supplementary materials


xu5740 scheme

Acta Cryst. (2013). E69, m577-m578    [ doi:10.1107/S1600536813026287 ]

Poly[bis­(ethanol)([mu]4-2,3,5,6-tetra­fluoro­benzene-1,4-di­carboxyl­ato)cadmium]

N. Ko and J. Kim

Abstract top

In the title compound, [Cd(C8F4O4)(C2H5OH)2]n, the CdII cation sits on an inversion centre and is coordinated by six O atoms from four tetra­fluoro­benzene-1,4-di­carboxyl­ate anions and two ethanol mol­ecules in a distorted octa­hedral geometry. The anionic ligand is also located on an inversion centre, and connects four CdII cations, generating a two-dimensional polymeric layer parallel to the ab plane. Within the layer, the ethanol mol­ecule links F and O atoms of the nearest anionic ligands via O-H...O and O-H...F hydrogen bonds. The ethyl group of the ethanol mol­ecule is disordered over two positions with an occupancy ratio of 0.567 (10):0.433 (10).

Comment top

We reported previously a metal-organic framework (MOF) composed of iron ions and 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate (or tetrafluoroterephthalate) linkers (Yoon et al., 2007). The title compound in this work was obtained in the course of making a new MOF using cadmium ion with the same organic linker. However, unlike other MOFs prepared through solvothermal reactions in common amine solvent such as N,N-dimethylformamide, the title compound could be obtained as single crystals in hot ethanol.

Related literature top

For metal-organic frameworks composed of metal ions and 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate (or tetrafluoroterephthalate), see: Chen et al. (2006, 2009); Hulvey, Ayala et al. (2009); Hulvey, Ayala & Cheetham et al. (2009); Hulvey, Falco et al. (2009); Hulvey et al. (2011); Kitaura et al. (2004); MacNeill et al. (2011); Mikhalyova et al. (2011); Seidel et al. (2011); Seidel et al. (2012); Yoon et al. (2007); Yu et al. (2011); Zheng et al. (2008); Zhu et al. (2009).

Experimental top

The title compound was obtained as colorless plate crystals by a solvothermal reaction between cadmium(II) nitrate tetrahydrate (25 mg) and tetrafluorobenzene-1,4-dicarboxylic acid (12 mg) in ethanol (8 ml)in a Teflon-lined vessel (23 ml) at 353 K and for 2 days.

Refinement top

The ethyl group in ethanol is disordered over two sites with site occupancy factors, 0.56709 (C5 and C6) and 0.43291 (C5A and C6A), respectively. Hydrogen atoms of the ethanol molecule were placed at calculated positions with C—H = 0.99 Å (methylene), C—H = 0.98 Å (methyl) or O—H = 0.85 Å (alcohol) and allowed to ride, with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2Ueq(C,O) for the others.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An asymmetric unit of the title compound is shown with the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. The coordination environment of the title compound is shown with H-bonds (dotted lines).
[Figure 3] Fig. 3. A packing diagram of the title compound is displayed along the c axis. Hydrogen bonds are shown with light blue dotted lines.
[Figure 4] Fig. 4. A packing diagram of the title compound is displayed along the a axis. Hydrogen bonds are shown with light blue dotted lines.
Poly[bis(ethanol)(µ4-2,3,5,6-tetrafluorobenzene-1,4-dicarboxylato)cadmium] top
Crystal data top
[Cd(C8F4O4)(C2H6O)2]Z = 1
Mr = 440.61F(000) = 216
Triclinic, P1Dx = 1.978 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8367 (3) ÅCell parameters from 2269 reflections
b = 9.0903 (6) Åθ = 2.4–28.2°
c = 9.4078 (6) ŵ = 1.55 mm1
α = 108.091 (1)°T = 173 K
β = 100.637 (1)°Plate, colorless
γ = 102.275 (1)°0.35 × 0.20 × 0.06 mm
V = 369.95 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
1576 independent reflections
Radiation source: fine-focus sealed tube1569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 27.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 56
Tmin = 0.613, Tmax = 0.913k = 1111
2308 measured reflectionsl = 128
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.1686P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.40 e Å3
1576 reflectionsΔρmin = 0.54 e Å3
131 parameters
Crystal data top
[Cd(C8F4O4)(C2H6O)2]γ = 102.275 (1)°
Mr = 440.61V = 369.95 (4) Å3
Triclinic, P1Z = 1
a = 4.8367 (3) ÅMo Kα radiation
b = 9.0903 (6) ŵ = 1.55 mm1
c = 9.4078 (6) ÅT = 173 K
α = 108.091 (1)°0.35 × 0.20 × 0.06 mm
β = 100.637 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1576 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1569 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.913Rint = 0.014
2308 measured reflectionsθmax = 27.1°
Refinement top
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054Δρmax = 0.40 e Å3
S = 1.11Δρmin = 0.54 e Å3
1576 reflectionsAbsolute structure: ?
131 parametersAbsolute structure parameter: ?
6 restraintsRogers parameter: ?
Special details top

Geometry. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd11.00000.50001.00000.02063 (9)
F10.1389 (4)0.24768 (17)1.27515 (16)0.0358 (3)
F20.2660 (3)0.01945 (17)0.77434 (17)0.0349 (3)
O10.6687 (3)0.28942 (19)1.0084 (2)0.0271 (3)
O20.3899 (3)0.43185 (17)1.12102 (18)0.0227 (3)
C10.4446 (4)0.3017 (2)1.0543 (2)0.0205 (4)
C20.2191 (4)0.1450 (2)1.0267 (2)0.0194 (4)
C30.0738 (5)0.1268 (3)1.1375 (2)0.0226 (4)
C40.1397 (5)0.0137 (3)0.8888 (3)0.0219 (4)
O31.0823 (4)0.3384 (2)0.7802 (2)0.0327 (4)
H3OA1.249 (5)0.393 (5)0.781 (5)0.039*0.567 (10)
H3OB1.137 (15)0.267 (5)0.809 (5)0.039*0.433 (10)
C50.8671 (16)0.2366 (7)0.6350 (7)0.055 (2)0.567 (10)
H5A0.69140.17690.65530.065*0.567 (10)
H5B0.95020.15680.57260.065*0.567 (10)
C60.783 (2)0.3392 (10)0.5484 (8)0.094 (4)0.567 (10)
H6A0.63350.27110.45090.141*0.567 (10)
H6B0.95660.39510.52570.141*0.567 (10)
H6C0.70390.41900.61150.141*0.567 (10)
C5A0.9372 (18)0.3012 (15)0.6188 (7)0.064 (3)0.433 (10)
H5AA0.92150.40150.60170.076*0.433 (10)
H5AB1.05240.25080.55140.076*0.433 (10)
C6A0.6405 (16)0.1883 (14)0.5801 (9)0.077 (4)0.433 (10)
H6AA0.54100.15990.47050.116*0.433 (10)
H6AB0.52610.24030.64520.116*0.433 (10)
H6AC0.65790.09020.59900.116*0.433 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01309 (12)0.01499 (12)0.03701 (14)0.00397 (8)0.01226 (8)0.01066 (9)
F10.0477 (9)0.0235 (7)0.0292 (7)0.0016 (6)0.0166 (6)0.0042 (6)
F20.0434 (8)0.0268 (7)0.0387 (7)0.0039 (6)0.0284 (6)0.0117 (6)
O10.0160 (7)0.0204 (8)0.0512 (10)0.0062 (6)0.0155 (7)0.0174 (7)
O20.0184 (7)0.0165 (7)0.0331 (8)0.0035 (6)0.0083 (6)0.0094 (6)
C10.0137 (9)0.0186 (10)0.0310 (10)0.0029 (7)0.0061 (7)0.0127 (8)
C20.0128 (8)0.0175 (9)0.0320 (10)0.0050 (7)0.0081 (7)0.0131 (8)
C30.0214 (10)0.0188 (10)0.0273 (10)0.0045 (8)0.0079 (8)0.0079 (8)
C40.0196 (10)0.0219 (10)0.0302 (10)0.0063 (8)0.0140 (8)0.0132 (8)
O30.0258 (8)0.0301 (9)0.0332 (9)0.0046 (7)0.0055 (7)0.0032 (7)
C50.051 (5)0.033 (3)0.049 (3)0.001 (3)0.009 (3)0.005 (3)
C60.109 (7)0.128 (8)0.040 (4)0.079 (7)0.002 (4)0.004 (4)
C5A0.053 (5)0.072 (7)0.033 (4)0.028 (5)0.004 (3)0.015 (4)
C6A0.033 (4)0.124 (9)0.036 (4)0.017 (5)0.000 (3)0.009 (4)
Geometric parameters (Å, º) top
Cd1—O1i2.2526 (15)O3—C51.444 (4)
Cd1—O12.2526 (15)O3—C5A1.449 (5)
Cd1—O2ii2.3194 (15)O3—H3OA0.850 (5)
Cd1—O2iii2.3194 (15)O3—H3OB0.849 (5)
Cd1—O3i2.2929 (18)C5—C61.487 (5)
Cd1—O32.2929 (18)C5—H5A0.9900
F1—C31.343 (3)C5—H5B0.9900
F2—C41.342 (2)C6—H6A0.9800
O1—C11.252 (3)C6—H6B0.9800
O2—C11.264 (3)C6—H6C0.9800
O2—Cd1iv2.3194 (15)C5A—C6A1.481 (5)
C1—C21.513 (3)C5A—H5AA0.9900
C2—C41.384 (3)C5A—H5AB0.9900
C2—C31.391 (3)C6A—H6AA0.9800
C3—C4v1.382 (3)C6A—H6AB0.9800
C4—C3v1.382 (3)C6A—H6AC0.9800
O1i—Cd1—O1180.0C5—O3—H3OA120 (3)
O1i—Cd1—O3i91.52 (7)C5A—O3—H3OA97 (3)
O1—Cd1—O3i88.48 (6)Cd1—O3—H3OA103 (3)
O1i—Cd1—O388.48 (6)C5—O3—H3OB100 (4)
O1—Cd1—O391.52 (7)C5A—O3—H3OB120 (3)
O3i—Cd1—O3180.0Cd1—O3—H3OB103 (3)
O1i—Cd1—O2ii87.93 (6)H3OA—O3—H3OB98 (6)
O1—Cd1—O2ii92.07 (6)O3—C5—C6109.1 (5)
O3i—Cd1—O2ii97.63 (6)O3—C5—H5A109.9
O3—Cd1—O2ii82.37 (6)C6—C5—H5A109.9
O1i—Cd1—O2iii92.07 (5)O3—C5—H5B109.9
O1—Cd1—O2iii87.93 (6)C6—C5—H5B109.9
O3i—Cd1—O2iii82.37 (6)H5A—C5—H5B108.3
O3—Cd1—O2iii97.63 (6)C5—C6—H6A109.5
O2ii—Cd1—O2iii180.0C5—C6—H6B109.5
C1—O1—Cd1123.39 (14)H6A—C6—H6B109.5
C1—O2—Cd1iv120.48 (13)C5—C6—H6C109.5
O1—C1—O2126.19 (19)H6A—C6—H6C109.5
O1—C1—C2116.46 (19)H6B—C6—H6C109.5
O2—C1—C2117.36 (18)C6A—C5A—O3108.5 (5)
C4—C2—C3116.23 (19)C6A—C5A—H5AA110.0
C4—C2—C1122.13 (19)O3—C5A—H5AA110.0
C3—C2—C1121.62 (19)C6A—C5A—H5AB110.0
F1—C3—C4v117.7 (2)O3—C5A—H5AB110.0
F1—C3—C2120.24 (19)H5AA—C5A—H5AB108.4
C4v—C3—C2122.0 (2)C5A—C6A—H6AA109.5
F2—C4—C3v117.5 (2)C5A—C6A—H6AB109.5
F2—C4—C2120.81 (19)H6AA—C6A—H6AB109.5
C3v—C4—C2121.7 (2)C5A—C6A—H6AC109.5
C5—O3—Cd1127.3 (4)H6AA—C6A—H6AC109.5
C5A—O3—Cd1129.2 (6)H6AB—C6A—H6AC109.5
Cd1—O1—C1—O210.2 (3)C4—C2—C3—C4v0.6 (3)
Cd1—O1—C1—C2169.78 (13)C1—C2—C3—C4v177.71 (19)
Cd1iv—O2—C1—O1113.9 (2)C3—C2—C4—F2179.70 (19)
Cd1iv—O2—C1—C266.1 (2)C1—C2—C4—F21.4 (3)
O1—C1—C2—C441.9 (3)C3—C2—C4—C3v0.6 (3)
O2—C1—C2—C4138.0 (2)C1—C2—C4—C3v177.70 (19)
O1—C1—C2—C3139.9 (2)C5A—O3—C5—C628.4 (13)
O2—C1—C2—C340.1 (3)Cd1—O3—C5—C676.5 (7)
C4—C2—C3—F1179.42 (19)C5—O3—C5A—C6A23.6 (10)
C1—C2—C3—F12.3 (3)Cd1—O3—C5A—C6A73.7 (11)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x1, y, z; (v) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3OA···O2i0.85 (1)1.94 (2)2.719 (2)152 (4)
O3—H3OB···F2ii0.85 (1)2.40 (2)3.196 (2)156 (4)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z.
Selected bond lengths (Å) top
Cd1—O12.2526 (15)Cd1—O32.2929 (18)
Cd1—O2i2.3194 (15)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3OA···O2ii0.850 (5)1.94 (2)2.719 (2)152 (4)
O3—H3OB···F2i0.849 (5)2.402 (18)3.196 (2)156 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2.
Acknowledgements top

This research was supported by the Ministry of Knowledge Economy (MKE) and the Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology.

references
References top

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, B., Yang, Y., Zapata, F., Qian, G., Luo, Y., Zhang, J. & Lobkovsky, E. B. (2006). Inorg. Chem. 45, 8882–8886.

Chen, S.-C., Zhang, Z.-H., Chen, Q., Gao, H.-B., Liu, Q., He, M.-Y. & Du, M. (2009). Inorg. Chem. Commun. 12, 835–838.

Hulvey, Z., Ayala, E. & Cheetham, A. K. (2009). Z. Anorg. Allg. Chem. 635, 1753–1757.

Hulvey, Z., Ayala, E., Furman, J. D., Forster, P. M. & Cheetham, A. K. (2009). Cryst. Growth Des. 9, 4759–4765.

Hulvey, Z., Falco, E. H. L., Eckert, J. & Cheetham, A. K. (2009). J. Mater. Chem. 19, 4307–4309.

Hulvey, Z., Sava, D. A., Eckert, J. & Cheetham, A. K. (2011). Inorg. Chem. 50, 403–405.

Kitaura, R., Iwahori, F., Matsuda, R., Kitagawa, S., Kubota, Y., Takata, M. & Kobayashi, T. C. (2004). Inorg. Chem. 43, 6522–6524.

MacNeill, C. M., Day, C. S., Marts, A., Lachgar, A. & Noftle, R. E. (2011). Inorg. Chim. Acta, 365, 196–203.

Mikhalyova, E. A., Kolotilov, S. V., Zeller, M., Thompson, L. K., Addison, A. W., Pavlishchuk, V. V. & Hunter, A. D. (2011). Dalton Trans. 40, 10989–10996.

Seidel, C., Ahlers, R. & Ruschewitz, U. (2011). Cryst. Growth Des. 11, 5053–5063.

Seidel, C., Lorbeer, C., Cybin?ska, J., Mudring, A.-V. & Ruschewitz, U. (2012). Inorg. Chem. 51, 4679–4688.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yoon, J. H., Choi, S. B., Oh, Y. J., Seo, M. J., Jhon, Y. H., Lee, T.-B., Kim, D., Choi, S. H. & Kim, J. (2007). Catal. Today, 120, 324–329.

Yu, J., Zhang, Y.-F., Sun, F.-A. & Chen, Q. (2011). Acta Cryst. E67, m527–m528.

Zheng, C.-G., Hong, J.-Q., Zhang, J. & Wang, C. (2008). Acta Cryst. E64, m879.

Zhu, E., Liu, Q., Chen, Q., He, M., Chen, S., Zhang, Z. & Huang, H. (2009). J. Coord. Chem. 62, 2449–2456.