supplementary materials


fj2648 scheme

Acta Cryst. (2013). E69, m658    [ doi:10.1107/S1600536813030286 ]

[[mu]2-N2,N2'-Bis(3-meth­oxy-2-oxido­benzyl­idene)benzene-1,3-dicarbo­hydrazi­dato]bis­[pyridine­copper(II)]

H.-B. Tong and Z.-J. Xiao

Abstract top

In the centrosymmetric dinuclear title complex, [Cu2(C24H18N4O6)(C5H5N)2], the CuII ions is tetra­coordinated by two O-atoms and one N-donor of the bridging terephthalo­hydra­zonate ligand and by one pyridine N atom, resulting in a nearly square-planar N2O2 coordination geometry with the CuII ion 0.044 (2) Å out of the mean plane (r.m.s. deviation of 0.0675 Å) of the coordinating atoms.

Comment top

Bifunctional organic ligand and their complexes have attracted increasing interest in recent years, due to their potential applications in luminescence, redox activity, magnetism and diversities of coordination (He et al., 2004; Qiao et al., 2007; Yin et al., 2008; Zhu et al., 2010; Lin et al., 2012). Relatively speaking, only a few crystal structures of arylaldehyde terephthalohydrazone complexes have been reported (He et al., 2004; Yin et al.,2008; Lin et al., 2012). Herein, we report the synthesis and structure of copper complex with N,N'-bis(3-methoxy-2-oxybenzylidene)terephthalohydrazone.

As show in Fig 1, we can see that the title complex contain dinuclear copper(II) skeletons showing a trans conformation (centrosymmetry). That is, one half of the dinuclear copper(II) complex constitutes the crystallographic asymmetric unit and the other half is produced by an inversion centre. In the title complex, Cu1(II) ion is coordinated by carbonyl atom O1, hydrazine atom N2 and phenol atom O2 from the moieties of the ligand H4L, which is hexadentate ligand that function as tetrabasic in the enol form, and N3 atom from coordinated pyridine molecule, obtaining a nearly square-planar N2O2 geometry (r.m.s deviation =0.0675 Å). The CuII atom is shifted 0.044 (2) Å out of the square-plane. One five-membered chelate ring (ring M1) and one six-membered chelate ring (ring M2) are formed by the moieties of the ligand L4- and Cu1 atom. The ring M1 is composed of Cu1, N2, N1, C1 and O1 with r.m.s deviation of 0.0123 Å,The ring M2 of Cu1, N2, C5, C6, C7 and O2 with r.m.s deviation of 0.0238 Å. All two chelate rings are planar. The bond lengths of Cu—N and Cu—O in the title complex are similar to those in other dinuclear copper(II) complexes (Banerjee et al., 2009; Shulgin et al., 2011; Mistri et al., 2013). The whole L4- ligand is a nearly planar (r.m.s deviation=0.0805 Å), the dihedral angle between the two benzene rings is 7.29 (29)°.

Related literature top

For the structural coordination chemistry and potential applications in luminescence, redox activity and magnetism of bifunctional organic ligands and their complexes, see: He et al. (2004); Qiao et al. (2007); Yin et al. (2008); Zhu et al. (2010); Lin et al. (2012). For the crystal structures of dinuclear copper(II) complexes with a similar coordination geometry, see: Banerjee et al. (2009); Shulgin et al. (2011); Mistri et al. (2013). For the synthesis of N,N'-bis(3-methoxy-2-oxybenzylidene)terephthalohydrazone, see: Yin et al. (2008).

Experimental top

Reagents and solvents were used as obtained without further purification. N,N'-bis(3-methoxy-2-oxybenzylidene)terephthalohydrazone (H4L) was synthesized according to the literature methods (Yin et al., 2008). H4L (0.0462 g, 0.1 mmol) and copper(II) chloride dihydrate (0.0342 g, 0.2 mmol) were dissolved in a mixed solution of 10 ml CH3OH and 5 ml DMF. The mixture was stirred for 10 minutes at room temperature and then 5 ml pyridine was slowly added. The reaction mixture was further stirred for 4 h. After being obtained by filtration, the dark green filtrate was allowed to stand at room temperature for 15 days. The dark green prism crystals of the title complex were obtained by slow evaporation.

Refinement top

All H atoms were positioned geometrically and refined using a riding model [C—H=0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms,C—H=0.96 Å and Uiso(H) = 1.5Ueq(c) for methyl H atoms].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 50% probability displacement ellipsoids and the atom numbering scheme.
2-N2,N2'-Bis(3-methoxy-2-oxidobenzylidene)benzene-1,3-dicarbohydrazidato]bis[pyridinecopper(II)] top
Crystal data top
[Cu2(C24H18N4O6)(C5H5N)2]F(000) = 760
Mr = 743.70Dx = 1.632 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 2658 reflections
a = 4.8474 (2) Åθ = 3.6–66.5°
b = 15.2776 (6) ŵ = 2.23 mm1
c = 20.5546 (6) ÅT = 153 K
β = 96.113 (4)°Prism, dark green
V = 1513.55 (10) Å30.45 × 0.32 × 0.22 mm
Z = 2
Data collection top
Agilent Gemini S Ultra
diffractometer
2658 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2113 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 15.9149 pixels mm-1θmax = 66.5°, θmin = 3.6°
ω scansh = 35
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1717
Tmin = 0.447, Tmax = 0.615l = 2424
5837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.5957P]
where P = (Fo2 + 2Fc2)/3
2658 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu2(C24H18N4O6)(C5H5N)2]V = 1513.55 (10) Å3
Mr = 743.70Z = 2
Monoclinic, P21/nCu Kα radiation
a = 4.8474 (2) ŵ = 2.23 mm1
b = 15.2776 (6) ÅT = 153 K
c = 20.5546 (6) Å0.45 × 0.32 × 0.22 mm
β = 96.113 (4)°
Data collection top
Agilent Gemini S Ultra
diffractometer
2658 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2113 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 0.615Rint = 0.029
5837 measured reflectionsθmax = 66.5°
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.38 e Å3
S = 1.06Δρmin = 0.35 e Å3
2658 reflectionsAbsolute structure: ?
218 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.21 (release 14–08-2012 CrysAlis171. NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.10363 (10)0.25720 (3)0.16238 (2)0.0517 (2)
N10.0548 (6)0.3121 (2)0.03092 (13)0.0562 (7)
N20.0561 (6)0.25260 (18)0.07303 (14)0.0508 (7)
N30.2965 (6)0.26684 (19)0.25349 (14)0.0511 (7)
O10.3097 (5)0.35162 (17)0.12788 (10)0.0565 (6)
O20.1445 (5)0.17419 (17)0.19006 (11)0.0602 (6)
O30.4238 (6)0.0629 (2)0.25128 (12)0.0706 (8)
C10.2389 (7)0.3600 (2)0.06565 (16)0.0511 (8)
C20.3731 (7)0.4314 (2)0.03120 (16)0.0528 (8)
C30.3252 (9)0.4435 (3)0.03547 (17)0.0730 (12)
H3A0.20670.40540.06030.088*
C40.5515 (9)0.4894 (3)0.06609 (18)0.0733 (12)
H4A0.58840.48280.11120.088*
C50.2521 (8)0.2022 (3)0.04869 (17)0.0578 (9)
H5A0.30740.20700.00410.069*
C60.3922 (7)0.1392 (2)0.08483 (17)0.0541 (8)
C70.3333 (7)0.1298 (2)0.15349 (17)0.0530 (8)
C80.4884 (8)0.0671 (3)0.18484 (18)0.0564 (9)
C90.6886 (8)0.0168 (3)0.1499 (2)0.0666 (10)
H9A0.79000.02350.17150.080*
C100.7394 (8)0.0262 (3)0.0824 (2)0.0684 (11)
H10A0.87180.00880.05890.082*
C110.5966 (8)0.0862 (3)0.05070 (19)0.0643 (10)
H11A0.63430.09240.00560.077*
C120.5910 (10)0.0070 (3)0.2862 (2)0.0793 (13)
H12A0.54220.01450.33240.119*
H12B0.56060.05280.27450.119*
H12C0.78300.02160.27530.119*
C130.5123 (8)0.3210 (2)0.26756 (17)0.0571 (9)
H13A0.57360.35420.23400.069*
C140.6461 (8)0.3293 (3)0.32932 (19)0.0648 (10)
H14A0.79510.36750.33730.078*
C150.5587 (9)0.2807 (3)0.37955 (19)0.0665 (10)
H15A0.64630.28570.42190.080*
C160.3409 (9)0.2250 (3)0.36585 (18)0.0651 (10)
H16A0.27920.19080.39880.078*
C170.2124 (8)0.2198 (3)0.30282 (17)0.0583 (9)
H17A0.06190.18230.29420.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0608 (3)0.0568 (3)0.0367 (3)0.0049 (2)0.0017 (2)0.0011 (2)
N10.0682 (18)0.0619 (18)0.0379 (14)0.0119 (15)0.0030 (13)0.0058 (14)
N20.0598 (16)0.0557 (17)0.0365 (14)0.0046 (14)0.0035 (12)0.0003 (12)
N30.0583 (16)0.0568 (17)0.0377 (14)0.0027 (14)0.0026 (12)0.0013 (13)
O10.0745 (15)0.0598 (14)0.0348 (11)0.0132 (12)0.0035 (10)0.0020 (10)
O20.0668 (15)0.0699 (16)0.0429 (12)0.0143 (13)0.0011 (11)0.0015 (12)
O30.0825 (18)0.0779 (18)0.0502 (14)0.0214 (15)0.0014 (13)0.0066 (13)
C10.061 (2)0.0542 (19)0.0382 (16)0.0007 (16)0.0072 (14)0.0010 (15)
C20.064 (2)0.0564 (19)0.0377 (16)0.0036 (17)0.0056 (14)0.0031 (15)
C30.093 (3)0.084 (3)0.0399 (18)0.037 (2)0.0064 (18)0.0040 (19)
C40.098 (3)0.084 (3)0.0352 (17)0.032 (2)0.0025 (18)0.0083 (19)
C50.065 (2)0.069 (2)0.0384 (17)0.0003 (19)0.0012 (15)0.0005 (17)
C60.0566 (19)0.056 (2)0.0488 (19)0.0008 (16)0.0015 (15)0.0029 (16)
C70.0555 (18)0.055 (2)0.0479 (18)0.0001 (16)0.0034 (15)0.0024 (16)
C80.061 (2)0.055 (2)0.053 (2)0.0017 (17)0.0044 (16)0.0002 (17)
C90.063 (2)0.066 (2)0.070 (3)0.0103 (19)0.0030 (19)0.003 (2)
C100.066 (2)0.069 (2)0.067 (3)0.013 (2)0.0083 (19)0.004 (2)
C110.067 (2)0.068 (2)0.054 (2)0.004 (2)0.0074 (17)0.0025 (19)
C120.099 (3)0.077 (3)0.061 (2)0.025 (3)0.008 (2)0.011 (2)
C130.062 (2)0.059 (2)0.0490 (19)0.0002 (18)0.0022 (16)0.0064 (17)
C140.062 (2)0.068 (2)0.062 (2)0.0012 (19)0.0088 (18)0.005 (2)
C150.074 (2)0.080 (3)0.0429 (19)0.009 (2)0.0090 (17)0.0009 (19)
C160.080 (3)0.073 (3)0.0418 (19)0.001 (2)0.0011 (18)0.0078 (18)
C170.067 (2)0.063 (2)0.0446 (19)0.0036 (18)0.0009 (16)0.0065 (17)
Geometric parameters (Å, º) top
Cu1—O21.877 (3)C6—C111.407 (5)
Cu1—N21.917 (3)C6—C71.417 (5)
Cu1—O11.932 (2)C7—C81.414 (5)
Cu1—N32.007 (3)C8—C91.379 (5)
N1—C11.307 (5)C9—C101.389 (5)
N1—N21.401 (4)C9—H9A0.9300
N2—C51.282 (5)C10—C111.357 (5)
N3—C131.341 (5)C10—H10A0.9300
N3—C171.341 (5)C11—H11A0.9300
O1—C11.295 (4)C12—H12A0.9600
O2—C71.310 (4)C12—H12B0.9600
O3—C81.370 (4)C12—H12C0.9600
O3—C121.423 (4)C13—C141.368 (5)
C1—C21.487 (5)C13—H13A0.9300
C2—C31.378 (5)C14—C151.375 (6)
C2—C41.384 (5)C14—H14A0.9300
C3—C4i1.373 (5)C15—C161.361 (6)
C3—H3A0.9300C15—H15A0.9300
C4—C3i1.373 (5)C16—C171.379 (5)
C4—H4A0.9300C16—H16A0.9300
C5—C61.431 (5)C17—H17A0.9300
C5—H5A0.9300
O2—Cu1—N293.38 (11)O2—C7—C6125.0 (3)
O2—Cu1—O1171.34 (11)C8—C7—C6117.5 (3)
N2—Cu1—O181.23 (11)O3—C8—C9124.6 (4)
O2—Cu1—N390.95 (11)O3—C8—C7114.2 (3)
N2—Cu1—N3175.52 (12)C9—C8—C7121.2 (3)
O1—Cu1—N394.59 (11)C8—C9—C10120.2 (4)
C1—N1—N2108.1 (3)C8—C9—H9A119.9
C5—N2—N1117.7 (3)C10—C9—H9A119.9
C5—N2—Cu1127.1 (3)C11—C10—C9120.3 (4)
N1—N2—Cu1115.2 (2)C11—C10—H10A119.9
C13—N3—C17117.4 (3)C9—C10—H10A119.9
C13—N3—Cu1121.4 (2)C10—C11—C6121.1 (4)
C17—N3—Cu1121.2 (3)C10—C11—H11A119.4
C1—O1—Cu1110.1 (2)C6—C11—H11A119.4
C7—O2—Cu1127.4 (2)O3—C12—H12A109.5
C8—O3—C12116.7 (3)O3—C12—H12B109.5
O1—C1—N1125.3 (3)H12A—C12—H12B109.5
O1—C1—C2117.4 (3)O3—C12—H12C109.5
N1—C1—C2117.3 (3)H12A—C12—H12C109.5
C3—C2—C4117.3 (3)H12B—C12—H12C109.5
C3—C2—C1122.4 (3)N3—C13—C14122.6 (4)
C4—C2—C1120.2 (3)N3—C13—H13A118.7
C4i—C3—C2121.4 (4)C14—C13—H13A118.7
C4i—C3—H3A119.3C13—C14—C15119.5 (4)
C2—C3—H3A119.3C13—C14—H14A120.2
C3i—C4—C2121.3 (3)C15—C14—H14A120.2
C3i—C4—H4A119.4C16—C15—C14118.4 (4)
C2—C4—H4A119.4C16—C15—H15A120.8
N2—C5—C6125.1 (3)C14—C15—H15A120.8
N2—C5—H5A117.5C15—C16—C17119.6 (4)
C6—C5—H5A117.5C15—C16—H16A120.2
C11—C6—C7119.6 (4)C17—C16—H16A120.2
C11—C6—C5118.4 (3)N3—C17—C16122.4 (4)
C7—C6—C5121.9 (3)N3—C17—H17A118.8
O2—C7—C8117.5 (3)C16—C17—H17A118.8
C1—N1—N2—C5176.5 (3)N2—C5—C6—C11177.6 (4)
C1—N1—N2—Cu12.8 (4)N2—C5—C6—C73.2 (6)
O2—Cu1—N2—C53.7 (3)Cu1—O2—C7—C8176.9 (3)
O1—Cu1—N2—C5176.9 (3)Cu1—O2—C7—C62.6 (5)
O2—Cu1—N2—N1175.5 (2)C11—C6—C7—O2178.7 (4)
O1—Cu1—N2—N12.4 (2)C5—C6—C7—O22.2 (6)
O2—Cu1—N3—C13179.7 (3)C11—C6—C7—C80.8 (5)
O1—Cu1—N3—C136.4 (3)C5—C6—C7—C8178.4 (3)
O2—Cu1—N3—C170.3 (3)C12—O3—C8—C94.8 (6)
O1—Cu1—N3—C17173.0 (3)C12—O3—C8—C7174.2 (3)
N2—Cu1—O1—C11.4 (2)O2—C7—C8—O31.7 (5)
N3—Cu1—O1—C1177.0 (2)C6—C7—C8—O3178.8 (3)
N2—Cu1—O2—C74.7 (3)O2—C7—C8—C9179.2 (4)
N3—Cu1—O2—C7174.2 (3)C6—C7—C8—C90.3 (6)
Cu1—O1—C1—N10.1 (5)O3—C8—C9—C10179.8 (4)
Cu1—O1—C1—C2178.6 (2)C7—C8—C9—C100.8 (6)
N2—N1—C1—O11.8 (5)C8—C9—C10—C111.4 (6)
N2—N1—C1—C2176.8 (3)C9—C10—C11—C60.9 (6)
O1—C1—C2—C3176.4 (4)C7—C6—C11—C100.2 (6)
N1—C1—C2—C34.9 (6)C5—C6—C11—C10179.0 (4)
O1—C1—C2—C44.3 (5)C17—N3—C13—C140.0 (6)
N1—C1—C2—C4174.3 (4)Cu1—N3—C13—C14179.5 (3)
C4—C2—C3—C4i0.2 (8)N3—C13—C14—C150.1 (6)
C1—C2—C3—C4i179.1 (4)C13—C14—C15—C160.4 (6)
C3—C2—C4—C3i0.2 (8)C14—C15—C16—C170.9 (6)
C1—C2—C4—C3i179.1 (4)C13—N3—C17—C160.6 (6)
N1—N2—C5—C6178.7 (3)Cu1—N3—C17—C16180.0 (3)
Cu1—N2—C5—C60.6 (6)C15—C16—C17—N31.0 (6)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C24H18N4O6)(C5H5N)2]
Mr743.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)4.8474 (2), 15.2776 (6), 20.5546 (6)
β (°) 96.113 (4)
V3)1513.55 (10)
Z2
Radiation typeCu Kα
µ (mm1)2.23
Crystal size (mm)0.45 × 0.32 × 0.22
Data collection
DiffractometerAgilent Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.447, 0.615
No. of measured, independent and
observed [I > 2σ(I)] reflections
5837, 2658, 2113
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.06
No. of reflections2658
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Acknowledgements top

This project was supported financially by the Natural Science Foundation of Fujian Province of China (No. D1310010).

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Banerjee, S., Mondal, S., Sen, S., Das, S., Hughes, D. L., Rizzoli, C., Desplanches, C., Mandal, C. & Mitra, S. (2009). Dalton Trans. 34, 6849–6860.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

He, Z., He, C., Wang, Z.-M., Gao, E.-Q., Liu, Y. & Yan, C.-H. (2004). Dalton Trans. pp. 502–504.

Lin, P. H., Korobkov, I., Burchell, T. J. & Murugesu, M. (2012). Dalton Trans. 41, 13649–13655.

Mistri, S., Zangrando, E. & Manna, S. C. (2013). Polyhedron, 49, 252–258.

Qiao, Y., Yin, H. & Cui, J. (2007). Acta Cryst. E63, o4819.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shulgin, E. F., Trush, Y. V., Konnik, O. V., Rusanov, E. B., Zub, V. Y. & Minin, V. V. (2011). Zh. Neorg. Khim. 56, 755–756.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yin, H.-D., Cui, J.-C. & Qiao, Y.-L. (2008). Polyhedron, 27, 2157–2166.

Zhu, X., He, C., Dong, D.-P., Liu, Y. & Duan, C.-Y. (2010). Dalton Trans. 39, 10051–10055.