supplementary materials


pv2635 scheme

Acta Cryst. (2013). E69, o1545    [ doi:10.1107/S1600536813024276 ]

[(4E)-3-Ethyl-1-methyl-2,6-diphenylpiperidin-4-ylidene]amino 3-methylbenzoate

T. Vinuchakkaravarthy, R. Sivakumar, T. Srinivasan, V. Thanikachalam and D. Velmurugan

Abstract top

In the title compound, C28H30N2O2, the piperidine ring exists in a chair conformation with an equatorial orientation of the phenyl rings and methyl group substituted on the heterocycle. In the crystal, C-H...[pi] interactions result in chains of molecules running parallel to the a-axis direction.

Comment top

Piperdin-4-one nucleus is an important pharmacophore due to its broad spectrum of biological actions ranging from antibacterial to anticancer (Parthiban et al., 2009; 2011). Hence, the synthesis and steriochemical analysis of piperdin-4-one nucleus based pharmacophores has gained much interest in the field of medicinal chemistry.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Park et al., 2012a; 2012b). The piperidone ring (N1/C1—/C5) adopts a chair conformation with puckering parameters: Q =0.570 (2) Å, θ = 177.6 (2)° and φ = 3439 (4)° (Cremer & Pople, 1975).

In the crystal, the molecules are stabilized by intermolecular C11—H11···Cg1i and C23—H23···Cg1ii hydrogen bond interactions, where Cg1 is the center of gravity of ring atoms involving C15—C20 of the interacting molecules, respectively (Table 1). The packing of the molecules within the crystal is shown in Fig. 2.

Related literature top

For the synthesis and background to the biological activity of piperidinyl-4-one derivatives, see: Parthiban et al. (2009, 2011). For crystal structures of related compounds, see: Park et al. (2012a,b). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

3-Ethyl-2,6-diphenylpiperidin-4-one was synthesized by Mannich condensation using benzaldehyde (2 mol), ammonium acetate (1 mol) and ethyl methyl ketone (1 mol) in absolute ethanol and warmed for 30 min and stirred overnight at room temperature. The product was treated with methyl iodide (1.5 mol) in the presence of potassium carbonate (2 mol) in acetone (10 ml) and refluxed to give 1-methyl-3-ethyl-2,6-diphenylpiperidin-4-one. The oximation was done by hydroxylamine hydrochloride (2 mol) in presence of sodium acetate (2 mol) in ethanol (10 ml) and refluxed. The resulting oxime (0.5 g, 1.55 mmol) was stirred with dry pyridine (5 ml), added 3-methylbenzoic acid (0.23 g, 1.7 mmol) followed by phosphorus oxychloride (0.21 ml, 2.3 mmol) in dropwise addition and stirred at ambient temperature for 15 min; the progress of the reaction was monitored by thin layer chromatography. Upon completion of the reaction, saturated sodium bicarbonate solution (8 ml) was added to the reaction mixture, solid was formed and it was filtered and dried to get a white solid (0.58 g, 87.8%) which was recrystallized from ethanol to yield crystals suitable for X-ray crystallographic studies.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing arrangement of the title compound viewed down the b axis showing intermolecular C—H···π hydrogen bond interactions (dashed lines). symmetry codes: (i) 2-X,1-Y,1-Z (ii) 3-X,1-Y,1-Z
[(4E)-3-Ethyl-1-methyl-2,6-diphenylpiperidin-4-ylidene]amino 3-methylbenzoate top
Crystal data top
C28H30N2O2Z = 2
Mr = 426.54F(000) = 456
Triclinic, P1Dx = 1.156 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5220 (15) ÅCell parameters from 5087 reflections
b = 11.8295 (16) Åθ = 1.9–26.5°
c = 11.987 (3) ŵ = 0.07 mm1
α = 112.871 (11)°T = 293 K
β = 97.939 (11)°Block, colorless
γ = 110.123 (8)°0.20 × 0.20 × 0.20 mm
V = 1225.5 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
5042 independent reflections
Radiation source: fine-focus sealed tube3610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.986, Tmax = 0.986k = 1414
18615 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.1881P]
where P = (Fo2 + 2Fc2)/3
5042 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C28H30N2O2γ = 110.123 (8)°
Mr = 426.54V = 1225.5 (4) Å3
Triclinic, P1Z = 2
a = 10.5220 (15) ÅMo Kα radiation
b = 11.8295 (16) ŵ = 0.07 mm1
c = 11.987 (3) ÅT = 293 K
α = 112.871 (11)°0.20 × 0.20 × 0.20 mm
β = 97.939 (11)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5042 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3610 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.986Rint = 0.023
18615 measured reflectionsθmax = 26.5°
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.15 e Å3
S = 1.03Δρmin = 0.17 e Å3
5042 reflectionsAbsolute structure: ?
292 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89609 (15)0.09484 (14)0.34733 (14)0.0517 (3)
H10.97580.07930.37980.062*
C20.88999 (15)0.21364 (15)0.45884 (13)0.0532 (3)
H20.81210.23000.42410.064*
C31.02600 (15)0.33834 (14)0.49960 (14)0.0535 (3)
C41.04934 (17)0.37330 (15)0.39518 (14)0.0571 (4)
H4A1.13900.45360.42670.069*
H4B0.97330.39340.36540.069*
C51.05203 (15)0.25298 (14)0.28511 (13)0.0517 (3)
H51.13390.23900.31540.062*
C60.76059 (16)0.03556 (14)0.29564 (14)0.0542 (4)
C70.7643 (2)0.15236 (18)0.29179 (19)0.0775 (5)
H70.85090.15090.32380.093*
C80.6392 (3)0.27266 (19)0.2404 (2)0.0977 (7)
H80.64320.35150.23610.117*
C90.5122 (3)0.2753 (2)0.1966 (2)0.0937 (6)
H90.42880.35550.16350.112*
C100.5065 (2)0.1611 (2)0.20100 (19)0.0807 (5)
H100.41890.16300.17130.097*
C110.62958 (17)0.04179 (16)0.24912 (16)0.0639 (4)
H110.62410.03540.25020.077*
C120.85682 (19)0.18214 (18)0.56631 (16)0.0724 (5)
H12A0.78070.09070.52940.087*
H12B0.94050.18390.61390.087*
C130.8129 (2)0.2812 (3)0.6574 (2)0.1013 (7)
H13A0.89100.37070.70040.152*
H13B0.78720.25250.71910.152*
H13C0.73270.28320.61050.152*
C141.31474 (16)0.59266 (16)0.75477 (14)0.0573 (4)
C151.43652 (16)0.71158 (16)0.76655 (15)0.0590 (4)
C161.51466 (19)0.81891 (18)0.88722 (18)0.0763 (5)
H161.49120.81450.95790.092*
C171.6272 (2)0.9324 (2)0.9027 (3)0.0959 (7)
H171.67931.00500.98390.115*
C181.6625 (2)0.9387 (2)0.7998 (3)0.0988 (8)
H181.73911.01600.81190.119*
C191.5872 (2)0.8331 (2)0.6777 (2)0.0920 (7)
C201.47272 (18)0.71950 (19)0.66290 (18)0.0723 (5)
H201.41960.64750.58150.087*
C211.6253 (3)0.8389 (4)0.5631 (3)0.1622 (15)
H21A1.57140.87530.52850.243*
H21B1.60370.74870.49970.243*
H21C1.72530.89630.58780.243*
C221.07151 (17)0.28834 (14)0.17812 (14)0.0547 (4)
C231.19935 (19)0.31668 (16)0.15166 (16)0.0679 (4)
H231.27290.31020.19770.081*
C241.2191 (3)0.35446 (18)0.0577 (2)0.0875 (6)
H241.30550.37270.04080.105*
C251.1128 (3)0.36531 (19)0.0108 (2)0.0965 (7)
H251.12680.39120.07380.116*
C260.9851 (3)0.3376 (2)0.01431 (18)0.0893 (6)
H260.91230.34460.03210.107*
C270.9640 (2)0.29925 (17)0.10809 (15)0.0687 (4)
H270.87710.28070.12430.082*
C280.9312 (2)0.01436 (16)0.14152 (17)0.0701 (5)
H28A0.94890.03640.07440.105*
H28B0.84330.06640.10830.105*
H28C1.00790.00120.17560.105*
N10.92147 (12)0.12787 (11)0.24286 (11)0.0493 (3)
N21.10892 (13)0.39464 (13)0.61306 (12)0.0616 (3)
O11.23463 (11)0.50961 (11)0.63113 (10)0.0681 (3)
O21.28828 (14)0.57319 (14)0.84073 (11)0.0882 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (8)0.0499 (8)0.0622 (8)0.0209 (7)0.0187 (7)0.0307 (7)
C20.0504 (8)0.0505 (8)0.0542 (8)0.0156 (7)0.0179 (6)0.0255 (7)
C30.0539 (8)0.0482 (8)0.0518 (8)0.0164 (7)0.0176 (7)0.0222 (7)
C40.0621 (9)0.0454 (8)0.0526 (8)0.0131 (7)0.0163 (7)0.0221 (7)
C50.0467 (8)0.0494 (8)0.0586 (8)0.0176 (7)0.0188 (6)0.0270 (7)
C60.0576 (9)0.0454 (8)0.0618 (8)0.0195 (7)0.0245 (7)0.0279 (7)
C70.0865 (13)0.0599 (11)0.1044 (14)0.0362 (10)0.0408 (11)0.0483 (10)
C80.126 (2)0.0494 (11)0.1286 (18)0.0337 (12)0.0604 (16)0.0492 (12)
C90.0915 (16)0.0567 (12)0.1021 (15)0.0041 (11)0.0354 (12)0.0313 (11)
C100.0603 (11)0.0702 (12)0.0894 (13)0.0080 (9)0.0193 (9)0.0360 (10)
C110.0579 (9)0.0524 (9)0.0750 (10)0.0160 (8)0.0192 (8)0.0312 (8)
C120.0696 (11)0.0687 (11)0.0636 (10)0.0087 (9)0.0225 (8)0.0348 (9)
C130.0995 (16)0.1203 (18)0.0744 (12)0.0333 (14)0.0482 (11)0.0423 (12)
C140.0551 (9)0.0585 (9)0.0520 (8)0.0213 (8)0.0133 (7)0.0241 (7)
C150.0485 (8)0.0579 (9)0.0647 (9)0.0204 (7)0.0097 (7)0.0285 (8)
C160.0624 (11)0.0660 (11)0.0757 (11)0.0228 (9)0.0083 (9)0.0190 (9)
C170.0648 (12)0.0629 (12)0.1178 (18)0.0174 (10)0.0008 (12)0.0214 (12)
C180.0517 (11)0.0727 (14)0.159 (2)0.0133 (10)0.0089 (13)0.0625 (16)
C190.0600 (11)0.1018 (16)0.1250 (18)0.0199 (12)0.0197 (12)0.0798 (15)
C200.0551 (9)0.0785 (12)0.0759 (11)0.0147 (9)0.0111 (8)0.0449 (10)
C210.1018 (19)0.216 (4)0.180 (3)0.011 (2)0.0387 (19)0.156 (3)
C220.0625 (9)0.0416 (7)0.0548 (8)0.0174 (7)0.0242 (7)0.0205 (6)
C230.0717 (11)0.0522 (9)0.0771 (11)0.0199 (8)0.0379 (9)0.0292 (8)
C240.1104 (16)0.0569 (11)0.0910 (14)0.0218 (11)0.0622 (13)0.0335 (10)
C250.157 (2)0.0591 (11)0.0719 (12)0.0315 (13)0.0545 (14)0.0364 (10)
C260.1257 (18)0.0718 (12)0.0653 (11)0.0371 (12)0.0196 (11)0.0359 (10)
C270.0769 (11)0.0651 (10)0.0615 (9)0.0275 (9)0.0206 (8)0.0307 (8)
C280.0791 (11)0.0522 (9)0.0778 (11)0.0282 (9)0.0415 (9)0.0241 (8)
N10.0489 (7)0.0413 (6)0.0549 (6)0.0166 (5)0.0219 (5)0.0207 (5)
N20.0531 (7)0.0586 (8)0.0584 (8)0.0078 (6)0.0162 (6)0.0285 (6)
O10.0575 (7)0.0676 (7)0.0544 (6)0.0030 (6)0.0117 (5)0.0287 (5)
O20.0914 (9)0.0885 (9)0.0587 (7)0.0120 (7)0.0212 (6)0.0347 (7)
Geometric parameters (Å, º) top
C1—N11.4809 (17)C14—O11.3511 (18)
C1—C61.515 (2)C14—C151.482 (2)
C1—C21.547 (2)C15—C201.376 (2)
C1—H10.9800C15—C161.381 (2)
C2—C31.502 (2)C16—C171.375 (3)
C2—C121.526 (2)C16—H160.9300
C2—H20.9800C17—C181.358 (3)
C3—N21.2740 (19)C17—H170.9300
C3—C41.4884 (19)C18—C191.381 (3)
C4—C51.532 (2)C18—H180.9300
C4—H4A0.9700C19—C201.390 (2)
C4—H4B0.9700C19—C211.503 (3)
C5—N11.4699 (17)C20—H200.9300
C5—C221.5142 (19)C21—H21A0.9600
C5—H50.9800C21—H21B0.9600
C6—C111.379 (2)C21—H21C0.9600
C6—C71.379 (2)C22—C231.383 (2)
C7—C81.394 (3)C22—C271.387 (2)
C7—H70.9300C23—C241.380 (3)
C8—C91.352 (3)C23—H230.9300
C8—H80.9300C24—C251.367 (3)
C9—C101.354 (3)C24—H240.9300
C9—H90.9300C25—C261.375 (3)
C10—C111.380 (2)C25—H250.9300
C10—H100.9300C26—C271.384 (2)
C11—H110.9300C26—H260.9300
C12—C131.516 (3)C27—H270.9300
C12—H12A0.9700C28—N11.4666 (19)
C12—H12B0.9700C28—H28A0.9600
C13—H13A0.9600C28—H28B0.9600
C13—H13B0.9600C28—H28C0.9600
C13—H13C0.9600N2—O11.4492 (16)
C14—O21.1883 (18)
N1—C1—C6109.65 (11)O2—C14—O1124.24 (15)
N1—C1—C2111.57 (11)O2—C14—C15125.66 (14)
C6—C1—C2111.31 (11)O1—C14—C15110.08 (13)
N1—C1—H1108.1C20—C15—C16119.39 (16)
C6—C1—H1108.1C20—C15—C14122.82 (15)
C2—C1—H1108.1C16—C15—C14117.79 (16)
C3—C2—C12114.71 (12)C17—C16—C15119.9 (2)
C3—C2—C1107.06 (11)C17—C16—H16120.1
C12—C2—C1113.67 (12)C15—C16—H16120.1
C3—C2—H2107.0C18—C17—C16120.2 (2)
C12—C2—H2107.0C18—C17—H17119.9
C1—C2—H2107.0C16—C17—H17119.9
N2—C3—C4128.60 (13)C17—C18—C19121.6 (2)
N2—C3—C2117.74 (13)C17—C18—H18119.2
C4—C3—C2113.50 (12)C19—C18—H18119.2
C3—C4—C5109.35 (12)C18—C19—C20117.8 (2)
C3—C4—H4A109.8C18—C19—C21122.1 (2)
C5—C4—H4A109.8C20—C19—C21120.2 (2)
C3—C4—H4B109.8C15—C20—C19121.16 (18)
C5—C4—H4B109.8C15—C20—H20119.4
H4A—C4—H4B108.3C19—C20—H20119.4
N1—C5—C22111.99 (11)C19—C21—H21A109.5
N1—C5—C4110.54 (11)C19—C21—H21B109.5
C22—C5—C4108.78 (11)H21A—C21—H21B109.5
N1—C5—H5108.5C19—C21—H21C109.5
C22—C5—H5108.5H21A—C21—H21C109.5
C4—C5—H5108.5H21B—C21—H21C109.5
C11—C6—C7117.80 (15)C23—C22—C27118.32 (15)
C11—C6—C1121.02 (12)C23—C22—C5120.77 (15)
C7—C6—C1121.17 (14)C27—C22—C5120.84 (14)
C6—C7—C8120.51 (19)C24—C23—C22120.75 (19)
C6—C7—H7119.7C24—C23—H23119.6
C8—C7—H7119.7C22—C23—H23119.6
C9—C8—C7120.33 (18)C25—C24—C23120.65 (19)
C9—C8—H8119.8C25—C24—H24119.7
C7—C8—H8119.8C23—C24—H24119.7
C8—C9—C10119.89 (19)C24—C25—C26119.32 (18)
C8—C9—H9120.1C24—C25—H25120.3
C10—C9—H9120.1C26—C25—H25120.3
C9—C10—C11120.6 (2)C25—C26—C27120.5 (2)
C9—C10—H10119.7C25—C26—H26119.7
C11—C10—H10119.7C27—C26—H26119.7
C6—C11—C10120.88 (16)C26—C27—C22120.43 (18)
C6—C11—H11119.6C26—C27—H27119.8
C10—C11—H11119.6C22—C27—H27119.8
C13—C12—C2113.43 (16)N1—C28—H28A109.5
C13—C12—H12A108.9N1—C28—H28B109.5
C2—C12—H12A108.9H28A—C28—H28B109.5
C13—C12—H12B108.9N1—C28—H28C109.5
C2—C12—H12B108.9H28A—C28—H28C109.5
H12A—C12—H12B107.7H28B—C28—H28C109.5
C12—C13—H13A109.5C28—N1—C5108.74 (11)
C12—C13—H13B109.5C28—N1—C1109.56 (11)
H13A—C13—H13B109.5C5—N1—C1113.06 (11)
C12—C13—H13C109.5C3—N2—O1108.75 (11)
H13A—C13—H13C109.5C14—O1—N2113.11 (11)
H13B—C13—H13C109.5
N1—C1—C2—C355.08 (15)C16—C17—C18—C190.3 (3)
C6—C1—C2—C3177.93 (11)C17—C18—C19—C200.4 (3)
N1—C1—C2—C12177.19 (12)C17—C18—C19—C21179.9 (2)
C6—C1—C2—C1254.34 (16)C16—C15—C20—C190.5 (3)
C12—C2—C3—N29.1 (2)C14—C15—C20—C19179.61 (16)
C1—C2—C3—N2118.05 (15)C18—C19—C20—C150.8 (3)
C12—C2—C3—C4175.05 (13)C21—C19—C20—C15179.5 (2)
C1—C2—C3—C457.83 (16)N1—C5—C22—C23129.64 (14)
N2—C3—C4—C5116.68 (18)C4—C5—C22—C23107.88 (16)
C2—C3—C4—C558.66 (17)N1—C5—C22—C2753.35 (18)
C3—C4—C5—N155.01 (16)C4—C5—C22—C2769.13 (17)
C3—C4—C5—C22178.37 (12)C27—C22—C23—C240.2 (2)
N1—C1—C6—C1165.70 (17)C5—C22—C23—C24177.26 (14)
C2—C1—C6—C1158.24 (18)C22—C23—C24—C250.3 (3)
N1—C1—C6—C7113.34 (16)C23—C24—C25—C260.3 (3)
C2—C1—C6—C7122.72 (16)C24—C25—C26—C270.1 (3)
C11—C6—C7—C81.1 (3)C25—C26—C27—C220.0 (3)
C1—C6—C7—C8178.01 (16)C23—C22—C27—C260.0 (2)
C6—C7—C8—C91.7 (3)C5—C22—C27—C26177.10 (15)
C7—C8—C9—C100.9 (3)C22—C5—N1—C2861.00 (15)
C8—C9—C10—C110.4 (3)C4—C5—N1—C28177.53 (12)
C7—C6—C11—C100.3 (2)C22—C5—N1—C1177.08 (11)
C1—C6—C11—C10179.37 (15)C4—C5—N1—C155.61 (14)
C9—C10—C11—C61.1 (3)C6—C1—N1—C2858.12 (15)
C3—C2—C12—C1371.5 (2)C2—C1—N1—C28178.09 (12)
C1—C2—C12—C13164.88 (15)C6—C1—N1—C5179.58 (11)
O2—C14—C15—C20170.94 (17)C2—C1—N1—C556.63 (15)
O1—C14—C15—C2010.5 (2)C4—C3—N2—O13.1 (2)
O2—C14—C15—C1610.0 (2)C2—C3—N2—O1178.31 (12)
O1—C14—C15—C16168.57 (14)O2—C14—O1—N21.7 (2)
C20—C15—C16—C170.2 (3)C15—C14—O1—N2176.83 (11)
C14—C15—C16—C17178.97 (16)C3—N2—O1—C14166.95 (14)
C15—C16—C17—C180.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.932.933.761 (2)149
C23—H23···Cg1ii0.932.893.730 (3)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.932.933.761 (2)149
C23—H23···Cg1ii0.932.893.730 (3)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3, y+1, z+1.
Acknowledgements top

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.TV, TS and DV thank the UGC (SAP–CAS) for providing facilities to the department.

references
References top

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Park, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.

Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.

Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.

Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.