supplementary materials


cv5429 scheme

Acta Cryst. (2013). E69, m619    [ doi:10.1107/S1600536813028687 ]

Poly[([mu]6-benzene-1,3,5-tri­carboxyl­ato-[kappa]6O1:O1':O3:O3':O5:O5')tris­(N,N-di­methyl­formamide-[kappa]O)tris­([mu]3-formato-[kappa]3O:O:O')trizinc(II)]

J. Sim, T. Kim and J. K. Yang

Abstract top

The asymmetric unit of the title compound, [Zn3(HCO2)3(C9H3O6)(C3H7NO)3]n, contains one Zn ion, one formate ligand, one N,N-di­methyl­formamide (DMF) ligand and one-third of a benzene-1,3,5-tri­carboxyl­ate (btc) ligand situated on a crystallographic 3 axis. Each ZnII atom is coordinated by one O atom from a DMF ligand, two O atoms from two btc ligands and three O atoms from three formate ligands in a distorted octa­hedral geometry. The ZnII atoms are connected by the formate and btc ligands, forming hexanuclear cores, which are linked by btc ligands, constructing a two-dimensional layered network along the ab plane.

Comment top

Solvothermal reactions between ZnII ion and simple organic ligands such as benzene-1,4-di­carb­oxy­lic acid (H2BDC) and benzene-1,3,5-tri­carb­oxy­lic acid (H3BTC) produce prototype metal-organic frameworks known as MOF-2, MOF-3, MOF-4, and MOF-5 (Eddaoudi et al., 2000). Among them, MOF-4 formulated as [Zn2(BTC)(NO3)](C2H5OH)5(H2O) has dinuclear zinc clusters that are held by three carboxyl­ate groups from three distinct BTC ligands. In our trials to make a metal-organic framework composed of ZnII paddle-wheel clusters and BTC, the title compound was obtained as single crystals. During a solvothermal reaction, decomposition of N,N-di­methyl­formamide produced formate which became a component of the title compound.

The title compound, (I) (Fig. 1), is isostructural to the related compounds with NiII (Maniam & Stock, 2011) and MgII (Yeh et al., 2010). The crystal packing of (I) is shown in Figs. 2 & 3.

Experimental top

The title compound was obtained by a solvothermal reaction between zinc(II) nitrate tetra­hydrate (0.157 g, 0.60 mmol) and benzene-1,3,5-tri­carb­oxy­lic acid (0.084 g, 0.40 mmol) in N,N-di­methyl­formamide (2.0 ml). When a sealed glass tube containing the reaction mixture was heated at 130 °C and for 24 h, the title compound was produced as colorless hexagonal columnar crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H = 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2–1.5 Ueq(C).

Related literature top

For general background to compounds with metal-organic framework structures, see: Eddaoudi et al. (2000).The crystal structures of isotypic compounds with NiII and MgII were reported by Maniam & Stock (2011) and Yeh et al. (2010), respectively.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2013); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A content of the asymmetric unit of (I) showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are represented with empty balls without labels.
[Figure 2] Fig. 2. A portion of the packing diagram of (I) viewed along the c aixs.
[Figure 3] Fig. 3. A portion of the packing diagram of (I) viewed along the a aixs.
Poly[(µ6-benzene-1,3,5-tricarboxylato-κ6O1:O1':O3:O3':O5:O5')tris(N,N-dimethylformamide-κO)tris(µ3-formato-κ3O:O:O')trizinc(II)] top
Crystal data top
[Zn3(HCO2)3(C9H3O6)(C3H7NO)3]Dx = 1.888 Mg m3
Mr = 757.56Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 2269 reflections
Hall symbol: -P 3θ = 2.4–28.2°
a = 13.8594 (17) ŵ = 2.76 mm1
c = 8.0100 (14) ÅT = 153 K
V = 1332.5 (4) Å3Column, colorless
Z = 20.10 × 0.02 × 0.02 mm
F(000) = 768
Data collection top
Bruker SMART APEX CCD
diffractometer
2027 independent reflections
Radiation source: fine-focus sealed tube1563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.153
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1717
Tmin = 0.770, Tmax = 0.947k = 1118
7964 measured reflectionsl = 910
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.1686P]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
2027 reflectionsΔρmax = 0.72 e Å3
127 parametersΔρmin = 0.79 e Å3
Crystal data top
[Zn3(HCO2)3(C9H3O6)(C3H7NO)3]Z = 2
Mr = 757.56Mo Kα radiation
Trigonal, P3µ = 2.76 mm1
a = 13.8594 (17) ÅT = 153 K
c = 8.0100 (14) Å0.10 × 0.02 × 0.02 mm
V = 1332.5 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2027 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1563 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.947Rint = 0.153
7964 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.72 e Å3
S = 0.81Δρmin = 0.79 e Å3
2027 reflectionsAbsolute structure: ?
127 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.01272 (3)0.23313 (3)0.39911 (5)0.01217 (12)
O10.25265 (17)0.12229 (17)0.4805 (3)0.0160 (5)
O20.10070 (17)0.28429 (17)0.4230 (3)0.0149 (5)
O30.05005 (17)0.13366 (17)0.6162 (3)0.0140 (5)
O40.10436 (18)0.19215 (19)0.7680 (3)0.0162 (5)
C10.2019 (3)0.2249 (2)0.4582 (4)0.0115 (6)
C20.2697 (3)0.2816 (2)0.4691 (4)0.0113 (6)
C30.3856 (3)0.2180 (3)0.4700 (3)0.0130 (7)
H30.42130.13900.47120.016*
C40.0026 (3)0.1477 (3)0.7513 (4)0.0140 (7)
H40.04080.12140.85020.017*
O50.07684 (19)0.32946 (18)0.1759 (3)0.0198 (5)
N10.0391 (2)0.3985 (2)0.0540 (3)0.0204 (6)
C50.0119 (3)0.3253 (3)0.0664 (4)0.0203 (8)
H50.06260.26510.06990.024*
C60.1529 (3)0.4921 (3)0.0652 (5)0.0286 (9)
H6A0.18900.50510.04420.043*
H6B0.15140.55900.10030.043*
H6C0.19480.47490.14700.043*
C70.0372 (3)0.3837 (3)0.1897 (4)0.0294 (9)
H7A0.10920.31630.16970.044*
H7B0.00610.37620.29560.044*
H7C0.04770.44850.19510.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0082 (2)0.0087 (2)0.0197 (2)0.00431 (16)0.00015 (15)0.00033 (15)
O10.0128 (12)0.0101 (11)0.0253 (13)0.0060 (10)0.0020 (10)0.0021 (10)
O20.0088 (11)0.0097 (11)0.0276 (12)0.0056 (9)0.0017 (10)0.0001 (10)
O30.0093 (11)0.0117 (11)0.0179 (11)0.0029 (9)0.0024 (9)0.0013 (9)
O40.0109 (12)0.0182 (12)0.0194 (12)0.0072 (10)0.0014 (10)0.0016 (10)
C10.0109 (16)0.0078 (15)0.0143 (16)0.0036 (13)0.0041 (13)0.0021 (13)
C20.0106 (15)0.0107 (15)0.0129 (15)0.0056 (13)0.0010 (13)0.0011 (13)
C30.0135 (16)0.0102 (16)0.0144 (16)0.0053 (13)0.0001 (13)0.0008 (13)
C40.0128 (16)0.0087 (15)0.0205 (17)0.0053 (14)0.0010 (14)0.0004 (13)
O50.0162 (12)0.0180 (12)0.0221 (13)0.0063 (11)0.0026 (10)0.0074 (10)
N10.0216 (16)0.0224 (16)0.0208 (15)0.0137 (14)0.0002 (13)0.0020 (13)
C50.0178 (18)0.0160 (18)0.027 (2)0.0084 (15)0.0040 (16)0.0004 (15)
C60.029 (2)0.028 (2)0.028 (2)0.0127 (18)0.0057 (17)0.0075 (17)
C70.036 (2)0.038 (2)0.0217 (19)0.025 (2)0.0024 (18)0.0004 (17)
Geometric parameters (Å, º) top
Zn1—O1i2.028 (2)C2—C31.394 (4)
Zn1—O22.031 (2)C3—C2iv1.380 (4)
Zn1—O4ii2.105 (2)C3—H30.9500
Zn1—O3i2.108 (2)C4—H40.9500
Zn1—O32.117 (2)O5—C51.237 (4)
Zn1—O52.140 (2)N1—C51.311 (4)
O1—C11.245 (3)N1—C71.458 (4)
O1—Zn1ii2.028 (2)N1—C61.460 (5)
O2—C11.253 (4)C5—H50.9500
O3—C41.265 (4)C6—H6A0.9800
O3—Zn1ii2.108 (2)C6—H6B0.9800
O4—C41.232 (4)C6—H6C0.9800
O4—Zn1i2.105 (2)C7—H7A0.9800
C1—C21.499 (4)C7—H7B0.9800
C2—C3iii1.380 (4)C7—H7C0.9800
O1i—Zn1—O287.25 (9)C3—C2—C1119.7 (3)
O1i—Zn1—O4ii168.88 (9)C2iv—C3—C2120.1 (3)
O2—Zn1—O4ii93.23 (9)C2iv—C3—H3120.0
O1i—Zn1—O3i90.61 (8)C2—C3—H3120.0
O2—Zn1—O3i177.54 (9)O4—C4—O3126.7 (3)
O4ii—Zn1—O3i89.09 (8)O4—C4—H4116.6
O1i—Zn1—O396.06 (9)O3—C4—H4116.6
O2—Zn1—O390.70 (8)C5—O5—Zn1119.8 (2)
O4ii—Zn1—O395.05 (8)C5—N1—C7122.1 (3)
O3i—Zn1—O388.32 (10)C5—N1—C6119.8 (3)
O1i—Zn1—O585.20 (9)C7—N1—C6117.7 (3)
O2—Zn1—O590.77 (9)O5—C5—N1124.4 (3)
O4ii—Zn1—O583.68 (8)O5—C5—H5117.8
O3i—Zn1—O590.26 (9)N1—C5—H5117.8
O3—Zn1—O5178.11 (9)N1—C6—H6A109.5
C1—O1—Zn1ii135.5 (2)N1—C6—H6B109.5
C1—O2—Zn1126.83 (19)H6A—C6—H6B109.5
C4—O3—Zn1ii120.2 (2)N1—C6—H6C109.5
C4—O3—Zn1125.8 (2)H6A—C6—H6C109.5
Zn1ii—O3—Zn1113.73 (10)H6B—C6—H6C109.5
C4—O4—Zn1i132.5 (2)N1—C7—H7A109.5
O1—C1—O2126.2 (3)N1—C7—H7B109.5
O1—C1—C2116.5 (3)H7A—C7—H7B109.5
O2—C1—C2117.3 (3)N1—C7—H7C109.5
C3iii—C2—C3119.9 (3)H7A—C7—H7C109.5
C3iii—C2—C1120.3 (3)H7B—C7—H7C109.5
Zn1ii—O1—C1—O242.6 (5)C3iii—C2—C3—C2iv1.0 (6)
Zn1ii—O1—C1—C2139.5 (2)C1—C2—C3—C2iv175.8 (2)
Zn1—O2—C1—O12.2 (5)Zn1i—O4—C4—O321.4 (5)
Zn1—O2—C1—C2179.99 (19)Zn1ii—O3—C4—O4159.8 (3)
O1—C1—C2—C3iii170.7 (3)Zn1—O3—C4—O426.7 (4)
O2—C1—C2—C3iii11.3 (4)Zn1—O5—C5—N1163.2 (2)
O1—C1—C2—C312.5 (4)C7—N1—C5—O5173.5 (3)
O2—C1—C2—C3165.5 (3)C6—N1—C5—O50.5 (5)
Symmetry codes: (i) y, x+y, z+1; (ii) xy, x, z+1; (iii) y, xy+1, z; (iv) x+y1, x, z.

Experimental details

Crystal data
Chemical formula[Zn3(HCO2)3(C9H3O6)(C3H7NO)3]
Mr757.56
Crystal system, space groupTrigonal, P3
Temperature (K)153
a, c (Å)13.8594 (17), 8.0100 (14)
V3)1332.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.10 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.770, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
7964, 2027, 1563
Rint0.153
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.089, 0.81
No. of reflections2027
No. of parameters127
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.79

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2013), publCIF (Westrip, 2010).

Acknowledgements top

This research was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20122010100120).

references
References top

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

CrystalMaker (2013). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.

Eddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391–1397.

Maniam, P. & Stock, N. (2011). Inorg. Chem. 50, 5085–5097.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yeh, C.-T., Liu, H.-K., Lin, C.-J. & Lin, C.-H. (2010). Acta Cryst. E66, m1289.