supplementary materials


bx2449 scheme

Acta Cryst. (2013). E69, m590    [ doi:10.1107/S1600536813026160 ]

[2,6-Di­fluoro-3-(pyridin-2-yl-[kappa]N)pyridin-4-yl-[kappa]C4](penta­ne-2,4-dionato-[kappa]2O,O')iridium(III)

K. Luo, C. Zhang, J. Jia and D. Luo

Abstract top

The title compound, [Ir(C10H5F2N2)2(C5H7O2)], has a distorted octa­hedral coordination geometry around the IrIII atom, retaining the cis-C,C/trans-N,N chelate disposition in two 2,6-di­fluoro-3-(pyridin-2-yl-[kappa]N)pyridin-4-yl ligands which are nearly mutually perpendicular [dihedral angle = 82.75 (15)°]. The mol­ecular structure is stabilized by weak C-H...O and C-H...F hydrogen-bond inter­actions. The crystal structure is stabilized by [pi]-[pi] stacking inter­actions (centroid-centroid distance = 3.951 Å).

Comment top

The phosphorescent cyclometalated Iridium(III) complexes have received considerable attention in the fabrication of phosphorescent organic light emitting diodes for their high quantum efficiencies, relatively short phosphorescent lifetimes. Lee et al. (2009) reported a fac-Ir(III) complex, fac-Ir(dfpypy)3, using 2',6'-Difluoro-2,3'-bipyridine (dfpypy)ligand, this complex exhibits intense blue emission with high color purity. Recently, a heteroleptic Ir complex,(dfpypy)2Ir(acac), incorporating dfpypy and acetyl acetone, was synthesized by our group and the blue phosphorescent electroluminescence devices were fabricated by doped (dfpypy)2Ir(acac) into PVK host. We report herein on its crystal structure.

The structure of the title complex is shown in Fig. 1. The coordination at the iridium atom is octahedral. The title compound displays shorter Ir–C [1.968 (5) and 1.975 (6) Å] and Ir–N [2.036 (4) and 2.047 (4) Å] bond distances, compared with those in fac-Ir(dfpypy)3 [1.997 (5)\sim 2.005 (5) Å for Ir–C bands and 2.116 (4)~2.135 (4) Å for Ir–N bands]. Ir–O bands are 2.143 (3) and 2.147 (3), respectively.

The interplanar angles between the chelate rings, for IrO2C3 ring A (Ir1, O2, C23, C22, C21, O1) to the IrNC3 ring B (Ir1, N1, C5, C6, C7) and C (Ir1, N3, C15, C16, C17) are 89.37 and 87.22 °, respectively, while the IrNC3 rings, B and C, are inclined at an angle of 86.71 °. The dihedral angles between two pyridyl rings of fluorine-substitution bipyridine ligands are 6.94 ° for bipyridine involving N1, N2 atoms and 8.24 ° for that involving N3, N4 atoms, which has bigger dihedral angles than those in fac-Ir(dfpypy)3 [3.84~ 5.63]. The molecular structure is stabilized by weak C–H···O and C–H···F hydrogen bonds interactions, Table 1. The crystal structure is stabilized by π-π stacking interactions(Cg1- Cg2 distance 3.951Å, Cg1=N1-C1/C5 ; Cg2= N3-C11/C15)

Related literature top

For general background and related structures, see: Xiao et al. (2011); Lamansky et al. (2001a); Lee et al. (2009); Jung et al. (2012). For the synthesis of the title complex, see: Lamansky et al. (2001b); Luo et al. (2011).

Experimental top

2',6'-Difluoro-2,3'-bipyridine (dfpypy) ligand was prepared according to the method of Lee et al. (2009). The Ir(III) µ-dichloro-bridged dimer, [IrCl(dfpypy)2]2 was prepared according to the method of Lamansky et al. (2001a). A mixture of [IrCl(dfpypy)2]2 (0.82 mmol, 1.04 g), acetyl acetone (4.2 mmol, 0.42 g), anhydrous Cs2CO3 (0.8 mmol. 0.265 g) and 2-ethoxyethanol (30 ml) was stirred under inert atmosphere at 95 °C for 15 h. After cooling to room temperature, the precipitate was fitered off, washed with water and hexane and methanol. The crude product was purified by chromatography on silica gel [eluent: petroleum ether and ethyl acetate, v/v = 3:1]. The greenish yellow crystals, suitable for X-ray analysis, were obtained by slow diffusion of methanol into the dichloromethane solution of the title complex.

Refinement top

H atoms were placed at calculated positions and refined as riding atoms: C–H = 0.93, 0.96 Å for CH (aromatic) and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms, and k = 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom labels and 50% probability displacement ellipsoids.
[2,6-Difluoro-3-(pyridin-2-yl-κN)pyridin-4-yl-κC4](pentane-2,4-dionato-κ2O,O')iridium(III) top
Crystal data top
[Ir(C10H5F2N2)2(C5H7O2)]F(000) = 1296
Mr = 673.63Dx = 1.975 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 3878 reflections
a = 7.7126 (2) Åθ = 3.0–29.1°
b = 18.2039 (5) ŵ = 5.96 mm1
c = 16.3534 (4) ÅT = 293 K
β = 99.371 (3)°Block, yellow
V = 2265.38 (10) Å30.40 × 0.35 × 0.35 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
4628 independent reflections
Radiation source: Enhance (Mo) X-ray Source3736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1922
Tmin = 0.400, Tmax = 1.000l = 1120
9371 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0236P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.005
S = 1.03Δρmax = 1.17 e Å3
4628 reflectionsΔρmin = 0.97 e Å3
327 parameters
Crystal data top
[Ir(C10H5F2N2)2(C5H7O2)]V = 2265.38 (10) Å3
Mr = 673.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7126 (2) ŵ = 5.96 mm1
b = 18.2039 (5) ÅT = 293 K
c = 16.3534 (4) Å0.40 × 0.35 × 0.35 mm
β = 99.371 (3)°
Data collection top
Agilent Xcalibur Eos
diffractometer
4628 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3736 reflections with I > 2σ(I)
Tmin = 0.400, Tmax = 1.000Rint = 0.030
9371 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.066Δρmax = 1.17 e Å3
S = 1.03Δρmin = 0.97 e Å3
4628 reflectionsAbsolute structure: ?
327 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET) (compiled May 16 2011,17:55:39) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.77717 (2)0.232240 (10)0.507721 (11)0.02588 (7)
F10.3566 (5)0.0373 (2)0.6253 (3)0.0892 (13)
F20.8659 (5)0.08762 (19)0.78652 (19)0.0737 (11)
F31.2168 (5)0.0322 (2)0.4142 (3)0.0963 (14)
F40.7182 (5)0.0727 (2)0.2402 (2)0.0750 (12)
O10.6653 (4)0.31813 (19)0.57247 (19)0.0374 (8)
O20.8806 (4)0.31507 (19)0.43594 (19)0.0374 (8)
N10.9910 (5)0.2314 (2)0.5990 (2)0.0286 (9)
N20.6126 (7)0.0637 (3)0.7057 (3)0.0544 (14)
N30.5654 (5)0.2222 (2)0.4151 (3)0.0350 (10)
N40.9680 (7)0.0529 (3)0.3283 (3)0.0593 (15)
C11.1398 (7)0.2682 (3)0.5962 (3)0.0410 (13)
H11.14490.29970.55190.049*
C21.2847 (8)0.2615 (3)0.6560 (4)0.0534 (16)
H21.38710.28720.65160.064*
C31.2778 (8)0.2170 (4)0.7220 (4)0.0607 (19)
H31.37440.21280.76390.073*
C41.1265 (8)0.1783 (3)0.7263 (3)0.0547 (16)
H41.12140.14730.77100.066*
C50.9813 (6)0.1851 (3)0.6641 (3)0.0332 (12)
C60.8145 (7)0.1469 (3)0.6568 (3)0.0341 (12)
C70.6973 (6)0.1582 (3)0.5817 (3)0.0296 (11)
C80.5390 (6)0.1191 (3)0.5712 (3)0.0413 (13)
H80.45670.12320.52310.050*
C90.5109 (8)0.0743 (3)0.6354 (4)0.0533 (16)
C100.7617 (8)0.0994 (3)0.7133 (3)0.0468 (15)
C110.4124 (7)0.2577 (3)0.4142 (4)0.0451 (14)
H110.40270.29110.45620.054*
C120.2703 (8)0.2464 (3)0.3536 (4)0.0582 (18)
H120.16520.27110.35470.070*
C130.2858 (8)0.1980 (4)0.2915 (4)0.0664 (19)
H130.19180.19020.24900.080*
C140.4404 (8)0.1612 (4)0.2920 (3)0.0607 (18)
H140.45010.12740.25030.073*
C150.5835 (7)0.1735 (3)0.3542 (3)0.0391 (13)
C160.7538 (7)0.1371 (3)0.3668 (3)0.0359 (12)
C170.8659 (6)0.1543 (3)0.4420 (3)0.0334 (12)
C181.0248 (7)0.1163 (3)0.4584 (3)0.0428 (14)
H181.10170.12350.50770.051*
C191.0645 (8)0.0681 (3)0.3999 (4)0.0576 (18)
C200.8178 (8)0.0878 (3)0.3146 (3)0.0500 (16)
C210.6764 (7)0.3863 (3)0.5576 (3)0.0411 (13)
C220.7633 (7)0.4182 (3)0.4978 (3)0.0482 (15)
H220.75780.46920.49440.058*
C230.8565 (7)0.3840 (3)0.4426 (3)0.0405 (13)
C240.5894 (9)0.4356 (3)0.6109 (4)0.070 (2)
H24A0.46490.42740.60030.105*
H24B0.61350.48580.59870.105*
H24C0.63370.42560.66810.105*
C250.9410 (8)0.4313 (3)0.3859 (4)0.0654 (19)
H25A1.06340.41910.39110.098*
H25B0.92910.48200.40020.098*
H25C0.88500.42330.32970.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02867 (11)0.02454 (12)0.02474 (11)0.00052 (8)0.00525 (8)0.00004 (9)
F10.077 (3)0.079 (3)0.120 (4)0.034 (2)0.040 (2)0.024 (3)
F20.117 (3)0.062 (3)0.041 (2)0.004 (2)0.011 (2)0.0232 (18)
F30.069 (3)0.089 (3)0.137 (4)0.028 (2)0.033 (3)0.043 (3)
F40.104 (3)0.074 (3)0.049 (2)0.017 (2)0.017 (2)0.0316 (19)
O10.045 (2)0.036 (2)0.0335 (19)0.0060 (17)0.0115 (16)0.0006 (17)
O20.051 (2)0.034 (2)0.0289 (18)0.0077 (17)0.0102 (16)0.0006 (17)
N10.031 (2)0.025 (2)0.030 (2)0.0012 (18)0.0060 (18)0.0049 (19)
N20.081 (4)0.037 (3)0.053 (3)0.006 (3)0.036 (3)0.013 (3)
N30.041 (3)0.030 (3)0.033 (2)0.0038 (19)0.004 (2)0.008 (2)
N40.072 (4)0.048 (3)0.067 (4)0.009 (3)0.041 (3)0.024 (3)
C10.034 (3)0.049 (4)0.039 (3)0.008 (3)0.001 (3)0.002 (3)
C20.045 (4)0.055 (4)0.057 (4)0.005 (3)0.000 (3)0.003 (3)
C30.050 (4)0.068 (5)0.055 (4)0.012 (3)0.017 (3)0.013 (4)
C40.064 (4)0.053 (4)0.044 (3)0.014 (3)0.002 (3)0.010 (3)
C50.041 (3)0.030 (3)0.028 (3)0.006 (2)0.002 (2)0.002 (2)
C60.047 (3)0.026 (3)0.031 (3)0.005 (2)0.014 (2)0.004 (2)
C70.038 (3)0.024 (3)0.031 (3)0.003 (2)0.015 (2)0.001 (2)
C80.038 (3)0.033 (3)0.055 (4)0.000 (2)0.015 (3)0.006 (3)
C90.059 (4)0.038 (4)0.072 (5)0.008 (3)0.036 (4)0.010 (3)
C100.076 (4)0.034 (3)0.035 (3)0.007 (3)0.022 (3)0.004 (3)
C110.043 (3)0.040 (4)0.052 (4)0.006 (3)0.007 (3)0.004 (3)
C120.037 (3)0.063 (5)0.068 (5)0.002 (3)0.012 (3)0.005 (4)
C130.055 (4)0.079 (5)0.053 (4)0.016 (4)0.026 (3)0.005 (4)
C140.067 (4)0.069 (5)0.040 (3)0.022 (4)0.010 (3)0.010 (3)
C150.048 (3)0.041 (3)0.029 (3)0.011 (3)0.007 (3)0.001 (3)
C160.046 (3)0.033 (3)0.030 (3)0.008 (2)0.011 (2)0.006 (2)
C170.033 (3)0.033 (3)0.037 (3)0.007 (2)0.012 (2)0.002 (2)
C180.044 (3)0.041 (4)0.044 (3)0.004 (3)0.010 (3)0.009 (3)
C190.056 (4)0.044 (4)0.082 (5)0.005 (3)0.036 (4)0.010 (4)
C200.072 (4)0.042 (4)0.041 (3)0.022 (3)0.023 (3)0.012 (3)
C210.052 (3)0.037 (4)0.035 (3)0.009 (3)0.009 (3)0.000 (3)
C220.072 (4)0.025 (3)0.048 (4)0.003 (3)0.010 (3)0.002 (3)
C230.053 (3)0.035 (3)0.031 (3)0.008 (3)0.000 (3)0.002 (3)
C240.110 (6)0.038 (4)0.068 (5)0.020 (4)0.034 (4)0.010 (3)
C250.101 (5)0.045 (4)0.054 (4)0.021 (4)0.025 (4)0.012 (3)
Geometric parameters (Å, º) top
Ir1—O12.147 (3)C6—C101.374 (7)
Ir1—O22.143 (3)C7—C81.400 (6)
Ir1—N12.036 (4)C8—H80.9300
Ir1—N32.047 (4)C8—C91.375 (7)
Ir1—C71.975 (5)C11—H110.9300
Ir1—C171.968 (5)C11—C121.368 (8)
F1—C91.353 (6)C12—H120.9300
F2—C101.346 (6)C12—C131.363 (9)
F3—C191.331 (6)C13—H130.9300
F4—C201.358 (6)C13—C141.367 (8)
O1—C211.270 (6)C14—H140.9300
O2—C231.276 (6)C14—C151.391 (7)
N1—C11.336 (6)C15—C161.456 (7)
N1—C51.369 (6)C16—C171.419 (7)
N2—C91.295 (7)C16—C201.383 (7)
N2—C101.309 (7)C17—C181.395 (6)
N3—C111.343 (6)C18—H180.9300
N3—C151.357 (6)C18—C191.368 (7)
N4—C191.311 (8)C21—C221.400 (7)
N4—C201.309 (7)C21—C241.485 (7)
C1—H10.9300C22—H220.9300
C1—C21.365 (7)C22—C231.389 (7)
C2—H20.9300C23—C251.491 (7)
C2—C31.357 (8)C24—H24A0.9600
C3—H30.9300C24—H24B0.9600
C3—C41.375 (8)C24—H24C0.9600
C4—H40.9300C25—H25A0.9600
C4—C51.391 (7)C25—H25B0.9600
C5—C61.451 (6)C25—H25C0.9600
C6—C71.417 (6)
O2—Ir1—O188.46 (14)N2—C10—F2113.2 (5)
N1—Ir1—O189.22 (13)N2—C10—C6126.9 (6)
N1—Ir1—O294.42 (14)N3—C11—H11118.8
N1—Ir1—N3174.41 (16)N3—C11—C12122.3 (6)
N3—Ir1—O195.37 (15)C12—C11—H11118.8
N3—Ir1—O288.90 (14)C11—C12—H12120.7
C7—Ir1—O190.23 (16)C13—C12—C11118.6 (6)
C7—Ir1—O2175.19 (16)C13—C12—H12120.7
C7—Ir1—N180.93 (17)C12—C13—H13120.2
C7—Ir1—N395.83 (17)C12—C13—C14119.6 (6)
C17—Ir1—O1176.01 (16)C14—C13—H13120.2
C17—Ir1—O290.81 (16)C13—C14—H14119.6
C17—Ir1—N194.75 (18)C13—C14—C15120.8 (6)
C17—Ir1—N380.69 (18)C15—C14—H14119.6
C17—Ir1—C790.8 (2)N3—C15—C14118.5 (5)
C21—O1—Ir1124.9 (3)N3—C15—C16113.1 (4)
C23—O2—Ir1124.9 (3)C14—C15—C16128.3 (5)
C1—N1—Ir1124.7 (4)C17—C16—C15115.5 (5)
C1—N1—C5119.4 (4)C20—C16—C15127.8 (5)
C5—N1—Ir1115.7 (3)C20—C16—C17116.8 (5)
C9—N2—C10114.0 (5)C16—C17—Ir1114.6 (4)
C11—N3—Ir1124.0 (4)C18—C17—Ir1128.7 (4)
C11—N3—C15120.1 (5)C18—C17—C16116.7 (5)
C15—N3—Ir1115.9 (3)C17—C18—H18120.9
C20—N4—C19114.1 (5)C19—C18—C17118.3 (5)
N1—C1—H1118.7C19—C18—H18120.9
N1—C1—C2122.6 (5)F3—C19—C18118.9 (6)
C2—C1—H1118.7N4—C19—F3114.1 (6)
C1—C2—H2120.4N4—C19—C18126.9 (6)
C3—C2—C1119.2 (6)F4—C20—C16118.6 (6)
C3—C2—H2120.4N4—C20—F4114.2 (5)
C2—C3—H3120.3N4—C20—C16127.2 (6)
C2—C3—C4119.4 (6)O1—C21—C22126.5 (5)
C4—C3—H3120.3O1—C21—C24115.3 (5)
C3—C4—H4119.8C22—C21—C24118.2 (5)
C3—C4—C5120.4 (6)C21—C22—H22115.7
C5—C4—H4119.8C23—C22—C21128.7 (5)
N1—C5—C4119.0 (5)C23—C22—H22115.7
N1—C5—C6113.1 (4)O2—C23—C22126.5 (5)
C4—C5—C6127.9 (5)O2—C23—C25115.5 (5)
C7—C6—C5115.7 (4)C22—C23—C25118.0 (5)
C10—C6—C5127.1 (5)C21—C24—H24A109.5
C10—C6—C7117.2 (5)C21—C24—H24B109.5
C6—C7—Ir1114.3 (3)C21—C24—H24C109.5
C8—C7—Ir1128.7 (4)H24A—C24—H24B109.5
C8—C7—C6116.9 (5)H24A—C24—H24C109.5
C7—C8—H8121.6H24B—C24—H24C109.5
C9—C8—C7116.8 (5)C23—C25—H25A109.5
C9—C8—H8121.6C23—C25—H25B109.5
F1—C9—C8116.5 (6)C23—C25—H25C109.5
N2—C9—F1115.4 (6)H25A—C25—H25B109.5
N2—C9—C8128.1 (6)H25A—C25—H25C109.5
F2—C10—C6119.9 (6)H25B—C25—H25C109.5
Ir1—O1—C21—C220.5 (8)C4—C5—C6—C104.9 (9)
Ir1—O1—C21—C24179.6 (4)C5—N1—C1—C20.2 (8)
Ir1—O2—C23—C221.3 (7)C5—C6—C7—Ir16.0 (5)
Ir1—O2—C23—C25179.8 (3)C5—C6—C7—C8176.9 (4)
Ir1—N1—C1—C2174.7 (4)C5—C6—C10—F23.9 (8)
Ir1—N1—C5—C4176.1 (4)C5—C6—C10—N2178.5 (5)
Ir1—N1—C5—C62.2 (5)C6—C7—C8—C91.1 (7)
Ir1—N3—C11—C12176.1 (4)C7—Ir1—O1—C21176.7 (4)
Ir1—N3—C15—C14176.3 (4)C7—Ir1—O2—C2376.0 (19)
Ir1—N3—C15—C160.0 (5)C7—Ir1—N1—C1174.4 (4)
Ir1—C7—C8—C9175.5 (4)C7—Ir1—N1—C50.8 (3)
Ir1—C17—C18—C19174.8 (4)C7—Ir1—N3—C1184.2 (4)
O1—Ir1—O2—C231.7 (4)C7—Ir1—N3—C1592.5 (4)
O1—Ir1—N1—C195.3 (4)C7—Ir1—C17—C16100.6 (4)
O1—Ir1—N1—C589.6 (3)C7—Ir1—C17—C1881.6 (5)
O1—Ir1—N3—C116.6 (4)C7—C6—C10—F2178.5 (4)
O1—Ir1—N3—C15176.7 (3)C7—C6—C10—N20.9 (8)
O1—Ir1—C7—C685.5 (3)C7—C8—C9—F1179.2 (5)
O1—Ir1—C7—C891.2 (4)C7—C8—C9—N20.6 (9)
O1—Ir1—C17—C164 (2)C9—N2—C10—F2179.8 (5)
O1—Ir1—C17—C18173 (2)C9—N2—C10—C62.4 (9)
O1—C21—C22—C230.7 (9)C10—N2—C9—F1179.1 (5)
O2—Ir1—O1—C211.4 (4)C10—N2—C9—C82.3 (9)
O2—Ir1—N1—C16.9 (4)C10—C6—C7—Ir1176.1 (4)
O2—Ir1—N1—C5178.0 (3)C10—C6—C7—C81.0 (7)
O2—Ir1—N3—C1194.9 (4)C11—N3—C15—C140.6 (7)
O2—Ir1—N3—C1588.3 (3)C11—N3—C15—C16176.9 (4)
O2—Ir1—C7—C611 (2)C11—C12—C13—C141.3 (10)
O2—Ir1—C7—C8165.3 (16)C12—C13—C14—C151.4 (10)
O2—Ir1—C17—C1683.9 (4)C13—C14—C15—N31.0 (9)
O2—Ir1—C17—C1893.8 (5)C13—C14—C15—C16176.8 (6)
N1—Ir1—O1—C2195.8 (4)C14—C15—C16—C17171.8 (5)
N1—Ir1—O2—C2390.8 (4)C14—C15—C16—C207.8 (9)
N1—Ir1—N3—C11138.5 (14)C15—N3—C11—C120.5 (8)
N1—Ir1—N3—C1538.2 (16)C15—C16—C17—Ir16.4 (6)
N1—Ir1—C7—C63.7 (3)C15—C16—C17—C18175.6 (4)
N1—Ir1—C7—C8179.6 (5)C15—C16—C20—F43.6 (8)
N1—Ir1—C17—C16178.4 (4)C15—C16—C20—N4176.7 (5)
N1—Ir1—C17—C180.7 (5)C16—C17—C18—C192.9 (7)
N1—C1—C2—C31.4 (9)C17—Ir1—O1—C2178 (2)
N1—C5—C6—C75.3 (6)C17—Ir1—O2—C23174.3 (4)
N1—C5—C6—C10177.1 (5)C17—Ir1—N1—C184.3 (4)
N3—Ir1—O1—C2187.4 (4)C17—Ir1—N1—C590.8 (3)
N3—Ir1—O2—C2393.7 (4)C17—Ir1—N3—C11174.1 (4)
N3—Ir1—N1—C1119.5 (14)C17—Ir1—N3—C152.7 (3)
N3—Ir1—N1—C555.7 (15)C17—Ir1—C7—C698.4 (4)
N3—Ir1—C7—C6179.1 (3)C17—Ir1—C7—C885.0 (5)
N3—Ir1—C7—C84.2 (5)C17—C16—C20—F4176.7 (4)
N3—Ir1—C17—C164.8 (3)C17—C16—C20—N43.0 (9)
N3—Ir1—C17—C18177.4 (5)C17—C18—C19—F3179.0 (5)
N3—C11—C12—C130.9 (9)C17—C18—C19—N40.2 (9)
N3—C15—C16—C174.1 (6)C19—N4—C20—F4179.4 (5)
N3—C15—C16—C20176.3 (5)C19—N4—C20—C160.3 (9)
C1—N1—C5—C40.7 (7)C20—N4—C19—F3179.5 (5)
C1—N1—C5—C6177.6 (4)C20—N4—C19—C181.2 (9)
C1—C2—C3—C41.5 (9)C20—C16—C17—Ir1174.0 (4)
C2—C3—C4—C50.7 (9)C20—C16—C17—C184.1 (7)
C3—C4—C5—N10.4 (8)C21—C22—C23—O20.3 (9)
C3—C4—C5—C6177.5 (5)C21—C22—C23—C25178.6 (5)
C4—C5—C6—C7172.8 (5)C24—C21—C22—C23178.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.563.146 (6)121
C4—H4···F20.932.362.894 (7)121
C11—H11···O10.932.593.175 (7)121
C14—H14···F40.932.332.915 (7)121
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.563.146 (6)121
C4—H4···F20.932.362.894 (7)121
C11—H11···O10.932.593.175 (7)121
C14—H14···F40.932.332.915 (7)121
Acknowledgements top

Support from the National Natural Science Foundation of China (grant Nos. 21072141 and 21172161) is gratefully acknowledged.

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Jung, N., Lee, E. J., Kim, J., Park, H. G., Park, K. M. & Kang, Y. G. (2012). Bull. Korean Chem. Soc. 33, 183–188.

Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001a). Inorg. Chem. 40, 1704–1711.

Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H. E., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001b). J. Am. Chem. Soc. 123, 4304–4312.

Lee, S. J., Park, K. M., Yang, K. & Kang, Y. G. (2009). Inorg. Chem. 48, 1030–1037.

Luo, K. J., Jiang, S. P., Wang, X., Deng, X. P., Zhu, W. G., Zhao, K. Q. & Xie, Y. (2011). Chin. J. Lumin., 32, 369–373.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xiao, L. X., Chen, Z. J., Qu, B., Luo, J. X., Kong, S. & Gong, Q. H. (2011). Adv. Mater. 23, 926–952.