supplementary materials


ff2122 scheme

Acta Cryst. (2013). E69, o1749    [ doi:10.1107/S1600536813029851 ]

2,2,2-Tri­fluoro-N-(2-iodo­phen­yl)acetamide

Y. Ruchun, Z. Hui and C. BanPeng

Abstract top

The three F atoms in the title compound, C8H5F3INO, are disordered over two sets of sites [relative occupancies = 0.615 (14):0.385 (14)]. In the crystal, mol­ecules are linked by N-H...O hydrogen bonds, forming chains running along the c-axis direction. The dihedral angle between the ring and the amide group is 62.1 (3)°.

Comment top

Aromatic compounds play an important role in the pharmaceutical and agrochemical industries as important intermediates. The fluorine atom has a strong electron withdrawing character and small atomic radius. Introduction of one or more F atoms can change the physiological activity, pharmacological activity and metabolic stability properties of the compound (Jeschke, 2004; Mueller, et al., 2007; Purser, et al., 2008). In our study, we report an aromatic compounds containing fluorine, 2,2,2-trifluoro-N-(2-iodophenyl)acetamide, which could be used in the synthesis of many bioactive compounds.

There is a single molecule in the asymmetric unit of the title compound 2,2,2-trifluoro-N-(2-iodophenyl)acetamide, C8H5F3INO. In the crystal, The three F atoms are disordered over two sites [relative occupancies 0.615 (14):0.385 (14)]. The crystal packing is stabilized by N1—H1···O1 hydrogen bond that connect molecules into chains running along the c direction.

Related literature top

For effects of flourine on the properties of compounds, see: Jeschke (2004); Mueller et al. (2007); Purser et al. (2008). For the synthesis, see: Konfink et al. (2007). Mueller et al. (2007); Purser et al. (2008). For synthesis, see: Konfink et al. (2007).

Experimental top

The title compound was synthesized according to the previously reported procedure (Konfink, et al., 2007).

Refinement top

H atoms bond to N were located in a difference map and refined with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) other H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of C8H5F3INO. Ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radius.
2,2,2-Trifluoro-N-(2-iodophenyl)acetamide top
Crystal data top
C8H5F3INODx = 2.075 Mg m3
Mr = 315.02Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1114 reflections
Hall symbol: -I 4adθ = 3.1–21.8°
a = 15.8871 (1) ŵ = 3.20 mm1
c = 15.9300 (2) ÅT = 293 K
V = 4020.7 (6) Å3Block, colourless
Z = 160.30 × 0.20 × 0.20 mm
F(000) = 2368
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1775 independent reflections
Radiation source: fine-focus sealed tube1153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1715
Tmin = 0.447, Tmax = 0.567k = 1812
6063 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0324P)2 + 3.0148P]
where P = (Fo2 + 2Fc2)/3
1775 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.42 e Å3
450 restraintsΔρmin = 0.54 e Å3
Crystal data top
C8H5F3INOZ = 16
Mr = 315.02Mo Kα radiation
Tetragonal, I41/aµ = 3.20 mm1
a = 15.8871 (1) ÅT = 293 K
c = 15.9300 (2) Å0.30 × 0.20 × 0.20 mm
V = 4020.7 (6) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1153 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
Rint = 0.055
Tmin = 0.447, Tmax = 0.567θmax = 25.0°
6063 measured reflectionsStandard reflections: 0
1775 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.42 e Å3
S = 1.06Δρmin = 0.54 e Å3
1775 reflectionsAbsolute structure: ?
155 parametersAbsolute structure parameter: ?
450 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.61704 (3)0.35482 (3)0.43754 (3)0.0704 (2)
N10.7883 (3)0.4465 (3)0.5004 (3)0.0465 (12)
H10.77710.41750.54460.056*
O10.8853 (3)0.4661 (3)0.3977 (2)0.0627 (13)
F10.9082 (8)0.3600 (9)0.5849 (6)0.095 (4)0.615 (14)
F20.9342 (9)0.3088 (7)0.4454 (6)0.098 (4)0.615 (14)
F30.9903 (8)0.4012 (8)0.5219 (9)0.109 (4)0.615 (14)
F1'0.8791 (11)0.3219 (12)0.5583 (13)0.081 (5)0.385 (14)
F2'0.8837 (13)0.2878 (9)0.4878 (15)0.099 (5)0.385 (14)
F3'0.9922 (12)0.3650 (14)0.4827 (12)0.091 (5)0.385 (14)
C10.6481 (4)0.4831 (4)0.4479 (3)0.0468 (15)
C20.5885 (4)0.5432 (4)0.4246 (4)0.0594 (18)
H20.53420.52720.40990.071*
C30.6121 (5)0.6273 (4)0.4237 (4)0.0649 (19)
H30.57280.66820.40940.078*
C40.6921 (5)0.6507 (5)0.4434 (4)0.0634 (18)
H40.70760.70710.44000.076*
C50.7503 (4)0.5913 (4)0.4685 (4)0.0543 (16)
H50.80450.60790.48300.065*
C60.7280 (4)0.5074 (4)0.4720 (3)0.0440 (14)
C70.8600 (4)0.4334 (4)0.4613 (3)0.0431 (14)
C80.9161 (5)0.3650 (5)0.5022 (5)0.0577 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0683 (4)0.0521 (4)0.0909 (4)0.0005 (2)0.0240 (3)0.0036 (3)
N10.052 (3)0.047 (3)0.041 (2)0.010 (2)0.001 (2)0.008 (2)
O10.055 (3)0.086 (4)0.047 (2)0.011 (3)0.007 (2)0.018 (2)
F10.112 (8)0.113 (8)0.061 (5)0.062 (6)0.008 (5)0.010 (5)
F20.129 (8)0.082 (6)0.083 (5)0.057 (6)0.001 (6)0.014 (5)
F30.077 (6)0.118 (8)0.133 (8)0.006 (6)0.065 (6)0.013 (6)
F1'0.084 (9)0.087 (10)0.073 (9)0.015 (7)0.017 (7)0.041 (8)
F2'0.112 (10)0.066 (8)0.118 (10)0.016 (7)0.039 (9)0.003 (8)
F3'0.063 (8)0.116 (11)0.092 (9)0.036 (8)0.018 (8)0.027 (8)
C10.055 (4)0.040 (3)0.045 (3)0.008 (3)0.002 (3)0.001 (3)
C20.055 (4)0.058 (4)0.065 (4)0.022 (3)0.007 (3)0.001 (3)
C30.080 (5)0.046 (4)0.069 (4)0.026 (4)0.007 (4)0.005 (3)
C40.078 (5)0.045 (4)0.067 (4)0.013 (4)0.004 (4)0.001 (3)
C50.066 (4)0.048 (4)0.049 (3)0.003 (3)0.004 (3)0.001 (3)
C60.053 (4)0.042 (3)0.037 (3)0.014 (3)0.006 (3)0.004 (3)
C70.047 (4)0.045 (4)0.037 (3)0.000 (3)0.005 (3)0.005 (3)
C80.052 (4)0.062 (5)0.059 (4)0.015 (4)0.002 (4)0.004 (4)
Geometric parameters (Å, º) top
I1—C12.103 (6)C1—C61.382 (8)
N1—C71.316 (7)C1—C21.394 (8)
N1—C61.433 (7)C2—C31.389 (9)
N1—H10.8600C2—H20.9300
O1—C71.208 (6)C3—C41.361 (9)
F1—C81.326 (12)C3—H30.9300
F2—C81.303 (11)C4—C51.380 (9)
F3—C81.349 (13)C4—H40.9300
F1'—C81.271 (16)C5—C61.381 (8)
F2'—C81.351 (16)C5—H50.9300
F3'—C81.248 (18)C7—C81.548 (9)
C7—N1—C6122.5 (5)C5—C6—C1119.6 (6)
C7—N1—H1118.8C5—C6—N1119.6 (6)
C6—N1—H1118.8C1—C6—N1120.8 (6)
C6—C1—C2120.4 (6)O1—C7—N1128.1 (6)
C6—C1—I1120.5 (4)O1—C7—C8117.6 (6)
C2—C1—I1118.9 (5)N1—C7—C8114.3 (6)
C3—C2—C1118.6 (7)F3'—C8—F1'128.5 (12)
C3—C2—H2120.7F2—C8—F1132.0 (10)
C1—C2—H2120.7F2—C8—F3105.1 (10)
C4—C3—C2120.8 (7)F1—C8—F382.9 (11)
C4—C3—H3119.6F3'—C8—F2'109.1 (13)
C2—C3—H3119.6F1'—C8—F2'56.9 (16)
C3—C4—C5120.4 (7)F3'—C8—C7116.9 (10)
C3—C4—H4119.8F1'—C8—C7114.1 (9)
C5—C4—H4119.8F2—C8—C7108.4 (6)
C4—C5—C6120.0 (7)F1—C8—C7113.9 (7)
C4—C5—H5120.0F3—C8—C7107.6 (8)
C6—C5—H5120.0F2'—C8—C7110.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.917 (6)163
Symmetry code: (i) y+1/4, x+5/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.917 (6)163
Symmetry code: (i) y+1/4, x+5/4, z+1/4.
Acknowledgements top

This work was supported by the Science Fund of the Education Office of Jiangxi (GJJ12583) and the Bureau of Science and Technology of Nanchang City.

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Jeschke, P. (2004). Chembiochem, 5, 570–589.

Konfink, C. C., Blank, B., Pagano, B., Gotz, N. & Knochel, P. (2007). Chem. Commun. 19, 1954–1956.

Mueller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886.

Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.