supplementary materials


bv2225 scheme

Acta Cryst. (2013). E69, m602-m603    [ doi:10.1107/S1600536813027761 ]

Hexa­aqua­bis­[3,5-bis­(hy­droxy­imino)-1-methyl-2,4,6-trioxo­cyclo­hexa­nido-[kappa]2N3,O4]barium tetrahydrate

N. Dinh Do, O. Kovalchukova, A. Stash and S. Strashnova

Abstract top

In the title compound, [Ba(C7H5N2O5)2(H2O)6]·4H2O, the Ba2+ cation lies on a twofold rotation axis and is ten-coordinated by two 3,5-bis­(hy­droxy­imino)-1-methyl-2,4,6-trioxo­cyclo­hexa­n­ide oxo O atoms [Ba-O = 2.8715 (17) Å], two hy­droxy­imino N atoms [Ba-N = 3.036 (2) Å], and six water mol­ecules [Ba-O = 2.847 (2), 2.848 (2), and 2.880 (2) Å]. The 3,5-bis­(hy­droxy­imino)-1-methyl-2,4,6-trioxo­cyclo­hexa­nide monoanions act in a bidentate chelating manner, coordinating through an N atom of the non-deprotonated hy­droxy­imino group and an O atom of the neighboring oxo group. Two lattice water mol­ecules are located in the cavities of the framework and are involved in hydrogen bonding to O atoms of one of the coordinating water mol­ecules and the O atom of a keto group of the ligand. As a result, a three-dimensional network is formed.

Comment top

1,2-Quinone monooximes (2-nitrosophenols) are good chelating agents which form stable colored complexes with a wide range of metal ions (Chakravorty, 1974; Charalambous et al., 1996; Djinovic et al., 1992; Liu et al., 2010). Increasing attention is also being devoted to these complexes in recent years because of their applications in organic synthesis (Gharah et al., 2009). Sodium 3,5-bis(hydroxyimino) -1-methyl-2,4,6-trioxocyclohexanide has been recently isolated as the only product of the reaction of nitrosation of methylphloroglucinol, and its crystal and molecular structure was reported (Kovalchukova et al., 2012). In the present paper we report the crystal and molecular structure of barium hexaaqua bis (3,5-bis(hydroxyimino)-1-methyl-2,4,6- trioxocyclohexanide) dihydrate, C14H30BaN4O20. The Ba cation of the reported structure lies on a center of inversion, and is ten-coordinated. It is surrounded by two oxo O atoms of 3,5-bis(hydroxyimino)-1-methyl-2,4,6- trioxocyclohexanide species [Ba—O = 2.8715 (17) Å], two hydroxyimino N atoms [Ba—N = 3.036 (2) Å], and six water molecules [Ba—O = 2.847 (2), 2.848 (2), and 2.880 (2) Å]. The 3,5-bis(hydroxyimino)-1-methyl-2,4,6- trioxocyclohexanide mono anions act as bidentate chelating coordinated through an N-atom of the non-deprotonated hydroxyimino group and an O-atom of the neighboring oxo-group. The conjugation in the chelate ring is observed in the equalizing of the chemical bonds [C1—O1 = 1.219 (3), C6—N6 = 1.299 (3), N6—O61 = 1.352, C1—C6 1.482 Å]. There are two intramolecular hydrogen bonds in the 3,5-bis(hydroxyimino)-1-methyl-2,4,6- trioxocyclohexanide anion adjusting the hydroxyimino H atoms with the neighboring O oxo atoms. The coordinated water molecules are involved in O—H···O hydrogen bonds with the O atoms of the organic anion. Two lattice water molecules are located in the cavities of the framework and involved in hydrogen bonding to O atoms of one of the coordinated H2O and the O atom of an oxo group of the ligand. As a result, a three-dimensional network is formed. The described structure is in accordance with the other known structures of complexes of 1,2-benzo(naphto) quinone -1-oximes with the alkaline (Charalambous et al., 1993,1995; Adatia et al., 1996) and transition metals (Basu and Chakravorty, 1992; Charalambous et al., 1996; McPartlin, 1973) where the formation of monomeric complexes with the bidentate chelating coordination mode of the ligands was observed. The only one difference is in the nature of the hydroxyimino group which is not ionized in the structure reported here. From the other side, the 3,5-bis(hydroxyimino)- 1-methyl-2,4,6-trioxocyclohexanide anion in the sodium salt (Kovalchukova et al., 2012) acts as m-1,2,2,3 polydentate bridging ligands were both N and O hydroxyimino atoms take part in coordination, and one of the O oxo coordinated atoms forms a bifurcated bond.

Related literature top

For the synthesis and crystal structure of sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6- trioxocyclohexanide, see: Kovalchukova et al. (2012). For related structures of metal complexes with 1,2-benzo(naphto)quinone-1-oximes, see: Chakravorty (1974); Charalambous et al. (1993, 1995, 1996); Adatia et al. (1996); Basu & Chakravorty (1992); McPartlin (1973); Djinovic et al. (1992); Liu et al. (2010). For applications of related complexes as catalysts, see: Gharah et al. (2009).

Experimental top

Single crystals of C14H30BaN4O20 were grown by the slow evaporation of the ethanol solution of the 1-to-1 molar mixture of barium nitrate and sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxo cyclohexanide.

Refinement top

The structure of of C14H30BaN4O20 was solved by direct methods and all non-hydrogen atoms were located and refined in anisotropically. All the hydrogen atoms were located in difference electron density syntheses and included in refinement with fixed parameters. The O-H distances in the hydroxy groups were constrained at 0.84 Å. The O-H distances and H-O-H angles in the water molecules were constrained. A riding model was used in the refinement of H atoms of the methyl group.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: CAD-4-PC (Enraf–Nonius, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB97 (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of C14H30BaN4O20 with atom labeling scheme (displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms). Hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. Molecular packing in the crystal of the complex along the crystallographic axis b. Hydrogen bonds shown as dashed lines.
Hexaaquabis[3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxocyclohexanido-κ2N3,O4]barium tetrahydrate top
Crystal data top
[Ba(C7H5N2O5)2(H2O)6]·4H2OF(000) = 1432
Mr = 711.76Dx = 1.862 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 17.235 (3) Åθ = 9.2–11.7°
b = 6.736 (1) ŵ = 1.66 mm1
c = 23.074 (5) ÅT = 293 K
β = 108.61 (3)°Plate, red
V = 2538.7 (9) Å30.33 × 0.12 × 0.07 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1755 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
β-filter monochromatorθmax = 25.5°, θmin = 1.9°
ω/2θ scansh = 020
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 80
Tmin = 0.370, Tmax = 0.780l = 2726
2429 measured reflections3 standard reflections every 60 min
2346 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: difference Fourier map
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0317P)2]
where P = (Fo2 + 2Fc2)/3
2346 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.47 e Å3
17 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Ba(C7H5N2O5)2(H2O)6]·4H2OV = 2538.7 (9) Å3
Mr = 711.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.235 (3) ŵ = 1.66 mm1
b = 6.736 (1) ÅT = 293 K
c = 23.074 (5) Å0.33 × 0.12 × 0.07 mm
β = 108.61 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1755 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.019
Tmin = 0.370, Tmax = 0.780θmax = 25.5°
2429 measured reflections3 standard reflections every 60 min
2346 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048Δρmax = 0.47 e Å3
S = 0.98Δρmin = 0.90 e Å3
2346 reflectionsAbsolute structure: ?
216 parametersAbsolute structure parameter: ?
17 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.50000.24104 (3)0.75000.02124 (7)
O10.56648 (10)0.2550 (3)0.65071 (7)0.0332 (4)
O30.54847 (10)0.3322 (3)0.44397 (7)0.0317 (4)
O50.32241 (10)0.0962 (3)0.49495 (7)0.0349 (4)
O110.48141 (12)0.6073 (3)0.68255 (8)0.0377 (4)
O120.59225 (10)0.1143 (3)0.75770 (9)0.0368 (4)
O130.32986 (11)0.3326 (3)0.70959 (8)0.0371 (4)
O140.24224 (11)0.0492 (3)0.70127 (9)0.0447 (5)
O150.80288 (12)0.0550 (3)0.60419 (10)0.0486 (5)
O210.67935 (10)0.3795 (3)0.52748 (8)0.0335 (4)
O610.33722 (12)0.0432 (3)0.60383 (8)0.0443 (5)
N20.64131 (11)0.3306 (3)0.56837 (9)0.0259 (4)
N60.41475 (12)0.1133 (3)0.61886 (9)0.0317 (4)
C10.52814 (12)0.2383 (3)0.59644 (9)0.0226 (4)
C20.56427 (13)0.2839 (3)0.54772 (10)0.0212 (4)
C30.51345 (14)0.2780 (3)0.48228 (10)0.0214 (4)
C40.43167 (14)0.2147 (3)0.46508 (9)0.0230 (4)
C50.39533 (13)0.1576 (3)0.50912 (10)0.0235 (4)
C60.44222 (13)0.1663 (3)0.57513 (10)0.0222 (4)
C70.38032 (15)0.2124 (4)0.39871 (10)0.0314 (5)
H710.32450.24220.39510.038*
H720.38310.08340.38180.038*
H730.40050.31010.37690.038*
H210.646 (2)0.360 (7)0.4916 (14)0.077 (4)*
H610.321 (2)0.050 (6)0.5645 (14)0.077 (4)*
H1110.470 (2)0.606 (6)0.6438 (5)0.077 (4)*
H1120.4404 (16)0.664 (6)0.6874 (16)0.077 (4)*
H1210.6431 (8)0.096 (6)0.7668 (16)0.077 (4)*
H1220.582 (2)0.198 (5)0.7293 (14)0.077 (4)*
H1310.302 (2)0.228 (4)0.7002 (17)0.077 (4)*
H1320.315 (2)0.399 (5)0.6766 (10)0.077 (4)*
H1410.217 (2)0.083 (6)0.7256 (12)0.077 (4)*
H1420.2137 (19)0.102 (6)0.6680 (9)0.077 (4)*
H1510.7660 (19)0.008 (5)0.5737 (12)0.077 (4)*
H1520.794 (3)0.1784 (18)0.6008 (18)0.077 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02168 (10)0.02131 (10)0.02071 (9)0.0000.00676 (6)0.000
O10.0286 (8)0.0467 (10)0.0227 (7)0.0042 (8)0.0059 (6)0.0036 (8)
O30.0325 (9)0.0387 (9)0.0265 (8)0.0059 (8)0.0131 (7)0.0014 (7)
O50.0256 (8)0.0448 (10)0.0327 (9)0.0101 (8)0.0070 (7)0.0014 (8)
O110.0491 (11)0.0352 (10)0.0281 (8)0.0063 (8)0.0116 (8)0.0013 (7)
O120.0292 (8)0.0334 (9)0.0473 (10)0.0028 (8)0.0114 (8)0.0080 (8)
O130.0344 (9)0.0388 (10)0.0347 (9)0.0039 (8)0.0062 (8)0.0012 (8)
O140.0308 (9)0.0582 (13)0.0432 (10)0.0059 (9)0.0092 (8)0.0087 (10)
O150.0353 (10)0.0522 (12)0.0471 (11)0.0040 (10)0.0025 (8)0.0100 (10)
O210.0273 (8)0.0412 (10)0.0351 (9)0.0068 (8)0.0145 (7)0.0002 (8)
O610.0343 (9)0.0687 (14)0.0310 (9)0.0242 (10)0.0120 (8)0.0031 (9)
N20.0267 (10)0.0223 (9)0.0292 (10)0.0008 (8)0.0097 (8)0.0012 (8)
N60.0294 (10)0.0372 (12)0.0293 (10)0.0115 (9)0.0105 (8)0.0031 (9)
C10.0246 (10)0.0187 (9)0.0241 (9)0.0008 (9)0.0073 (8)0.0011 (9)
C20.0235 (10)0.0137 (11)0.0263 (10)0.0013 (8)0.0078 (8)0.0025 (8)
C30.0269 (10)0.0138 (11)0.0242 (9)0.0021 (8)0.0092 (8)0.0000 (8)
C40.0293 (11)0.0156 (11)0.0226 (10)0.0022 (8)0.0064 (8)0.0005 (8)
C50.0229 (11)0.0180 (10)0.0277 (11)0.0004 (9)0.0054 (8)0.0018 (9)
C60.0250 (11)0.0174 (9)0.0244 (10)0.0001 (9)0.0082 (9)0.0011 (8)
C70.0352 (12)0.0301 (13)0.0245 (10)0.0031 (9)0.0033 (9)0.0003 (9)
Geometric parameters (Å, º) top
Ba1—O132.8467 (19)O15—H1510.846 (10)
Ba1—O13i2.8467 (19)O15—H1520.845 (10)
Ba1—O122.8475 (19)O21—N21.350 (3)
Ba1—O12i2.8475 (19)O21—H210.86 (3)
Ba1—O1i2.8715 (17)O61—N61.354 (3)
Ba1—O12.8715 (17)O61—H610.86 (3)
Ba1—O11i2.8799 (19)N2—C21.298 (3)
Ba1—O112.8799 (19)N6—C61.294 (3)
Ba1—N63.036 (2)C1—C21.481 (3)
Ba1—N6i3.036 (2)C1—C61.485 (3)
O1—C11.220 (3)C2—C31.485 (3)
O3—C31.273 (3)C3—O31.273 (3)
O5—C51.263 (3)C3—C41.403 (3)
O11—H1110.851 (10)C4—C51.407 (3)
O11—H1120.841 (10)C4—C71.504 (3)
O12—H1210.842 (10)C5—O51.263 (3)
O12—H1220.841 (10)C5—C61.480 (3)
O13—H1310.847 (10)C7—H710.9600
O13—H1320.847 (10)C7—H720.9600
O14—H1410.851 (10)C7—H730.9600
O14—H1420.849 (10)
O13—Ba1—O13i154.98 (9)Ba1—O11—H111121 (3)
O13—Ba1—O12134.33 (6)Ba1—O11—H112106 (3)
O13i—Ba1—O1270.45 (6)H111—O11—H112103 (2)
O13—Ba1—O12i70.45 (6)Ba1—O12—H121114 (3)
O13i—Ba1—O12i134.33 (5)Ba1—O12—H122123 (3)
O12—Ba1—O12i65.59 (7)H121—O12—H122104 (2)
O13—Ba1—O1i67.83 (5)Ba1—O13—H131111 (3)
O13i—Ba1—O1i111.29 (5)Ba1—O13—H132113 (3)
O12—Ba1—O1i109.55 (5)H131—O13—H132103 (2)
O12i—Ba1—O1i73.76 (5)H141—O14—H142102 (2)
O13—Ba1—O1111.30 (5)H151—O15—H152103 (2)
O13i—Ba1—O167.83 (5)N2—O21—H21108 (3)
O12—Ba1—O173.76 (5)N6—O61—H61102 (3)
O12i—Ba1—O1109.55 (5)C2—N2—O21118.06 (19)
O1i—Ba1—O1176.25 (8)C6—N6—O61118.25 (19)
O13—Ba1—O11i85.23 (6)C6—N6—Ba1121.19 (14)
O13i—Ba1—O11i73.27 (6)O61—N6—Ba1118.58 (13)
O12—Ba1—O11i136.29 (6)O1—C1—C2122.60 (19)
O12i—Ba1—O11i135.85 (5)O1—C1—C6121.73 (19)
O1i—Ba1—O11i62.92 (5)C2—C1—C6115.65 (18)
O1—Ba1—O11i113.53 (5)N2—C2—C1113.59 (19)
O13—Ba1—O1173.27 (6)N2—C2—C3125.6 (2)
O13i—Ba1—O1185.23 (6)C1—C2—C3120.79 (19)
O12—Ba1—O11135.85 (5)O3—C3—C4123.2 (2)
O12i—Ba1—O11136.29 (5)O3—C3—C4123.2 (2)
O1i—Ba1—O11113.53 (5)O3—C3—C2116.23 (19)
O1—Ba1—O1162.92 (5)O3—C3—C2116.23 (19)
O11i—Ba1—O1162.11 (7)C4—C3—C2120.62 (19)
O13—Ba1—N667.33 (6)C3—C4—C5121.15 (19)
O13i—Ba1—N6120.54 (6)C3—C4—C7120.2 (2)
O12—Ba1—N684.66 (6)C5—C4—C7118.7 (2)
O12i—Ba1—N667.46 (6)O5—C5—C4122.6 (2)
O1i—Ba1—N6127.95 (5)O5—C5—C4122.6 (2)
O1—Ba1—N653.38 (5)O5—C5—C6116.8 (2)
O11i—Ba1—N6135.75 (6)O5—C5—C6116.8 (2)
O11—Ba1—N676.65 (6)C4—C5—C6120.64 (19)
O13—Ba1—N6i120.54 (6)N6—C6—C5125.2 (2)
O13i—Ba1—N6i67.33 (6)N6—C6—C1113.97 (19)
O12—Ba1—N6i67.46 (6)C5—C6—C1120.87 (19)
O12i—Ba1—N6i84.66 (6)C4—C7—H71109.5
O1i—Ba1—N6i53.38 (5)C4—C7—H72109.5
O1—Ba1—N6i127.96 (5)H71—C7—H72109.5
O11i—Ba1—N6i76.65 (6)C4—C7—H73109.5
O11—Ba1—N6i135.76 (6)H71—C7—H73109.5
N6—Ba1—N6i147.08 (8)H72—C7—H73109.5
C1—O1—Ba1126.33 (14)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O30.86 (3)1.70 (3)2.476 (3)150 (4)
O61—H61···O50.86 (3)1.64 (3)2.469 (2)160 (4)
O11—H111···O3ii0.85 (1)1.99 (1)2.827 (2)167 (4)
O11—H112···O12iii0.84 (1)2.15 (3)2.854 (3)142 (4)
O12—H121···O14i0.84 (1)1.90 (1)2.739 (3)172 (4)
O12—H122···O11iv0.84 (1)2.17 (3)2.839 (3)137 (3)
O13—H131···O140.85 (1)2.13 (1)2.957 (3)165 (4)
O13—H132···O15v0.85 (1)1.93 (1)2.766 (3)169 (4)
O14—H141···O13vi0.85 (1)1.99 (1)2.835 (3)173 (4)
O15—H151···O5vii0.85 (1)1.94 (1)2.789 (3)177 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+3/2; (iv) x, y1, z; (v) x1/2, y+1/2, z; (vi) x+1/2, y1/2, z+3/2; (vii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O30.86 (3)1.70 (3)2.476 (3)150 (4)
O61—H61···O50.86 (3)1.64 (3)2.469 (2)160 (4)
O11—H111···O3i0.851 (10)1.991 (14)2.827 (2)167 (4)
O11—H112···O12ii0.841 (10)2.15 (3)2.854 (3)142 (4)
O12—H121···O14iii0.842 (10)1.902 (11)2.739 (3)172 (4)
O12—H122···O11iv0.841 (10)2.17 (3)2.839 (3)137 (3)
O13—H131···O140.847 (10)2.131 (13)2.957 (3)165 (4)
O13—H132···O15v0.847 (10)1.931 (12)2.766 (3)169 (4)
O14—H141···O13vi0.851 (10)1.989 (11)2.835 (3)173 (4)
O15—H151···O5vii0.846 (10)1.944 (11)2.789 (3)177 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+3/2; (iii) x+1, y, z+3/2; (iv) x, y1, z; (v) x1/2, y+1/2, z; (vi) x+1/2, y1/2, z+3/2; (vii) x+1, y, z+1.
Acknowledgements top

This research was supported by the Russian Foundation for Basic Research (grant 13–03–00079).

references
References top

Adatia, T., Chakrabarti, J., Charalambous, J., Carugo, O. & Castallani, C. B. (1996). Polyhedron, 15, 1331–1338.

Basu, P. & Chakravorty, A. (1992). J. Chem. Soc. Chem. Commun. pp. 809–810.

Chakravorty, A. (1974). Coord. Chem. Rev. 13, 1–46.

Charalambous, J., Fogg, P. G. T., Gaganatsou, P. & Hendrick, K. (1993). Polyhedron, 12, 879–882.

Charalambous, J., Raghvani, D. V., Carugo, O., Castallani, C. B. & Sardone, N. (1996). Polyhedron, 15, 803–808.

Charalambous, J., Rees, R. G. & Thomas, T. A. (1995). Polyhedron, 14, 2541–2556.

Djinovic, K., Carugo, O. & Castellani, C. B. (1992). Inorg. Chim. Acta, 202, 59–65.

Enraf–Nonius (1993). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.

Gharah, N., Chakraborty, S., Mukherjee, A. K. & Battacharya, R. (2009). Inorg. Chim. Acta, 362, 1089–1100.

Kovalchukova, O. V., Dinh Do, N., Stash, A., Bel'sky, V., Strashnov, P., Alafinov, A., Volyansky, O., Strashnova, S. B. & Kobrakov, K. E. (2012). Cryst. Struct. Theory Appl. 1, 46–51.

Liu, Y.-N., Liang, W.-Z., Sang, X.-G., Huo, Y.-Q., Lap, S.-T., Yung, K.-F. & Liu, X.-X. (2010). Inorg. Chim. Acta, 363, 949–956.

McPartlin, M. (1973). Inorg. Nucl. Chem. Lett. 9, 1207–1210.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.