Pyrazole-based tridentate ligands are drawing attention because of their topology and the nature of the donor atoms, see: Paulo et al. (2004); Bigmore et al. (2005). For the synthesis of the ligand, see: Maria et al. (2007). The compound reported here was prepared as part of our ongoing research effort to study nitrogen donor tridentate scorpionate ligands coordinated with nickel, see: Lyubartseva et al. (2011, 2012); Lyubartseva & Parkin (2009).

Experimental top

The 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane ligand was synthesized according to the previously published procedure of Maria et al. (2007). Nickel trifluoromethanesulfonate was used as received. Ni(OTf)2(358 mg, 1 mmol) was dissolved in 40 ml me thanol. 1-Methoxy-2,2,2-tris(pyrazol-1-yl)ethane (258 mg, 1 mmol) was dissolved in 25 ml me thanol. The ligand solution was added dropwise to metal solution with moderate stirring. Once the addition was complete, the resulting solution was filtered and solvent was slowly evaporated in air. Pink crystals were obtained after 2 weeks (343 mg, 73.2% yield). Elemental analysis, calculated for C28H36N12NiO10F6S2: C 35.87, H 3.87, N 17.93; found C 35.69, H 3.64, N 18.02. IR (cm-1): 3625,3483,3146,2921,1616,1522,1421,1388,1341,1324,1254,1232,1199,1167, 1106,1071,1059, 1028,1011,973,920,855,757,673,653,636,603,573,517.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed at idealized positions with constrained distances of 0.98 Å (RCH3), 1.00 Å (R3CH), 0.95 Å (Csp2H), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: XP in SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are related by the symmetry operator (-x+1, -y+1, -z+1). Only the symmetry unique anion and solvent molecule are shown.
Bis[1-methoxy-2,2,2-tris(pyrazol-1-yl-κN2)ethane]nickel(II) bis(trifluoromethanesulfonate) methanol disolvate top
Crystal data top
[Ni(C12H14N6O)2](CF3O3S)2·2CH4OZ = 1
Mr = 937.52F(000) = 482
Triclinic, P1Dx = 1.675 Mg m3
a = 9.0025 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5921 (2) ÅCell parameters from 4236 reflections
c = 11.9914 (2) Åθ = 1.0–27.5°
α = 105.2683 (8)°µ = 0.74 mm1
β = 103.4796 (8)°T = 90 K
γ = 102.2596 (8)°Block, pink
V = 929.15 (3) Å30.19 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4271 independent reflections
Radiation source: fine-focus sealed-tube3292 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.040
φ and ω scans at fixed χ = 55°θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1111
Tmin = 0.753, Tmax = 0.898k = 1212
22611 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0411P)2 + 1.0985P]
where P = (Fo2 + 2Fc2)/3
4271 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ni(C12H14N6O)2](CF3O3S)2·2CH4Oγ = 102.2596 (8)°
Mr = 937.52V = 929.15 (3) Å3
Triclinic, P1Z = 1
a = 9.0025 (2) ÅMo Kα radiation
b = 9.5921 (2) ŵ = 0.74 mm1
c = 11.9914 (2) ÅT = 90 K
α = 105.2683 (8)°0.19 × 0.18 × 0.15 mm
β = 103.4796 (8)°
Data collection top
Nonius KappaCCD
diffractometer
4271 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3292 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.898Rint = 0.040
22611 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.45 e Å3
S = 1.10Δρmin = 0.48 e Å3
4271 reflectionsAbsolute structure: ?
271 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01541 (12)
N10.5656 (2)0.7100 (2)0.63001 (18)0.0170 (4)
N20.7195 (2)0.7717 (2)0.70477 (17)0.0146 (4)
C10.4910 (3)0.8115 (3)0.6624 (2)0.0183 (5)
H10.38140.79930.62550.022*
C20.5939 (3)0.9387 (3)0.7576 (2)0.0215 (5)
H20.56881.02640.79680.026*
C30.7388 (3)0.9105 (3)0.7828 (2)0.0188 (5)
H30.83470.97570.84330.023*
N30.6331 (2)0.4422 (2)0.63761 (18)0.0166 (4)
N40.7765 (2)0.5424 (2)0.71273 (17)0.0148 (4)
C40.6123 (3)0.3275 (3)0.6808 (2)0.0199 (5)
H40.52240.24010.64680.024*
C50.7402 (3)0.3530 (3)0.7828 (2)0.0211 (5)
H50.75360.28810.82960.025*
C60.8421 (3)0.4903 (3)0.8014 (2)0.0187 (5)
H60.94050.54000.86460.022*
N50.7151 (2)0.5746 (2)0.47104 (17)0.0162 (4)
N60.8478 (2)0.6538 (2)0.56911 (17)0.0156 (4)
C70.7638 (3)0.5711 (3)0.3745 (2)0.0195 (5)
H70.69680.52330.29290.023*
C80.9267 (3)0.6469 (3)0.4085 (2)0.0210 (5)
H80.98950.65920.35630.025*
C90.9763 (3)0.6993 (3)0.5324 (2)0.0185 (5)
H91.08120.75690.58350.022*
C100.8346 (3)0.6854 (3)0.6921 (2)0.0150 (5)
C110.9962 (3)0.7798 (3)0.7859 (2)0.0170 (5)
H11A1.03370.87610.77120.020*
H11B0.98580.80340.86880.020*
O11.10620 (19)0.69583 (18)0.77534 (15)0.0191 (4)
C121.2450 (3)0.7555 (3)0.8798 (2)0.0267 (6)
H12A1.30660.85440.88240.040*
H12B1.31110.68640.87520.040*
H12C1.21240.76670.95340.040*
S1A0.85393 (7)0.75255 (7)0.11470 (5)0.02007 (15)
O1A0.8467 (3)0.6007 (2)0.11115 (19)0.0381 (5)
O2A0.8839 (2)0.8585 (2)0.23378 (15)0.0252 (4)
O3A0.9434 (2)0.8109 (3)0.04420 (17)0.0406 (6)
C1A0.6486 (3)0.7358 (3)0.0358 (2)0.0261 (6)
F1A0.60356 (18)0.64929 (18)0.08066 (13)0.0306 (4)
F2A0.6306 (3)0.8709 (2)0.03702 (18)0.0555 (6)
F3A0.5478 (2)0.6780 (2)0.08729 (17)0.0503 (5)
O1S0.7190 (2)0.9839 (2)0.38362 (17)0.0275 (4)
H1S0.76990.93740.34450.041*
C1S0.7689 (3)0.9892 (3)0.5057 (3)0.0286 (6)
H1S10.88501.03350.53930.043*
H1S20.73960.88660.50960.043*
H1S30.71671.05120.55290.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0140 (2)0.0148 (2)0.0151 (2)0.00295 (17)0.00210 (17)0.00417 (17)
N10.0132 (10)0.0165 (10)0.0173 (10)0.0023 (8)0.0016 (8)0.0039 (8)
N20.0119 (9)0.0146 (9)0.0155 (10)0.0033 (8)0.0024 (8)0.0039 (8)
C10.0184 (12)0.0176 (12)0.0196 (12)0.0078 (10)0.0047 (10)0.0064 (10)
C20.0225 (13)0.0173 (12)0.0246 (13)0.0075 (10)0.0075 (10)0.0051 (10)
C30.0188 (12)0.0154 (12)0.0178 (12)0.0023 (9)0.0042 (10)0.0020 (9)
N30.0129 (9)0.0153 (10)0.0167 (10)0.0006 (8)0.0009 (8)0.0036 (8)
N40.0136 (9)0.0137 (9)0.0150 (10)0.0030 (8)0.0023 (8)0.0039 (8)
C40.0207 (12)0.0174 (12)0.0212 (12)0.0035 (10)0.0058 (10)0.0079 (10)
C50.0229 (13)0.0207 (12)0.0210 (13)0.0056 (10)0.0053 (10)0.0109 (10)
C60.0185 (12)0.0198 (12)0.0181 (12)0.0067 (10)0.0039 (10)0.0073 (10)
N50.0143 (10)0.0168 (10)0.0130 (10)0.0014 (8)0.0006 (8)0.0031 (8)
N60.0144 (10)0.0172 (10)0.0127 (9)0.0035 (8)0.0026 (8)0.0032 (8)
C70.0209 (12)0.0199 (12)0.0165 (12)0.0047 (10)0.0058 (10)0.0050 (10)
C80.0234 (13)0.0219 (13)0.0222 (13)0.0077 (10)0.0122 (10)0.0092 (10)
C90.0150 (11)0.0188 (12)0.0223 (13)0.0046 (9)0.0068 (10)0.0072 (10)
C100.0144 (11)0.0154 (11)0.0147 (11)0.0041 (9)0.0028 (9)0.0059 (9)
C110.0140 (11)0.0160 (11)0.0168 (12)0.0028 (9)0.0021 (9)0.0024 (9)
O10.0132 (8)0.0203 (9)0.0198 (9)0.0063 (7)0.0003 (7)0.0034 (7)
C120.0170 (13)0.0287 (14)0.0262 (14)0.0077 (11)0.0035 (11)0.0040 (11)
S1A0.0172 (3)0.0233 (3)0.0172 (3)0.0048 (2)0.0039 (2)0.0049 (2)
O1A0.0420 (12)0.0284 (11)0.0354 (12)0.0180 (9)0.0050 (9)0.0053 (9)
O2A0.0288 (10)0.0268 (10)0.0166 (9)0.0059 (8)0.0059 (8)0.0043 (7)
O3A0.0269 (11)0.0574 (14)0.0206 (10)0.0127 (10)0.0082 (8)0.0045 (10)
C1A0.0256 (14)0.0271 (14)0.0246 (14)0.0103 (11)0.0070 (11)0.0053 (11)
F1A0.0256 (8)0.0333 (9)0.0226 (8)0.0081 (7)0.0013 (6)0.0008 (7)
F2A0.0671 (14)0.0359 (10)0.0487 (12)0.0332 (10)0.0113 (10)0.0014 (9)
F3A0.0248 (9)0.0771 (14)0.0403 (11)0.0038 (9)0.0153 (8)0.0096 (10)
O1S0.0268 (10)0.0322 (11)0.0262 (10)0.0138 (8)0.0083 (8)0.0096 (8)
C1S0.0317 (15)0.0238 (14)0.0305 (15)0.0068 (12)0.0099 (12)0.0098 (12)
Geometric parameters (Å, º) top
Ni1—N5i2.0589 (19)N6—C101.464 (3)
Ni1—N52.059 (2)C7—C81.399 (3)
Ni1—N1i2.0611 (19)C7—H70.9500
Ni1—N12.0611 (19)C8—C91.364 (3)
Ni1—N3i2.0757 (19)C8—H80.9500
Ni1—N32.0757 (19)C9—H90.9500
N1—C11.323 (3)C10—C111.531 (3)
N1—N21.366 (3)C11—O11.410 (3)
N2—C31.359 (3)C11—H11A0.9900
N2—C101.468 (3)C11—H11B0.9900
C1—C21.394 (3)O1—C121.431 (3)
C1—H10.9500C12—H12A0.9800
C2—C31.369 (3)C12—H12B0.9800
C2—H20.9500C12—H12C0.9800
C3—H30.9500S1A—O3A1.432 (2)
N3—C41.331 (3)S1A—O1A1.433 (2)
N3—N41.369 (3)S1A—O2A1.4437 (18)
N4—C61.357 (3)S1A—C1A1.821 (3)
N4—C101.466 (3)C1A—F3A1.318 (3)
C4—C51.396 (3)C1A—F2A1.336 (3)
C4—H40.9500C1A—F1A1.337 (3)
C5—C61.364 (4)O1S—C1S1.411 (3)
C5—H50.9500O1S—H1S0.8400
C6—H60.9500C1S—H1S10.9800
N5—C71.324 (3)C1S—H1S20.9800
N5—N61.370 (3)C1S—H1S30.9800
N6—C91.359 (3)
N5i—Ni1—N5180.0C9—N6—C10129.4 (2)
N5i—Ni1—N1i85.15 (8)N5—N6—C10119.86 (18)
N5—Ni1—N1i94.85 (8)N5—C7—C8111.1 (2)
N5i—Ni1—N194.85 (8)N5—C7—H7124.4
N5—Ni1—N185.15 (8)C8—C7—H7124.4
N1i—Ni1—N1180.00 (11)C9—C8—C7105.6 (2)
N5i—Ni1—N3i84.78 (8)C9—C8—H8127.2
N5—Ni1—N3i95.22 (8)C7—C8—H8127.2
N1i—Ni1—N3i84.50 (8)N6—C9—C8107.2 (2)
N1—Ni1—N3i95.50 (8)N6—C9—H9126.4
N5i—Ni1—N395.22 (8)C8—C9—H9126.4
N5—Ni1—N384.78 (8)N6—C10—N4109.33 (18)
N1i—Ni1—N395.50 (8)N6—C10—N2109.35 (18)
N1—Ni1—N384.50 (8)N4—C10—N2108.62 (18)
N3i—Ni1—N3180.00 (8)N6—C10—C11110.37 (19)
C1—N1—N2105.50 (19)N4—C10—C11110.87 (18)
C1—N1—Ni1134.77 (17)N2—C10—C11108.27 (18)
N2—N1—Ni1119.73 (14)O1—C11—C10108.34 (18)
C3—N2—N1110.70 (19)O1—C11—H11A110.0
C3—N2—C10130.25 (19)C10—C11—H11A110.0
N1—N2—C10119.05 (18)O1—C11—H11B110.0
N1—C1—C2111.3 (2)C10—C11—H11B110.0
N1—C1—H1124.4H11A—C11—H11B108.4
C2—C1—H1124.4C11—O1—C12111.62 (18)
C3—C2—C1105.5 (2)O1—C12—H12A109.5
C3—C2—H2127.2O1—C12—H12B109.5
C1—C2—H2127.2H12A—C12—H12B109.5
N2—C3—C2107.0 (2)O1—C12—H12C109.5
N2—C3—H3126.5H12A—C12—H12C109.5
C2—C3—H3126.5H12B—C12—H12C109.5
C4—N3—N4105.24 (19)O3A—S1A—O1A115.91 (14)
C4—N3—Ni1135.74 (16)O3A—S1A—O2A113.55 (12)
N4—N3—Ni1118.90 (14)O1A—S1A—O2A115.10 (12)
C6—N4—N3110.88 (19)O3A—S1A—C1A103.65 (13)
C6—N4—C10129.58 (19)O1A—S1A—C1A102.79 (12)
N3—N4—C10119.51 (18)O2A—S1A—C1A103.55 (12)
N3—C4—C5110.9 (2)F3A—C1A—F2A107.0 (2)
N3—C4—H4124.6F3A—C1A—F1A108.1 (2)
C5—C4—H4124.6F2A—C1A—F1A106.9 (2)
C6—C5—C4105.9 (2)F3A—C1A—S1A111.68 (19)
C6—C5—H5127.0F2A—C1A—S1A111.05 (19)
C4—C5—H5127.0F1A—C1A—S1A111.86 (18)
N4—C6—C5107.1 (2)C1S—O1S—H1S109.5
N4—C6—H6126.5O1S—C1S—H1S1109.5
C5—C6—H6126.5O1S—C1S—H1S2109.5
C7—N5—N6105.39 (19)H1S1—C1S—H1S2109.5
C7—N5—Ni1135.53 (16)O1S—C1S—H1S3109.5
N6—N5—Ni1119.02 (14)H1S1—C1S—H1S3109.5
C9—N6—N5110.65 (18)H1S2—C1S—H1S3109.5
C1—N1—N2—C30.1 (3)N5—N6—C10—N459.9 (2)
Ni1—N1—N2—C3179.31 (15)C9—N6—C10—N2117.0 (2)
C1—N1—N2—C10179.7 (2)N5—N6—C10—N258.9 (3)
Ni1—N1—N2—C101.1 (3)C9—N6—C10—C112.0 (3)
N2—N1—C1—C20.2 (3)N5—N6—C10—C11177.94 (18)
Ni1—N1—C1—C2179.22 (17)C6—N4—C10—N6124.2 (2)
N1—C1—C2—C30.2 (3)N3—N4—C10—N658.1 (3)
N1—N2—C3—C20.0 (3)C6—N4—C10—N2116.5 (2)
C10—N2—C3—C2179.5 (2)N3—N4—C10—N261.2 (3)
C1—C2—C3—N20.1 (3)C6—N4—C10—C112.3 (3)
C4—N3—N4—C60.4 (3)N3—N4—C10—C11179.97 (19)
Ni1—N3—N4—C6176.26 (15)C3—N2—C10—N6120.8 (2)
C4—N3—N4—C10178.5 (2)N1—N2—C10—N659.7 (3)
Ni1—N3—N4—C101.8 (3)C3—N2—C10—N4120.0 (2)
N4—N3—C4—C50.1 (3)N1—N2—C10—N459.5 (2)
Ni1—N3—C4—C5175.75 (18)C3—N2—C10—C110.5 (3)
N3—C4—C5—C60.2 (3)N1—N2—C10—C11179.99 (19)
N3—N4—C6—C50.6 (3)N6—C10—C11—O161.4 (2)
C10—N4—C6—C5178.4 (2)N4—C10—C11—O159.9 (2)
C4—C5—C6—N40.5 (3)N2—C10—C11—O1178.97 (18)
C7—N5—N6—C90.5 (3)C10—C11—O1—C12163.6 (2)
Ni1—N5—N6—C9177.23 (15)O3A—S1A—C1A—F3A177.87 (19)
C7—N5—N6—C10177.1 (2)O1A—S1A—C1A—F3A56.8 (2)
Ni1—N5—N6—C100.6 (3)O2A—S1A—C1A—F3A63.4 (2)
N6—N5—C7—C80.1 (3)O3A—S1A—C1A—F2A62.8 (2)
Ni1—N5—C7—C8177.22 (17)O1A—S1A—C1A—F2A176.2 (2)
N5—C7—C8—C90.6 (3)O2A—S1A—C1A—F2A56.0 (2)
N5—N6—C9—C80.9 (3)O3A—S1A—C1A—F1A56.6 (2)
C10—N6—C9—C8177.1 (2)O1A—S1A—C1A—F1A64.5 (2)
C7—C8—C9—N60.9 (3)O2A—S1A—C1A—F1A175.33 (18)
C9—N6—C10—N4124.2 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O2A0.841.962.782 (3)168
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O2A0.841.962.782 (3)167.8
Acknowledgements top

GL gratefully acknowledges the Southern Arkansas University Faculty Research Grant for financial support.

references
References top

Bigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635–651.

Lyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530.

Lyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656–m1657.

Lyubartseva, G., Parkin, S., Mallik, U. P. & Jeon, H. K. (2012). Acta Cryst. E68, m888.

Maria, L., Cunha, S., Videira, M., Gano, L., Paulo, A., Santos, I. C. & Santos, I. (2007). Dalton Trans. pp. 3010–3019.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Paulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. (2004). Polyhedron, 23, 331–360.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.