supplementary materials


ds2235 scheme

Acta Cryst. (2013). E69, o1747    [ doi:10.1107/S1600536813029346 ]

1-Nitro-4-(4-nitro­phen­oxy)benzene: a second monoclinic polymorph

M. Naz, Z. Akhter, V. McKee and A. Nadeem

Abstract top

In the title compound, C12H8N2O5, the aromatic rings are inclined to one another by 56.14 (7)°. The nitro groups are inclined by to the benzene rings to which they are attached by 3.86 (17) and 9.65 (15)°. In the crystal, mol­ecules are linked by C-H...O hydrogen bonds, forming a three-dimensional structure. The title compound is a new monoclinic polymorph, crystallizing in space group P21/c. The first polymorph crystallized in space group C2/c and the mol­ecule possesses twofold rotation symmetry. Two low-temperature structures of this polymorph (150 K and 100 K, respectively) have been reported [Meciarova et al. (2004). Private Communication (refcode IXOGAD). CCDC, Cambridge, England, and Dey & Desiraju (2005). Chem. Commun. pp. 2486-2488].

Comment top

The molecular structure of the title molecule is illustrated in Fig. 1. The molecule has a a twisted V-shape with the two nitrophenyl rings being inclined to one another by 56.14 (7) °. The nitro group N11/O11/O12 is inclined to the benzene ring C11-C16, to which it is attached, by 3.86 (17) °, while the nitro group N21/O21/O22 is inclined to benzene ring C21-C26 by 9.65 (15) °.

In the crystal, molecules are linked by C-H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2).

The title compound is a new monoclinic polymorph, crystallizing in space group P21/c. The first polymorph crystallized in space group C2/c and the the molecule possesses two-fold rotation symmetry with the ether O atom lying on the two-fold rotation axis. The 150 K structure was reported on by (Meciarova et al., 2004), while the 100 K structure was reported on by (Dey & Desiraju, 2005). Taking the 100 K structure as reference it can be seen that the molecular structure is slightly different to that of the present polymorph with the two nitrophenyl rings being inclined to one another by 66.75 (6) ° and the nitro group being inclined to the benzene ring by 12.97 (13) °. In the crystal, molecules are also linked by C—H···O hydrogen bonds forming a three-dimensional structure.

Related literature top

For the crystal structure of the monoclinic C2/c polymorph of the title compound, see: Meciarova et al. (2004); Dey & Desiraju (2005).

Experimental top

A mixture of 4-nitrochlorobenzene (38.2 mmol), 1,6-hexan-diol (19.1 mmol) and anhydrous potassium carbonate (38.2 mmol) in 50 ml of THF was placed in a three necked prebaked round bottom flask fitted with a reflux condenser, a nitrogen inlet and a magnetic stirrer. After refluxing for 18 h in an inert atmosphere, the mixture was cooled to room temperature and poured into 400 ml of water, yielding a yellow solid. The product was filtered, dried and recrystallized from ethanol. The title compound was obtained as a by-product in the form of block-like yellow crystals [yield 10%; M.p. = 416 K].

Refinement top

C-bound H atoms were included in calculated positions and refined as riding atoms: C-H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker 1998); cell refinement: SAINT (Bruker 1998); data reduction: SAINT (Bruker 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule structure of the title molecule. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
1-Nitro-4-(4-nitrophenoxy)benzene top
Crystal data top
C12H8N2O5F(000) = 536
Mr = 260.20Dx = 1.506 Mg m3
Monoclinic, P21/cMelting point: 416 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.1114 (5) ÅCell parameters from 3529 reflections
b = 11.8942 (7) Åθ = 2.4–30.6°
c = 12.3970 (7) ŵ = 0.12 mm1
β = 106.402 (1)°T = 150 K
V = 1147.37 (12) Å3Block, yellow
Z = 40.36 × 0.35 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
2149 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
ω rotation with narrow frames scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 1010
Tmin = 0.794, Tmax = 0.862k = 1515
10808 measured reflectionsl = 1616
2641 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.2844P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2641 reflectionsΔρmax = 0.23 e Å3
172 parametersΔρmin = 0.26 e Å3
Crystal data top
C12H8N2O5V = 1147.37 (12) Å3
Mr = 260.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1114 (5) ŵ = 0.12 mm1
b = 11.8942 (7) ÅT = 150 K
c = 12.3970 (7) Å0.36 × 0.35 × 0.25 mm
β = 106.402 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
2149 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.862Rint = 0.026
10808 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.23 e Å3
S = 1.06Δρmin = 0.26 e Å3
2641 reflectionsAbsolute structure: ?
172 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44094 (13)0.19652 (8)0.09931 (8)0.0438 (3)
C110.32514 (17)0.12641 (11)0.02667 (11)0.0346 (3)
C120.3348 (2)0.01415 (11)0.05873 (12)0.0427 (3)
H120.41000.00820.12900.051*
C130.2350 (2)0.06452 (11)0.01166 (12)0.0414 (3)
H130.24060.14160.00920.050*
C140.12673 (16)0.02940 (10)0.11323 (11)0.0341 (3)
N110.02465 (15)0.11328 (10)0.18957 (11)0.0427 (3)
O110.07448 (13)0.08066 (10)0.27901 (11)0.0564 (3)
O120.04440 (16)0.21295 (9)0.16171 (11)0.0581 (3)
C150.11403 (17)0.08250 (11)0.14550 (12)0.0361 (3)
H150.03680.10480.21510.043*
C160.21520 (17)0.16134 (10)0.07512 (11)0.0349 (3)
H160.20950.23840.09610.042*
C210.41096 (18)0.31038 (11)0.10392 (11)0.0353 (3)
C220.55556 (17)0.37841 (12)0.12879 (11)0.0369 (3)
H220.66610.34640.13840.044*
C230.53798 (17)0.49294 (11)0.13949 (10)0.0359 (3)
H230.63570.54080.15520.043*
C240.37637 (17)0.53685 (11)0.12704 (10)0.0329 (3)
N210.35664 (16)0.65877 (9)0.13676 (9)0.0388 (3)
O210.21649 (15)0.69525 (9)0.13919 (11)0.0592 (3)
O220.48044 (14)0.71924 (8)0.14138 (9)0.0477 (3)
C250.23130 (18)0.46974 (12)0.10442 (12)0.0394 (3)
H250.12150.50180.09750.047*
C260.24867 (18)0.35511 (12)0.09212 (13)0.0420 (3)
H260.15070.30750.07580.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0519 (6)0.0328 (5)0.0393 (5)0.0013 (4)0.0010 (4)0.0048 (4)
C110.0417 (7)0.0300 (6)0.0332 (6)0.0018 (5)0.0122 (5)0.0024 (5)
C120.0603 (9)0.0338 (7)0.0329 (7)0.0052 (6)0.0115 (6)0.0050 (5)
C130.0597 (9)0.0258 (6)0.0430 (8)0.0006 (6)0.0217 (7)0.0047 (5)
C140.0336 (6)0.0294 (6)0.0435 (7)0.0040 (5)0.0176 (6)0.0047 (5)
N110.0383 (6)0.0374 (6)0.0580 (8)0.0086 (5)0.0227 (6)0.0107 (6)
O110.0338 (5)0.0551 (7)0.0719 (8)0.0026 (5)0.0012 (5)0.0181 (6)
O120.0775 (8)0.0332 (6)0.0725 (8)0.0187 (5)0.0357 (7)0.0101 (5)
C150.0343 (7)0.0336 (7)0.0393 (7)0.0009 (5)0.0084 (5)0.0012 (5)
C160.0406 (7)0.0254 (6)0.0381 (7)0.0007 (5)0.0102 (5)0.0035 (5)
C210.0466 (7)0.0309 (6)0.0280 (6)0.0022 (5)0.0098 (5)0.0016 (5)
C220.0358 (7)0.0425 (7)0.0290 (6)0.0004 (6)0.0035 (5)0.0008 (5)
C230.0371 (7)0.0388 (7)0.0294 (6)0.0090 (5)0.0055 (5)0.0011 (5)
C240.0433 (7)0.0308 (6)0.0253 (6)0.0057 (5)0.0106 (5)0.0002 (5)
N210.0512 (7)0.0340 (6)0.0327 (6)0.0057 (5)0.0142 (5)0.0016 (5)
O210.0606 (7)0.0381 (6)0.0882 (9)0.0030 (5)0.0362 (7)0.0020 (6)
O220.0576 (6)0.0370 (5)0.0488 (6)0.0158 (5)0.0153 (5)0.0031 (4)
C250.0384 (7)0.0375 (7)0.0458 (8)0.0033 (6)0.0174 (6)0.0044 (6)
C260.0420 (7)0.0370 (7)0.0511 (8)0.0107 (6)0.0196 (6)0.0085 (6)
Geometric parameters (Å, º) top
O1—C211.3799 (16)C16—H160.9500
O1—C111.3824 (16)C21—C221.3861 (19)
C11—C161.3873 (18)C21—C261.389 (2)
C11—C121.3890 (19)C22—C231.3801 (19)
C12—C131.376 (2)C22—H220.9500
C12—H120.9500C23—C241.3787 (19)
C13—C141.381 (2)C23—H230.9500
C13—H130.9500C24—C251.3835 (18)
C14—C151.3852 (18)C24—N211.4677 (17)
C14—N111.4608 (17)N21—O221.2233 (15)
N11—O121.2325 (16)N21—O211.2251 (16)
N11—O111.2340 (17)C25—C261.384 (2)
C15—C161.3819 (18)C25—H250.9500
C15—H150.9500C26—H260.9500
C21—O1—C11121.58 (10)O1—C21—C22115.73 (12)
O1—C11—C16123.77 (12)O1—C21—C26122.99 (12)
O1—C11—C12114.87 (12)C22—C21—C26121.14 (12)
C16—C11—C12121.19 (12)C23—C22—C21119.58 (13)
C13—C12—C11119.79 (13)C23—C22—H22120.2
C13—C12—H12120.1C21—C22—H22120.2
C11—C12—H12120.1C24—C23—C22118.95 (12)
C12—C13—C14118.77 (12)C24—C23—H23120.5
C12—C13—H13120.6C22—C23—H23120.5
C14—C13—H13120.6C23—C24—C25122.11 (12)
C13—C14—C15122.02 (12)C23—C24—N21119.17 (11)
C13—C14—N11118.84 (12)C25—C24—N21118.72 (12)
C15—C14—N11119.13 (12)O22—N21—O21123.08 (12)
O12—N11—O11123.66 (13)O22—N21—C24118.53 (12)
O12—N11—C14118.06 (13)O21—N21—C24118.38 (11)
O11—N11—C14118.27 (12)C24—C25—C26118.92 (13)
C16—C15—C14119.16 (12)C24—C25—H25120.5
C16—C15—H15120.4C26—C25—H25120.5
C14—C15—H15120.4C25—C26—C21119.27 (12)
C15—C16—C11119.06 (12)C25—C26—H26120.4
C15—C16—H16120.5C21—C26—H26120.4
C11—C16—H16120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O21i0.952.563.4413 (18)153
C23—H23···O11ii0.952.313.1933 (18)154
C26—H26···O12iii0.952.423.227 (2)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O21i0.952.563.4413 (18)153
C23—H23···O11ii0.952.313.1933 (18)154
C26—H26···O12iii0.952.423.227 (2)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z.
Acknowledgements top

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and the Chemistry Department, Loughborough University, Loughborough, UK, for providing laboratory and analytical facilities.

references
References top

Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dey, A. & Desiraju, G. R. (2005). Chem. Commun. pp. 2486–2488.

Meciarova, M., Toma, S., Podlesna, J., Kiripolsky, M. & Cisarova, I. (2004). Private Communication (refcode IXOGAD). CCDC, Cambridge, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.