supplementary materials


bt6944 scheme

Acta Cryst. (2013). E69, o1777-o1778    [ doi:10.1107/S1600536813030936 ]

(1S,3R,8R,10R)-2,2-Di­bromo-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodecan-9-one

A. Benharref, N. Mazoir, J.-C. Daran and M. Berraho

Abstract top

The title compound, C16H24Br2O was synthesized by three steps from [beta]-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from essential oil of the Atlas cedar (Cedrus atlantica). The mol­ecule is built up from a seven-membered ring to which a six- and a three-membered ring are fused. The six-membered ring shows a chair conformation. One C atom in the seven-membered ring and two methyl groups attached to the ring are disordered over two sets of sites, with an occupancy ratio of 0.658 (7):0.342 (7).

Comment top

With the aim exploiting the Moroccan floral inheritance, in particular plants which contain essential oils, we have directed our research endeavours towards the oil of the Atlas Cedar (Cedrus atlantica). The main constituent of this oil is β-himachalene (El Haib et al., 2011). The reactivity of this sesquiterpene has been studied extensively by our team (El Jamili et al., 2002; Benharref et al., 2013; Ourhriss et al. (2013), in order to prepare new products having olfactive properieties suitable for the perfume or cosmetics industry. In this work we present the crystal structure of the title compound, (1S, 3R, 8R, 10R)-2, 2- dibromo-3,7, 7,10- tetramethyltricyclo[6.4.0.01,3]dodecan-9-one. The molecule is built up from two fused seven and six-membered rings and a three-membered ring attached to the seven-membered ring as shown in Fig. 1. The six-membered ring has a chair conformation as indicated by the total puckering amplitude QT = 0.527 (3) Å and spherical polar angle θ = 167.9 (3)° with φ = 99.3 (17)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be successfully confirmed as C1(S), C3(R), C8(R) and C10(R).

Related literature top

For background to the reactivity and biological properties of β-himachalene, see: El Haib et al. (2011); El Jamili et al. (2002). For related structures, see: Benharref et al. (2013); Oukhrib et al. (2013); Ourhriss et al. (2013). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

For the synthesis of the compound (1S, 3R, 8R, 10R)-2, 2-dibromo- 3,7,7,10-tetramethyltricyclo [6.4.0.01,3]dodecan-9-one, 2 ml of BF3—Et2O was added dropwise to a 250 ml flask containing a solution of (1S,3R,8R,9S,10R)-2,2-dibromo- 9α,10α-epoxy- 3,7,7,10-tetramethyltricyclo-[6.4.0.01,3]dodecane (Oukhrib et al.,2013) (2 g, 5 mmol) in 100 ml of dichloromethane at 195 K under nitrogen. The reaction mixture was stirred for two hours at a constant temperature of 195 K and was left at ambient temperature for 24 h. Water (60 ml) was a added in order to separate the two phases, and the organic phase was dried and concentrated. The residue obtained was chromatographed on silica- gel eluting with hexane- ethyle acetate (98/2), which allowed the isolation of pure (1S, 3R, 8R, 10R)-2, 2- dibromo-3,7, 7,10- tetramethyltricyclo[6.4.0.01,3]dodecan-9-one in a Yield 80% (1.56 g, 4 mmol). The title compound was recrystallized from its pentane solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl). The C6 carbon atom is disordered over two positions inducing a disorder of the two methyl groups C14 and C15 attached to C7. The occupancy factor for these sites was refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. The minor occupied sites of the disordered atoms have been omitted for clarity.
(1S,3R,8R,10R)-2,2-Dibromo-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecan-9-one top
Crystal data top
C16H24Br2OF(000) = 396
Mr = 392.17Dx = 1.589 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 6.5975 (2) ÅCell parameters from 5144 reflections
b = 15.2612 (3) Åθ = 5.4–60.5°
c = 8.2688 (2) ŵ = 6.19 mm1
β = 100.045 (3)°T = 180 K
V = 819.79 (4) Å3Box, colourless
Z = 20.5 × 0.03 × 0.03 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2416 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2399 reflections with I > 2σ(I)
Miror monochromatorRint = 0.021
Detector resolution: 16.1978 pixels mm-1θmax = 60.5°, θmin = 5.4°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1717
Tmin = 0.269, Tmax = 1.000l = 99
6201 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.1798P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2416 reflectionsΔρmax = 0.28 e Å3
206 parametersΔρmin = 0.46 e Å3
13 restraintsAbsolute structure: Flack & Bernardinelli (2000), 1127 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C16H24Br2OV = 819.79 (4) Å3
Mr = 392.17Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.5975 (2) ŵ = 6.19 mm1
b = 15.2612 (3) ÅT = 180 K
c = 8.2688 (2) Å0.5 × 0.03 × 0.03 mm
β = 100.045 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2416 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2399 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 1.000Rint = 0.021
6201 measured reflectionsθmax = 60.5°
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.28 e Å3
S = 1.07Δρmin = 0.46 e Å3
2416 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1127 Friedel pairs
206 parametersAbsolute structure parameter: 0.01 (2)
13 restraints
Special details top

Experimental. 'Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2013 )

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.99187 (4)0.122716 (16)0.78691 (3)0.03410 (11)
Br20.52030 (5)0.08850 (2)0.71788 (4)0.04828 (14)
C10.7175 (4)0.19420 (18)1.0114 (3)0.0248 (5)
C20.7326 (4)0.1623 (2)0.8397 (3)0.0291 (6)
C30.6907 (5)0.2575 (2)0.8643 (3)0.0326 (7)
C40.8580 (6)0.3239 (2)0.8543 (4)0.0410 (8)
H4A0.82830.35340.74610.049*
H4B0.99090.29280.86110.049*
C50.8797 (7)0.3936 (2)0.9896 (4)0.0503 (9)
H5A0.74200.40811.01430.060*0.658 (7)
H5B0.93910.44760.95090.060*0.658 (7)
H5C1.02600.41151.01570.060*0.342 (7)
H5D0.79900.44570.94570.060*0.342 (7)
C61.0237 (8)0.3596 (3)1.1520 (6)0.0392 (15)0.658 (7)
H6A1.15450.33921.12180.047*0.658 (7)
H6B1.05680.41021.22690.047*0.658 (7)
C70.9428 (5)0.2883 (2)1.2449 (4)0.0328 (7)
C140.7534 (9)0.3152 (3)1.3157 (8)0.0413 (14)0.658 (7)
H14A0.78380.36871.38090.062*0.658 (7)
H14B0.71660.26821.38580.062*0.658 (7)
H14C0.63830.32611.22580.062*0.658 (7)
C151.1166 (8)0.2667 (3)1.3978 (6)0.0365 (13)0.658 (7)
H15A1.23570.24101.35930.055*0.658 (7)
H15B1.06300.22501.47010.055*0.658 (7)
H15C1.15840.32071.45850.055*0.658 (7)
C14A1.1692 (14)0.3197 (7)1.2660 (14)0.045 (3)0.342 (7)
H14D1.18230.37681.32100.067*0.342 (7)
H14E1.20960.32501.15790.067*0.342 (7)
H14F1.25880.27721.33250.067*0.342 (7)
C15A0.866 (2)0.2882 (7)1.4049 (13)0.044 (3)0.342 (7)
H15D0.94780.24711.48080.065*0.342 (7)
H15E0.72130.27021.38640.065*0.342 (7)
H15F0.87870.34721.45210.065*0.342 (7)
C6A0.8140 (16)0.3676 (5)1.1417 (10)0.039 (3)0.342 (7)
H6A10.66760.34991.11540.047*0.342 (7)
H6A20.82190.41961.21400.047*0.342 (7)
C80.9178 (4)0.20156 (19)1.1383 (3)0.0246 (6)
H81.03210.20261.07310.030*
C90.9510 (5)0.1190 (2)1.2426 (4)0.0317 (6)
C100.7707 (5)0.07818 (19)1.3066 (4)0.0325 (6)
H100.73330.11861.39190.039*
C110.5854 (5)0.0733 (2)1.1673 (4)0.0360 (7)
H11A0.61470.03051.08440.043*
H11B0.46450.05191.21170.043*
C120.5341 (4)0.1611 (2)1.0847 (4)0.0324 (6)
H12A0.50060.20401.16600.039*
H12B0.41230.15500.99670.039*
C1010.8255 (6)0.0096 (2)1.3886 (4)0.0468 (9)
H10A0.86670.05041.30890.070*
H10B0.70560.03311.42930.070*
H10C0.93960.00191.48080.070*
C3110.4754 (6)0.2933 (3)0.7987 (5)0.0508 (10)
H31A0.46630.30990.68320.076*
H31B0.44960.34480.86280.076*
H31C0.37260.24810.80810.076*
O11.1188 (4)0.08460 (19)1.2698 (4)0.0608 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03127 (18)0.04181 (18)0.03046 (17)0.00328 (14)0.00880 (13)0.00787 (14)
Br20.0335 (2)0.0641 (3)0.0454 (2)0.01004 (16)0.00180 (17)0.02435 (18)
C10.0237 (14)0.0255 (12)0.0249 (13)0.0003 (12)0.0029 (11)0.0001 (11)
C20.0238 (13)0.0362 (14)0.0263 (12)0.0054 (13)0.0016 (11)0.0060 (12)
C30.0347 (16)0.0360 (15)0.0258 (13)0.0046 (13)0.0011 (12)0.0022 (12)
C40.060 (2)0.0321 (16)0.0289 (15)0.0066 (15)0.0024 (15)0.0089 (13)
C50.077 (3)0.0221 (15)0.052 (2)0.0032 (16)0.0115 (19)0.0029 (14)
C60.057 (4)0.023 (2)0.035 (3)0.011 (2)0.000 (2)0.005 (2)
C70.0376 (16)0.0305 (16)0.0301 (14)0.0034 (13)0.0056 (14)0.0104 (13)
C140.053 (3)0.029 (2)0.042 (3)0.001 (3)0.010 (3)0.015 (2)
C150.044 (3)0.029 (2)0.032 (2)0.003 (2)0.006 (2)0.0076 (19)
C14A0.038 (6)0.045 (5)0.052 (6)0.010 (5)0.008 (5)0.019 (5)
C15A0.067 (8)0.030 (5)0.037 (6)0.008 (5)0.020 (6)0.015 (4)
C6A0.052 (7)0.024 (4)0.045 (5)0.002 (4)0.016 (4)0.004 (4)
C80.0238 (14)0.0258 (13)0.0247 (13)0.0026 (12)0.0053 (11)0.0044 (11)
C90.0354 (16)0.0320 (14)0.0267 (12)0.0054 (16)0.0027 (12)0.0014 (15)
C100.0455 (18)0.0254 (13)0.0297 (14)0.0012 (14)0.0152 (13)0.0005 (11)
C110.0316 (15)0.0377 (17)0.0417 (16)0.0064 (14)0.0149 (13)0.0003 (14)
C120.0224 (14)0.0378 (14)0.0379 (14)0.0011 (13)0.0081 (12)0.0046 (14)
C1010.070 (3)0.0292 (16)0.0422 (18)0.0018 (16)0.0138 (17)0.0041 (14)
C3110.048 (2)0.050 (2)0.049 (2)0.0172 (16)0.0070 (18)0.0059 (15)
O10.0390 (13)0.0750 (18)0.0715 (17)0.0250 (14)0.0177 (12)0.0388 (15)
Geometric parameters (Å, º) top
Br1—C21.934 (3)C15—H15A0.9800
Br2—C21.938 (3)C15—H15B0.9800
C1—C21.521 (4)C15—H15C0.9800
C1—C121.530 (4)C14A—H14D0.9800
C1—C31.539 (4)C14A—H14E0.9800
C1—C81.542 (4)C14A—H14F0.9800
C2—C31.499 (4)C15A—H15D0.9800
C3—C41.512 (5)C15A—H15E0.9800
C3—C3111.530 (4)C15A—H15F0.9800
C4—C51.533 (5)C6A—H6A10.9900
C4—H4A0.9900C6A—H6A20.9900
C4—H4B0.9900C8—C91.521 (4)
C5—C6A1.455 (9)C8—H81.0000
C5—C61.590 (6)C9—O11.210 (4)
C5—H5A0.9900C9—C101.517 (4)
C5—H5B0.9900C10—C1011.516 (4)
C5—H5C0.9900C10—C111.528 (4)
C5—H5D0.9900C10—H101.0000
C6—C71.484 (6)C11—C121.515 (5)
C6—H6A0.9900C11—H11A0.9900
C6—H6B0.9900C11—H11B0.9900
C7—C15A1.496 (9)C12—H12A0.9900
C7—C141.525 (6)C12—H12B0.9900
C7—C14A1.549 (9)C101—H10A0.9800
C7—C81.583 (4)C101—H10B0.9800
C7—C151.586 (5)C101—H10C0.9800
C7—C6A1.632 (8)C311—H31A0.9800
C14—H14A0.9800C311—H31B0.9800
C14—H14B0.9800C311—H31C0.9800
C14—H14C0.9800
C2—C1—C12116.7 (2)C14—C7—C6A67.3 (4)
C2—C1—C358.67 (19)C14A—C7—C6A103.5 (6)
C12—C1—C3122.0 (2)C8—C7—C6A109.6 (4)
C2—C1—C8118.1 (2)C15—C7—C6A144.0 (4)
C12—C1—C8113.4 (2)C7—C14—H14A109.5
C3—C1—C8117.3 (2)C7—C14—H14B109.5
C3—C2—C161.27 (19)C7—C14—H14C109.5
C3—C2—Br1121.7 (2)C7—C15—H15A109.5
C1—C2—Br1121.02 (19)C7—C15—H15B109.5
C3—C2—Br2120.0 (2)C7—C15—H15C109.5
C1—C2—Br2120.8 (2)C7—C14A—H14D109.5
Br1—C2—Br2106.78 (14)C7—C14A—H14E109.5
C2—C3—C4119.2 (3)H14D—C14A—H14E109.5
C2—C3—C311118.7 (3)C7—C14A—H14F109.5
C4—C3—C311112.5 (3)H14D—C14A—H14F109.5
C2—C3—C160.06 (19)H14E—C14A—H14F109.5
C4—C3—C1118.7 (2)C7—C15A—H15D109.5
C311—C3—C1118.4 (3)C7—C15A—H15E109.5
C3—C4—C5113.7 (3)H15D—C15A—H15E109.5
C3—C4—H4A108.8C7—C15A—H15F109.5
C5—C4—H4A108.8H15D—C15A—H15F109.5
C3—C4—H4B108.8H15E—C15A—H15F109.5
C5—C4—H4B108.8C5—C6A—C7116.6 (6)
H4A—C4—H4B107.7C5—C6A—H6A1108.1
C6A—C5—C4116.0 (4)C7—C6A—H6A1108.1
C6A—C5—C653.5 (5)C5—C6A—H6A2108.1
C4—C5—C6110.9 (3)C7—C6A—H6A2108.1
C6A—C5—H5A57.4H6A1—C6A—H6A2107.3
C4—C5—H5A109.5C9—C8—C1110.3 (2)
C6—C5—H5A109.5C9—C8—C7112.7 (2)
C6A—C5—H5B134.6C1—C8—C7115.7 (2)
C4—C5—H5B109.5C9—C8—H8105.8
C6—C5—H5B109.5C1—C8—H8105.8
H5A—C5—H5B108.1C7—C8—H8105.8
C6A—C5—H5C108.3O1—C9—C10120.3 (3)
C4—C5—H5C108.3O1—C9—C8120.1 (3)
C6—C5—H5C59.4C10—C9—C8119.6 (2)
H5A—C5—H5C142.0C101—C10—C9112.3 (3)
H5B—C5—H5C54.1C101—C10—C11113.0 (3)
C6A—C5—H5D108.3C9—C10—C11109.3 (2)
C4—C5—H5D108.3C101—C10—H10107.3
C6—C5—H5D140.8C9—C10—H10107.3
H5A—C5—H5D56.1C11—C10—H10107.3
H5B—C5—H5D55.3C12—C11—C10112.5 (3)
H5C—C5—H5D107.4C12—C11—H11A109.1
C7—C6—C5117.4 (4)C10—C11—H11A109.1
C7—C6—H6A107.9C12—C11—H11B109.1
C5—C6—H6A107.9C10—C11—H11B109.1
C7—C6—H6B107.9H11A—C11—H11B107.8
C5—C6—H6B107.9C11—C12—C1109.9 (2)
H6A—C6—H6B107.2C11—C12—H12A109.7
C6—C7—C15A131.7 (5)C1—C12—H12A109.7
C6—C7—C14113.1 (4)C11—C12—H12B109.7
C15A—C7—C1440.1 (5)C1—C12—H12B109.7
C6—C7—C14A53.5 (5)H12A—C12—H12B108.2
C15A—C7—C14A111.7 (7)C10—C101—H10A109.5
C14—C7—C14A135.3 (5)C10—C101—H10B109.5
C6—C7—C8109.7 (3)H10A—C101—H10B109.5
C15A—C7—C8118.2 (4)C10—C101—H10C109.5
C14—C7—C8115.3 (3)H10A—C101—H10C109.5
C14A—C7—C8109.0 (4)H10B—C101—H10C109.5
C6—C7—C15106.8 (3)C3—C311—H31A109.5
C15A—C7—C1566.7 (6)C3—C311—H31B109.5
C14—C7—C15106.1 (4)H31A—C311—H31B109.5
C14A—C7—C1555.0 (5)C3—C311—H31C109.5
C8—C7—C15105.1 (3)H31A—C311—H31C109.5
C6—C7—C6A52.2 (4)H31B—C311—H31C109.5
C15A—C7—C6A103.7 (6)

Experimental details

Crystal data
Chemical formulaC16H24Br2O
Mr392.17
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)6.5975 (2), 15.2612 (3), 8.2688 (2)
β (°) 100.045 (3)
V3)819.79 (4)
Z2
Radiation typeCu Kα
µ (mm1)6.19
Crystal size (mm)0.5 × 0.03 × 0.03
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.269, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6201, 2416, 2399
Rint0.021
θmax (°)60.5
(sin θ/λ)max1)0.565
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.07
No. of reflections2416
No. of parameters206
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.46
Absolute structureFlack & Bernardinelli (2000), 1127 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

references
References top

Agilent (2013). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.

Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

El Haib, A., Benharref, A., Parres-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.

El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.

Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522.

Ourhriss, N., Benharref, A., Saadi, M., El Ammari, L. & Berraho, M. (2013). Acta Cryst. E69, o275.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.