organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1648-o1649

3-Methyl-4-(2-phenyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)furazan

aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St, 119991 Moscow, Russian Federation, bSouth-Russia State Technical University, 346428 Novocherkassk, Russian Federation, and cN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russian Federation
*Correspondence e-mail: kirshik@yahoo.com

(Received 27 September 2013; accepted 9 October 2013; online 16 October 2013)

In the title mol­ecule, C14H10N6O, the planes of the methyl­furazan fragment and the phenyl ring attached to the triazolo­pyrimidine bicycle are twisted from the mean plane of the bicycle at angles of 45.92 (5) and 5.45 (4)°, respectively. In the crystal, ππ inter­actions, indicated by short distances [in the range 3.456 (3)–3.591 (3) Å] between the centroids of the five- and six-membered rings of neighbouring mol­ecules, link the mol­ecules into stacks propagating along the c-axis direction.

Related literature

For applications of enamino­nes in synthesis, see: Kulinich & Ischenko (2009[Kulinich, A. B. & Ischenko, A. A. (2009). Russ. Chem. Rev. 78, 141-164 [translated from (2009). Usp. Khim. 78, 151-175].]); Stanovnik & Svete (2004[Stanovnik, B. & Svete, J. (2004). Chem. Rev. 104, 2433-2480.]). For the synthesis of triazolo­pyrimidines from enamino­propenones, see: Abdelhamid et al. (2012[Abdelhamid, A. O., Shokry, S. A. & Tawfiek, S. M. (2012). J. Heterocycl. Chem. 49, 116-124.], 2013[Abdelhamid, A. O., Fahmi, A. A. & Halim, K. N. M. (2013). Synth. Commun. 43, 1101-1126.]); Behbehani & Ibrahim (2012[Behbehani, H. & Ibrahim, H. M. (2012). Molecules, 17, 6362-6385.]). For X-ray studies of [1,2,4]triazolo[a]pyrimidines, see: Lipkind et al. (2011[Lipkind, D., Rath, N., Chickos, J. S., Pozdeev, V. A. & Verekin, S. P. (2011). J. Phys. Chem. B, 115, 8785-8796.]); Shikhaliev et al. (2008[Shikhaliev, Kh. S., Kryl'skii, D. V., Potapov, A. Yu., Nefedov, S. E. & Sidorenko, O. E. (2008). Russ. Chem. Bull. 57, 1268-1272 [translated from (2008). Izv. AN, Ser. Khim. pp. 1244-1248].]); Lokaj et al. (2006[Lokaj, J., Kettmann, V., Katuščák, S., Černuchová, P., Milata, V. & Gregáň, F. (2006). Acta Cryst. E62, o1252-o1253.]) and of furazan derivatives, see: Sheremetev et al. (2004[Sheremetev, A. B., Andrianov, V. G., Mantseva, E. V., Shatunova, E. V., Aleksandrova, N. S., Yudin, I. L., Dmitriev, D. E., Averkiev, B. B. & Antipin, M. Yu. (2004). Russ. Chem. Bull. Int. Ed. 53, 596-614 [translated from (2004). Izv. AN, Ser. Khim. pp. 569-586].], 2006[Sheremetev, A. B., Yudin, I. L. & Suponitsky, K. Yu. (2006). Mendeleev Commun. 16, 264-266.], 2012[Sheremetev, A. B., Yudin, I. L., Palysaeva, N. V. & Suponitsky, K. Yu. (2012). J. Heterocycl. Chem. 49, 394-401.], 2013[Sheremetev, A. B., Aleksandrova, N. S., Palysaeva, N. V., Struchkova, M. I., Tartakovsky, V. A. & Suponitsky, K. Yu. (2013). Chem. Eur. J. 19, 12446-12457.]); Suponitsky et al. (2009a[Suponitsky, K. Yu., Lyssenko, K. A., Antipin, M. Yu., Aleksandrova, N. S., Sheremetev, A. B. & Novikova, T. S. (2009a). Russ. Chem. Bull. 58, 2129-2136 [translated from (2009). Izv. AN, Ser. Khim. pp. 2065-2071].],b[Suponitsky, K. Yu., Masunov, A. E. & Antipin, M. Yu. (2009b). Mendeleev Commun. 19, 311-313.]). For normal values of bond lengths in organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N6O

  • Mr = 278.28

  • Monoclinic, P 21 /c

  • a = 11.1397 (6) Å

  • b = 15.6579 (8) Å

  • c = 7.3952 (4) Å

  • β = 101.332 (1)°

  • V = 1264.76 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 16844 measured reflections

  • 4041 independent reflections

  • 3456 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.02

  • 4041 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Dimethylaminopropenones have been widely employed as key building blocks in the synthesis of functionalized alkenes, aromatics and heterocycles, especially 1,2,4-triazolopyrimidines with potential medicinal application (Kulinich & Ischenko, 2009; Stanovnik & Svete, 2004). 1,2,4-Triazolopyrimidines can be obtained readily from the cyclocondensation of dimethylaminopropenones with 3-amino-1,2,4-triazoles. The cyclocondensation can, in principle, yield four regioisomers, i.e. 2-R'-5-R-[1,2,4]triazolo[1,5-a]pyrimidine (A), 2-R'-7-R-[1,2,4]triazolo[1,5-a]pyrimidine (B), 3-R'-5-R-[1,2,4]triazolo[4,3-a]pyrimidine (C) and 3-R'-7-R-[1,2,4]triazolo[4,3-a]pyrimidine (D) as depicted in Figure 1. Different structures have been assigned to products of the reaction in various studies: strucuture B (Behbehani & Ibrahim, 2012), C (Abdelhamid et al., 2013) or D (Abdelhamid et al., 2012). Thus recent literature indicated that the unambiguous identification of obtained regioisomer is problematic. However, up to now single-crystal X-ray analyses was not used to verify the assigned structures of the products obtained from cyclocondensation of dimethylaminopropenones with 3-amino-1,2,4-triazoles.

In the present study we found that cyclocondensation of 3-(dimethylamino)-1-(4-methylfurazan-3-yl)prop-2-en-1-one (1a) with 3-amino-5-phenyl-1,2,4-triazole (2a) in acetic acid resulted in formation of 3-methyl-4-(2-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)-furazan (3a), i.e. regioisomer of type B (Figure 2).

According to X-ray data, nearly planar [1,2,4]triazolo[1,5-a]pyrimidine core form interplanar angle of 5.45 (4)° with the phenyl substituent. Methyl substituted furazan ring is rotated out of the triazolopyrimidine plane (torsional angle N3—C5—C12—C13 is equal to -136.53 (10)°) due to sterical repulsion between the methyl group and the triazolopyrimidine bicycle (Figure 3). In accordance with our earlier study on furazan derivatives (Sheremetev et al., 2004, 2006, 2012, 2013; Suponitsky et al., 2009a, 2009b) the O1—N6 and O1—N5 bond lengths of 1.3929 (12) and 1.3742 (12) Å, respectively, are normal. Bond lengths distribution in triazolopyrimidine core is similar to previously studied triazolopyrimidine derivatives (Lipkind et al., 2011; Shikhaliev et al., 2008; Lokaj et al., 2006; Allen, 2002; Allen et al., 1987).

In the crystal structure, along the crystallographic direction c, molecules form columns in which they are related by the center of symmetry and connected by alternating ππ stacking interactions (Figure 4). The stronger stacking interactions (interplanar distance is 3.306 (3) Å, the shortest contacts are C3···C6i 3.3387 (13) Å; C1···C2i 3.3580 (13) Å) connects molecules into dimers which are linked together by weaker stacking interactions (interplanar distance is 3.412 (3) Å, the shortest contacts are C5···C8ii 3.3858 (14) Å; C1···C1ii 3.370 (2) Å). Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, -y, -z + 1. Intercentroid distances are given in the Table 1.

Related literature top

For applications of enaminones in synthesis, see: Kulinich & Ischenko (2009); Stanovnik & Svete (2004). For the synthesis of triazolopyrimidines from enaminopropenones, see: Abdelhamid et al. (2012, 2013); Behbehani & Ibrahim (2012). For X-ray studies of [1,2,4]triazolo[a]pyrimidines, see: Lipkind et al. (2011); Shikhaliev et al. (2008); Lokaj et al. (2006) and of furazan derivatives, see: Sheremetev et al. (2004, 2006, 2012, 2013); Suponitsky et al. (2009a,b). For normal values of bond lengths in organic compounds, see: Allen et al. (1987) and for a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The crystals of the title compound suitable for X-ray analysis were grown by slow evaporation of tetraclormethane solution of the title compound.

All the reagents were of analytical grade, purchased from commercial sources, and used as received. Infrared spectra were determined in KBr pellets on a Perkin-Elmer Model 577 spectrometer. Mass-spectra were recorded on a Varian MAT-311 A instrument. The 1H and 13C NMR spectra were recorded at 300.13 and 75.47 MHz, respectively. The chemical shift values (δ, p.p.m.) are expressed relative to the chemical shift of the solvent-d. Melting points were determined on Gallenkamp melting point apparatus and are uncorrected.

3-(Dimethylamino)-1-(4-methylfurazan-3-yl)prop-2-en-1-one (1a). A mixture of 2-acetyl-3-methylfurazan (35 g, 0.277 mol) and dimethylformamide dimethylacetal (35 g, 0.294 mol) was refluxed in o-xylene (150 ml) for 3 h. The reaction mixture was then cooled and diluted with petroleum ether. The solid formed was collected by filtration and crystallized from ethanol. Yield 50.1 g (71%), mp 91–92 °C. IR (KBr), ν, cm-1: 1649, 1580, 1551, 1493, 1465, 1422, 1394, 1353, 1271, 1124, 1066, 1032, 1010, 981, 904, 882, 793, 776, 759. 1H MNR (CDCl3, δ, p.p.m.): 2.49 (s, 3H, CH3), 2.98 (s, 3H, CH3), 3.12 (s, 3H, CH3), 5.76 (d, 1H, CH), 7.74 (d, 1H, CH); 13C MNR (CDCl3, δ, p.p.m.): 9.2, 37.3, 45.2, 93.2, 151.4, 152.4, 154.4, 177.8. MS: m/z 181 (M+). Anal. Calcd. for C8H11N3O2 (181.19): C, 53.03; H, 6.12; N, 23.19. Found: C, 53.09; H, 6.07; N, 23.08.

3-Methyl-4-(2-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)-furazan (3a). A mixture of compound 1a (0.36 g, 2 mmol), 3-amino-5-phenyl-1,2,4-triazole 2a (0.32 g, 2 mmol) and acetic acid (5 ml) was refluxed for 8 h. After cooling the product separated was collected by filtration and recrystallized from MeCN. Yield 0.36 g (65%), mp 209–210°C. IR (KBr), ν, cm-1: 1619, 1578, 1544, 1513, 1453, 1441, 1408, 1350, 1327, 1285, 1263, 1205, 1130, 1071, 964, 904, 844, 822, 773; 1H MNR (DMSO-d6, δ, p.p.m.): 2.62 (3H, CH3), 7.54 (3H, Ph), 7.78 (1H, CH), 8.20 (2H, Ph), 9.03 (1H, CH); 13C NMR (DMSO-d6, δ, p.p.m.): 10.01, 111.5, 127.5, 128.7, 129.5, 131.08, 134.5, 147.3, 151.2, 153.8, 156.4, 166.5. Anal. Calcd. for C14H10N6O (278.27): C, 60.43; H, 3.62; N, 30.20. Found: C, 60.56; H, 3.69; N, 30.07.

Refinement top

All H atoms were geometrically positioned (C—H 095–0.98 Å), and refined as riding, with Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Possible types of triazolopyrimidines from the reaction of dimethylaminopropenone with 3-amino-1,2,4-triazoles.
[Figure 2] Fig. 2. Synthesis of the title compound 3a.
[Figure 3] Fig. 3. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. A portion of the crystal packing showing ππ stacking interactions by dashed lines. Cg1, Cg2 and Cg3 are centroids of C1/N1/C2/N3/N4, C2/N2/C3—C5/N3 and C6—C11 cycles, respectively. Symmetry codes: (A) -x + 2, -y, -z; (B) -x + 2, -y, -z + 1.
3-Methyl-4-(2-phenyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)furazan top
Crystal data top
C14H10N6OF(000) = 576
Mr = 278.28Dx = 1.461 Mg m3
Monoclinic, P21/cMelting point = 483–482 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.1397 (6) ÅCell parameters from 7123 reflections
b = 15.6579 (8) Åθ = 2.3–31.0°
c = 7.3952 (4) ŵ = 0.10 mm1
β = 101.332 (1)°T = 120 K
V = 1264.76 (12) Å3Prizm, colourless
Z = 40.32 × 0.28 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
3456 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
Graphite monochromatorθmax = 31.0°, θmin = 1.9°
ϕ and ω scansh = 1616
16844 measured reflectionsk = 2221
4041 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.3512P]
where P = (Fo2 + 2Fc2)/3
4041 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H10N6OV = 1264.76 (12) Å3
Mr = 278.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1397 (6) ŵ = 0.10 mm1
b = 15.6579 (8) ÅT = 120 K
c = 7.3952 (4) Å0.32 × 0.28 × 0.26 mm
β = 101.332 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3456 reflections with I > 2σ(I)
16844 measured reflectionsRint = 0.030
4041 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
4041 reflectionsΔρmin = 0.28 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56608 (7)0.23558 (5)0.09319 (14)0.0282 (2)
N11.00892 (7)0.06092 (5)0.21751 (12)0.01583 (17)
N20.82706 (8)0.11973 (6)0.02377 (12)0.01834 (18)
N30.84903 (7)0.02462 (5)0.13466 (11)0.01300 (16)
N40.93391 (7)0.07409 (5)0.24376 (11)0.01399 (16)
N50.58150 (8)0.14848 (6)0.09470 (14)0.0227 (2)
N60.67069 (8)0.27675 (6)0.06085 (15)0.0239 (2)
C11.02813 (8)0.01935 (6)0.28809 (13)0.01377 (17)
C20.89448 (9)0.05739 (6)0.12102 (13)0.01468 (18)
C30.71487 (9)0.09738 (6)0.05783 (14)0.01883 (19)
H3A0.66460.13990.12650.023*
C40.66417 (9)0.01483 (6)0.05042 (13)0.01698 (19)
H4A0.58290.00310.11290.020*
C50.73399 (8)0.04786 (6)0.04821 (13)0.01414 (17)
C61.14510 (8)0.04615 (6)0.40276 (13)0.01413 (17)
C71.23825 (9)0.01412 (6)0.45314 (14)0.01694 (19)
H7A1.22410.07210.41780.020*
C81.35164 (9)0.01047 (7)0.55480 (15)0.0205 (2)
H8A1.41470.03070.58870.025*
C91.37265 (10)0.09538 (8)0.60680 (16)0.0247 (2)
H9A1.45040.11240.67480.030*
C101.27942 (10)0.15534 (7)0.55890 (17)0.0262 (2)
H10A1.29350.21320.59600.031*
C111.16591 (9)0.13117 (7)0.45715 (15)0.0202 (2)
H11A1.10270.17240.42470.024*
C120.69232 (9)0.13591 (6)0.06503 (13)0.01574 (18)
C130.74940 (9)0.21662 (6)0.04368 (14)0.01690 (19)
C140.87253 (9)0.23617 (7)0.00342 (15)0.0197 (2)
H14A0.87300.29450.04440.030*
H14B0.89100.19580.08870.030*
H14C0.93450.23100.11690.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0170 (4)0.0169 (4)0.0508 (5)0.0032 (3)0.0073 (3)0.0001 (3)
N10.0163 (4)0.0127 (4)0.0189 (4)0.0008 (3)0.0044 (3)0.0004 (3)
N20.0204 (4)0.0139 (4)0.0210 (4)0.0017 (3)0.0048 (3)0.0031 (3)
N30.0129 (3)0.0107 (3)0.0156 (3)0.0004 (3)0.0032 (3)0.0006 (3)
N40.0126 (3)0.0128 (3)0.0164 (4)0.0012 (3)0.0023 (3)0.0010 (3)
N50.0162 (4)0.0155 (4)0.0359 (5)0.0014 (3)0.0036 (4)0.0000 (3)
N60.0185 (4)0.0154 (4)0.0372 (5)0.0013 (3)0.0040 (4)0.0016 (4)
C10.0139 (4)0.0129 (4)0.0153 (4)0.0001 (3)0.0050 (3)0.0010 (3)
C20.0169 (4)0.0114 (4)0.0168 (4)0.0007 (3)0.0058 (3)0.0004 (3)
C30.0205 (4)0.0147 (4)0.0211 (4)0.0034 (3)0.0038 (4)0.0034 (3)
C40.0164 (4)0.0158 (4)0.0182 (4)0.0022 (3)0.0022 (3)0.0011 (3)
C50.0138 (4)0.0133 (4)0.0154 (4)0.0002 (3)0.0031 (3)0.0011 (3)
C60.0126 (4)0.0144 (4)0.0160 (4)0.0000 (3)0.0045 (3)0.0017 (3)
C70.0157 (4)0.0165 (4)0.0192 (4)0.0016 (3)0.0049 (3)0.0037 (3)
C80.0145 (4)0.0233 (5)0.0233 (5)0.0013 (4)0.0026 (4)0.0067 (4)
C90.0168 (4)0.0266 (5)0.0283 (5)0.0043 (4)0.0016 (4)0.0042 (4)
C100.0222 (5)0.0192 (5)0.0340 (6)0.0043 (4)0.0018 (4)0.0021 (4)
C110.0169 (4)0.0159 (4)0.0269 (5)0.0005 (3)0.0020 (4)0.0009 (4)
C120.0140 (4)0.0136 (4)0.0184 (4)0.0003 (3)0.0004 (3)0.0006 (3)
C130.0172 (4)0.0132 (4)0.0193 (4)0.0003 (3)0.0012 (3)0.0011 (3)
C140.0203 (4)0.0154 (4)0.0243 (5)0.0012 (3)0.0068 (4)0.0030 (4)
Geometric parameters (Å, º) top
O1—N51.3742 (12)C5—C121.4678 (13)
O1—N61.3929 (12)C6—C111.3968 (14)
N1—C21.3342 (12)C6—C71.3979 (13)
N1—C11.3616 (12)C7—C81.3914 (14)
N2—C31.3236 (13)C7—H7A0.9500
N2—C21.3497 (12)C8—C91.3910 (16)
N3—N41.3583 (11)C8—H8A0.9500
N3—C51.3643 (12)C9—C101.3931 (16)
N3—C21.3912 (12)C9—H9A0.9500
N4—C11.3449 (12)C10—C111.3909 (14)
N5—C121.3106 (13)C10—H10A0.9500
N6—C131.3095 (13)C11—H11A0.9500
C1—C61.4693 (13)C12—C131.4373 (13)
C3—C41.4160 (14)C13—C141.4914 (14)
C3—H3A0.9500C14—H14A0.9800
C4—C51.3702 (13)C14—H14B0.9800
C4—H4A0.9500C14—H14C0.9800
Cg1···Cg1i3.456 (2)Cg1···Cg3ii3.591 (2)
Cg2···Cg3ii3.540 (2)
N5—O1—N6110.69 (8)C8—C7—C6120.31 (9)
C2—N1—C1103.20 (8)C8—C7—H7A119.8
C3—N2—C2115.36 (9)C6—C7—H7A119.8
N4—N3—C5127.33 (8)C7—C8—C9119.96 (9)
N4—N3—C2110.41 (8)C7—C8—H8A120.0
C5—N3—C2122.26 (8)C9—C8—H8A120.0
C1—N4—N3101.55 (7)C10—C9—C8119.82 (10)
C12—N5—O1105.55 (8)C10—C9—H9A120.1
C13—N6—O1106.41 (8)C8—C9—H9A120.1
N4—C1—N1116.01 (8)C11—C10—C9120.48 (10)
N4—C1—C6121.32 (8)C11—C10—H10A119.8
N1—C1—C6122.66 (8)C9—C10—H10A119.8
N1—C2—N2128.91 (9)C10—C11—C6119.80 (10)
N1—C2—N3108.82 (8)C10—C11—H11A120.1
N2—C2—N3122.27 (9)C6—C11—H11A120.1
N2—C3—C4124.87 (9)N5—C12—C13109.75 (9)
N2—C3—H3A117.6N5—C12—C5118.64 (9)
C4—C3—H3A117.6C13—C12—C5131.49 (9)
C5—C4—C3119.05 (9)N6—C13—C12107.61 (9)
C5—C4—H4A120.5N6—C13—C14122.10 (9)
C3—C4—H4A120.5C12—C13—C14130.27 (9)
N3—C5—C4116.17 (9)C13—C14—H14A109.5
N3—C5—C12119.63 (8)C13—C14—H14B109.5
C4—C5—C12124.20 (9)H14A—C14—H14B109.5
C11—C6—C7119.61 (9)C13—C14—H14C109.5
C11—C6—C1121.11 (9)H14A—C14—H14C109.5
C7—C6—C1119.25 (9)H14B—C14—H14C109.5
C5—N3—N4—C1179.38 (9)N4—C1—C6—C115.31 (14)
C2—N3—N4—C11.14 (9)N1—C1—C6—C11173.36 (9)
N6—O1—N5—C120.26 (12)N4—C1—C6—C7176.72 (9)
N5—O1—N6—C130.33 (12)N1—C1—C6—C74.61 (13)
N3—N4—C1—N10.77 (10)C11—C6—C7—C80.83 (14)
N3—N4—C1—C6177.98 (8)C1—C6—C7—C8177.17 (9)
C2—N1—C1—N40.08 (11)C6—C7—C8—C90.02 (15)
C2—N1—C1—C6178.65 (8)C7—C8—C9—C100.85 (17)
C1—N1—C2—N2178.95 (10)C8—C9—C10—C110.91 (18)
C1—N1—C2—N30.65 (10)C9—C10—C11—C60.09 (17)
C3—N2—C2—N1179.64 (9)C7—C6—C11—C100.77 (15)
C3—N2—C2—N30.09 (14)C1—C6—C11—C10177.19 (10)
N4—N3—C2—N11.19 (10)O1—N5—C12—C130.09 (12)
C5—N3—C2—N1179.29 (8)O1—N5—C12—C5176.58 (9)
N4—N3—C2—N2178.44 (8)N3—C5—C12—N5136.53 (10)
C5—N3—C2—N21.08 (14)C4—C5—C12—N543.38 (14)
C2—N2—C3—C40.60 (15)N3—C5—C12—C1347.89 (15)
N2—C3—C4—C50.33 (15)C4—C5—C12—C13132.19 (11)
N4—N3—C5—C4178.14 (9)O1—N6—C13—C120.26 (11)
C2—N3—C5—C41.30 (13)O1—N6—C13—C14178.61 (9)
N4—N3—C5—C121.79 (14)N5—C12—C13—N60.11 (12)
C2—N3—C5—C12178.78 (8)C5—C12—C13—N6175.77 (10)
C3—C4—C5—N30.63 (13)N5—C12—C13—C14178.28 (10)
C3—C4—C5—C12179.46 (9)C5—C12—C13—C142.40 (18)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1.
Selected interatomic distances (Å) top
Cg1···Cg1i3.456 (2)Cg1···Cg3ii3.591 (2)
Cg2···Cg3ii3.540 (2)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1.
 

Acknowledgements

This work was supported financially by the Ministry of Education and Science of Russia through the Federal Target Program "Research and Educational Personnel of Innovative Russia in Years 2009–2013" (grant No. 14.B37.21.1187) and, in part, through State research contract No. 3.2107.2011.

References

First citationAbdelhamid, A. O., Fahmi, A. A. & Halim, K. N. M. (2013). Synth. Commun. 43, 1101–1126.  Web of Science CrossRef CAS
First citationAbdelhamid, A. O., Shokry, S. A. & Tawfiek, S. M. (2012). J. Heterocycl. Chem. 49, 116–124.  Web of Science CrossRef CAS
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBehbehani, H. & Ibrahim, H. M. (2012). Molecules, 17, 6362–6385.  Web of Science CSD CrossRef CAS PubMed
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationKulinich, A. B. & Ischenko, A. A. (2009). Russ. Chem. Rev. 78, 141–164 [translated from (2009). Usp. Khim. 78, 151–175].
First citationLipkind, D., Rath, N., Chickos, J. S., Pozdeev, V. A. & Verekin, S. P. (2011). J. Phys. Chem. B, 115, 8785–8796.  Web of Science CSD CrossRef CAS PubMed
First citationLokaj, J., Kettmann, V., Katuščák, S., Černuchová, P., Milata, V. & Gregáň, F. (2006). Acta Cryst. E62, o1252–o1253.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheremetev, A. B., Aleksandrova, N. S., Palysaeva, N. V., Struchkova, M. I., Tartakovsky, V. A. & Suponitsky, K. Yu. (2013). Chem. Eur. J. 19, 12446–12457.  Web of Science CSD CrossRef CAS PubMed
First citationSheremetev, A. B., Andrianov, V. G., Mantseva, E. V., Shatunova, E. V., Aleksandrova, N. S., Yudin, I. L., Dmitriev, D. E., Averkiev, B. B. & Antipin, M. Yu. (2004). Russ. Chem. Bull. Int. Ed. 53, 596–614 [translated from (2004). Izv. AN, Ser. Khim. pp. 569–586].
First citationSheremetev, A. B., Yudin, I. L., Palysaeva, N. V. & Suponitsky, K. Yu. (2012). J. Heterocycl. Chem. 49, 394–401.  Web of Science CSD CrossRef CAS
First citationSheremetev, A. B., Yudin, I. L. & Suponitsky, K. Yu. (2006). Mendeleev Commun. 16, 264–266.  Web of Science CSD CrossRef
First citationShikhaliev, Kh. S., Kryl'skii, D. V., Potapov, A. Yu., Nefedov, S. E. & Sidorenko, O. E. (2008). Russ. Chem. Bull. 57, 1268–1272 [translated from (2008). Izv. AN, Ser. Khim. pp. 1244–1248].
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationStanovnik, B. & Svete, J. (2004). Chem. Rev. 104, 2433–2480.  Web of Science CrossRef PubMed CAS
First citationSuponitsky, K. Yu., Lyssenko, K. A., Antipin, M. Yu., Aleksandrova, N. S., Sheremetev, A. B. & Novikova, T. S. (2009a). Russ. Chem. Bull. 58, 2129–2136 [translated from (2009). Izv. AN, Ser. Khim. pp. 2065–2071].
First citationSuponitsky, K. Yu., Masunov, A. E. & Antipin, M. Yu. (2009b). Mendeleev Commun. 19, 311–313.  Web of Science CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1648-o1649
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds