supplementary materials


gg2130 scheme

Acta Cryst. (2013). E69, o1737-o1738    [ doi:10.1107/S1600536813027542 ]

Venlafaxine besylate monohydrate

C. H. Corvalan and D. R. Vega

Abstract top

The title compound {systematic name: [2-(1-hydroxycyclohexyl)-2-(4-methoxyphenyl)ethyl]dimethylazanium benzene­sulfonate monohydrate}, C17H28NO2+·C6H5O3S-·H2O, is a besylate salt hydrate of the anti­depressant drug venlafaxine. In the crystal, besylate anions and water mol­ecules self-assemble, forming hydrogen-bonded dimers linked around inversion centers, with graph set R44(6). The crystal packing features a chain of alternate dimers and venlafaxine cations in the b-axis direction with the components linked by O-H...O hydrogen bonds and C-H...O and C-H...[pi] inter­actions. This is the first example of a venlafaxine cation with a closed conformation, as it features an intra­molecular N-H...O inter­action involving the protonated N atom.

Comment top

The title compound (I) is a monohydrate of the 1:1 salt of 1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]cyclohexanol with benzenesulphonic acid. Venlafaxine besylate is an antidepressant drug belonging to the class of serotonin norepinephrine reuptake inhibitors. The asymmetric unit consists of a venalfaxine cation, a besylate anion and a water molecule (Fig. 1).

The dimethylaminomethyl group of the venlafaxine cation is protonated by besylic acid. The hydroxy group lies in an axial position with respect to the cyclohexane ring and C7 is located at an equatorial position. Inspecting CSD (Allen, 2002), different conformations could be found for Venlafaxine. An open conformation –T shaped geometry- (Venu et al., 2008), with the dimethylaminomethyl and cyclohexanol groups representing the arms, is observed when venlafaxine is protonated (cation), whereas a closed conformation can be seen when venlafaxine is a free base. The closed conformation observed in the free base molecule is mainly due to the presence of an intra-molecular hydrogen bond provided by O2—H2···N1, then the torsion angle C8—C7—C14—N1 assumes a value that allows the approaching of H2 to N1. The mean value of the torsion angle C8—C7—C14—N1 obtained on seven free molecules is 62 (1)° (refcodes OCALAG, two molecules in OCALAG01, OCALAG02, YISFOW, YISFOW01 and YISFOW02) (Tessler & Goldberg, 2004, Van Eupen et al., 2008). This intramolecular hydrogen bond is absent in the Venlafaxine cation, probably due to the presence of an extra hydrogen atom at N1. The mean value of the torsion angle C8—C7—C14—N1 on six cation molecules is 138 (7)° (refcodes KIDGUZ, VAWQAM, WOBMUV, WOBMUV01 and two molecules in WOBMUV02) (Yardley et al., 1990, Banjeree et al., 2005, Vega et al., 2000, Sivalakshmidevi et al., 2002, Roy et al., 2007), featuring the open conformation for cations. However, the crystal structure introduced here is the first case where a Venlafaxine cation is in a closed conformation. The torsion angle C8—C7—C14—N1 is 71.9 (2)°. Although the closed conformation is provided by an intramolecular hydrogen bond, in this opportunity a different hydrogen bond is present because it is provided by the protonated nitrogen atom N1, where O2 acts as an acceptor (Fig 1)

The cyclohexyl ring assumes a chair conformation, with puckering amplitude QT=0.564 Å, τ=0.67° and φ=262.3° (Cremer & Pople, 1975), where C8 and C11 are located at 0.666 (3) Å from the C9/C10/C12/C13 mean plane. On average, the endocyclic bonds have angles close to the tetrahedral value [110.7 (8)°] and torsion angles of 55.3 (4)°.

Besylate anions and water molecules are self-assembled to determine a dimer-like hydrogen-bonded link around an inversion center. Two centrosymmetric water molecules are bonded to a couple of also centrosymmetric besylate anions (Fig 2). Each water molecule acts as a donor of two hydrogen bonds determining a graph set R44(6) in the dimer.

Venlafaxine cation is located between two b-translated dimers, generating several interactions. On one side, O2—H2A···O1W, C15—H15C···O2B and C2—H2···CG1 join a Venlafaxine cation to the water molecule and the besylate anion of one of the dimmers. On the other side, C16—H16A···O1B(x,y - 1,z) and C6—H6···CG1(x,y - 1,z) link a Venlafaxine cation to the besylate anion belonging to the other dimmer (CG1 is defined as the centroid of the ring C1, C2, C3, C4, C5 and C6 atoms). These interactions, some very weak in character, give cohesion to the crystal packing, determining a chain of alternate dimmers and venlafaxine cations along the b axis.

The water molecules are held in the crystal structure in a way that desolvation occurs as an isolated event. A differential scanning calorimetry trace shows a single endotherm with a mid-point temperature of around 387 (2) K (heating rate 10 K min-1). The water molecule is involved in the formation of as many as three strong hydrogen bonds, bridging the besylate and venlafaxine ions (Fig. 2 and Table 1).

Related literature top

For background information, see: Venu et al. (2008); Tessler & Goldberg (2004); Van Eupen et al. (2008); Yardley et al. (1990); Banjeree et al. (2005); Vega et al. (2000); Sivalakshmidevi et al. (2002); Roy et al. (2007). For ring-puckering calculations, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Refinement top

The O atoms in the besylate anion exhibited some disorder, with Ueq values for O2B and O3B large in relation to the rest of the molecule, thus giving larger Ueq(max)/Ueq(min) ratios. Attempts to refine a split model of these atoms gave no better results. The H atoms were refined using a riding model while keeping their isotropic displacement parameters constrained to 1.2 (H attached to aromatic, methine and methylene C atoms) and 1.5 (H atoms attached to methyl C and N) times larger than those of their carrier atoms. The H atoms in water molecule were refined keeping their isotropic displacement parameters constrained to 1.4 times larger than the O carrier atom. H1 and H2A were found in the Fourier Difference Map and refined keeping their isotropic displacement parameters constrained to 1.2 and 1.5 times larger than the carrier atoms respectively. Data from two different single crystals were collected and similar positions were obtained for H1 and H2A atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bond N1—H1···O2 is drawn as dashed line.
[Figure 2] Fig. 2. Besylate anions and water molecules around an inversion center, determining a dimmer-like hydrogen-bonded.
[Figure 3] Fig. 3. Alternate dimmers and venlafaxine cations determining a chain running along c axis.
[2-(1-Hydroxycyclohexyl)-2-(4-methoxyphenyl)ethyl]dimethylazanium benzenesulfonate monohydrate top
Crystal data top
C17H28NO2+·C6H5O3S·H2OZ = 2
Mr = 453.58F(000) = 488
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1163 (5) ÅCell parameters from 3716 reflections
b = 10.2176 (4) Åθ = 3.8–28.8°
c = 13.8162 (6) ŵ = 0.17 mm1
α = 72.074 (4)°T = 293 K
β = 70.108 (4)°Prism, colourless
γ = 63.889 (5)°0.70 × 0.30 × 0.10 mm
V = 1184.53 (11) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
5366 independent reflections
Radiation source: Enhance (Mo) X-ray Source3072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.1158 pixels mm-1θmax = 28.8°, θmin = 3.8°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1213
Tmin = 0.842, Tmax = 1.000l = 1717
10063 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0896P)2]
where P = (Fo2 + 2Fc2)/3
5366 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C17H28NO2+·C6H5O3S·H2Oγ = 63.889 (5)°
Mr = 453.58V = 1184.53 (11) Å3
Triclinic, P1Z = 2
a = 10.1163 (5) ÅMo Kα radiation
b = 10.2176 (4) ŵ = 0.17 mm1
c = 13.8162 (6) ÅT = 293 K
α = 72.074 (4)°0.70 × 0.30 × 0.10 mm
β = 70.108 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
5366 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3072 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 1.000Rint = 0.020
10063 measured reflectionsθmax = 28.8°
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163Δρmax = 0.54 e Å3
S = 1.02Δρmin = 0.44 e Å3
5366 reflectionsAbsolute structure: ?
292 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1498 (2)0.4789 (2)0.26437 (16)0.0404 (5)
C20.1147 (3)0.6298 (2)0.22570 (18)0.0460 (5)
H20.16560.67710.23850.055*
C30.0063 (3)0.7108 (2)0.16894 (18)0.0484 (6)
H30.01470.81160.14360.058*
C40.0715 (3)0.6434 (2)0.14941 (17)0.0447 (5)
C50.0402 (3)0.4941 (2)0.18763 (18)0.0479 (6)
H50.09230.44760.17520.057*
C60.0686 (3)0.4143 (2)0.24438 (18)0.0471 (6)
H60.08850.31370.27020.057*
C70.2715 (3)0.3927 (2)0.32531 (16)0.0424 (5)
H70.28420.46640.34930.051*
C80.4301 (2)0.3089 (2)0.25829 (15)0.0381 (5)
C90.4845 (3)0.4202 (2)0.16915 (16)0.0429 (5)
H9A0.41200.47210.12570.051*
H9B0.48790.49310.19870.051*
C100.6391 (3)0.3478 (3)0.10163 (18)0.0533 (6)
H10A0.71380.30520.14310.064*
H10B0.66550.42240.04460.064*
C110.6436 (3)0.2272 (3)0.05707 (19)0.0633 (7)
H11A0.74600.17820.01840.076*
H11B0.57770.27100.00900.076*
C120.5921 (3)0.1142 (3)0.1451 (2)0.0644 (7)
H12A0.66450.06300.18860.077*
H12B0.58960.04110.11530.077*
C130.4353 (3)0.1876 (2)0.21283 (18)0.0506 (6)
H13A0.40830.11300.26970.061*
H13B0.36120.23040.17090.061*
C140.2189 (3)0.2928 (3)0.42343 (17)0.0492 (6)
H14A0.11210.34360.45290.059*
H14B0.23030.20380.40460.059*
C150.2630 (3)0.3696 (3)0.5604 (2)0.0605 (7)
H15A0.32260.33490.61090.073*
H15B0.15740.39940.59550.073*
H15C0.28170.45280.51080.073*
C160.2888 (4)0.1159 (3)0.5811 (2)0.0655 (7)
H16A0.31710.03810.54430.079*
H16B0.18540.13930.62060.079*
H16C0.35350.08370.62790.079*
C170.2610 (3)0.6691 (3)0.0731 (2)0.0761 (9)
H17A0.33150.74300.03310.091*
H17B0.31550.62860.13840.091*
H17C0.19280.59130.03440.091*
N10.3050 (2)0.2494 (2)0.50483 (14)0.0416 (5)
H10.390 (3)0.232 (3)0.4746 (19)0.050*
O10.1776 (2)0.73441 (18)0.09278 (14)0.0630 (5)
O20.53164 (17)0.23490 (16)0.32729 (11)0.0431 (4)
H2A0.569 (3)0.291 (3)0.326 (2)0.065*
S1B0.31436 (9)0.78902 (7)0.40428 (6)0.0623 (2)
C1B0.2016 (4)1.0171 (3)0.1316 (2)0.0693 (8)
H1B0.25021.02630.06070.083*
C2B0.2834 (3)0.9237 (3)0.2047 (2)0.0603 (7)
H2B0.38690.87090.18330.072*
C3B0.2115 (3)0.9089 (2)0.30976 (18)0.0436 (5)
C4B0.0585 (3)0.9889 (3)0.3397 (2)0.0551 (6)
H4B0.00860.98080.41030.066*
C5B0.0207 (3)1.0810 (3)0.2649 (2)0.0671 (7)
H5B0.12441.13390.28530.080*
C6B0.0514 (4)1.0953 (3)0.1618 (2)0.0675 (8)
H6B0.00271.15900.11190.081*
O1B0.3786 (3)0.8685 (2)0.42970 (16)0.0827 (7)
O2B0.2046 (3)0.7435 (3)0.4929 (2)0.1248 (11)
O3B0.4211 (3)0.6657 (3)0.3590 (3)0.1424 (13)
O1W0.6618 (2)0.4063 (2)0.33801 (15)0.0604 (5)
H1WA0.700 (4)0.357 (3)0.393 (2)0.085*
H1WB0.590 (4)0.480 (3)0.360 (2)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (13)0.0455 (12)0.0362 (11)0.0181 (10)0.0109 (10)0.0053 (9)
C20.0488 (14)0.0440 (12)0.0520 (13)0.0219 (11)0.0156 (11)0.0070 (10)
C30.0525 (15)0.0387 (11)0.0544 (14)0.0202 (11)0.0157 (12)0.0012 (10)
C40.0434 (13)0.0500 (12)0.0389 (12)0.0179 (10)0.0133 (10)0.0012 (9)
C50.0507 (14)0.0521 (13)0.0517 (13)0.0275 (11)0.0170 (11)0.0062 (10)
C60.0497 (14)0.0398 (11)0.0534 (14)0.0194 (11)0.0160 (11)0.0028 (10)
C70.0465 (14)0.0450 (11)0.0388 (12)0.0200 (10)0.0124 (10)0.0050 (9)
C80.0421 (13)0.0422 (11)0.0321 (10)0.0192 (10)0.0123 (9)0.0010 (8)
C90.0520 (14)0.0431 (11)0.0368 (11)0.0229 (10)0.0174 (10)0.0035 (9)
C100.0562 (16)0.0611 (14)0.0407 (13)0.0298 (13)0.0085 (11)0.0013 (11)
C110.0676 (19)0.0750 (17)0.0441 (14)0.0310 (14)0.0027 (13)0.0185 (12)
C120.083 (2)0.0551 (14)0.0554 (16)0.0262 (14)0.0063 (14)0.0210 (12)
C130.0628 (16)0.0480 (12)0.0462 (13)0.0279 (12)0.0119 (12)0.0061 (10)
C140.0546 (15)0.0547 (13)0.0428 (13)0.0269 (12)0.0136 (11)0.0029 (10)
C150.0750 (19)0.0539 (14)0.0577 (15)0.0256 (13)0.0152 (14)0.0155 (12)
C160.084 (2)0.0528 (14)0.0547 (15)0.0323 (14)0.0156 (14)0.0054 (12)
C170.069 (2)0.089 (2)0.083 (2)0.0360 (17)0.0439 (17)0.0046 (16)
N10.0405 (11)0.0428 (10)0.0328 (10)0.0127 (9)0.0055 (8)0.0034 (7)
O10.0619 (11)0.0625 (10)0.0681 (11)0.0232 (9)0.0367 (9)0.0068 (8)
O20.0455 (9)0.0439 (8)0.0391 (8)0.0175 (7)0.0177 (7)0.0030 (6)
S1B0.0732 (5)0.0442 (3)0.0774 (5)0.0137 (3)0.0421 (4)0.0073 (3)
C1B0.099 (2)0.0623 (16)0.0455 (15)0.0356 (17)0.0123 (15)0.0067 (12)
C2B0.0573 (17)0.0531 (14)0.0662 (18)0.0184 (12)0.0067 (14)0.0182 (13)
C3B0.0537 (15)0.0333 (10)0.0514 (14)0.0177 (10)0.0181 (11)0.0098 (9)
C4B0.0549 (16)0.0556 (14)0.0499 (14)0.0169 (12)0.0096 (12)0.0124 (11)
C5B0.0560 (17)0.0624 (16)0.074 (2)0.0098 (13)0.0244 (15)0.0103 (14)
C6B0.083 (2)0.0570 (15)0.0635 (18)0.0200 (15)0.0343 (16)0.0039 (13)
O1B0.1121 (18)0.0715 (12)0.0969 (16)0.0428 (12)0.0610 (14)0.0056 (11)
O2B0.127 (2)0.136 (2)0.1152 (19)0.0817 (19)0.0755 (18)0.0723 (17)
O3B0.154 (3)0.0835 (15)0.183 (3)0.0502 (15)0.122 (2)0.0687 (17)
O1W0.0624 (13)0.0595 (11)0.0675 (12)0.0208 (9)0.0275 (10)0.0124 (9)
Geometric parameters (Å, º) top
C1—C21.388 (3)C14—H14A0.9700
C1—C61.390 (3)C14—H14B0.9700
C1—C71.515 (3)C15—N11.476 (3)
C2—C31.375 (3)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.378 (3)C15—H15C0.9600
C3—H30.9300C16—N11.480 (3)
C4—O11.369 (2)C16—H16A0.9600
C4—C51.378 (3)C16—H16B0.9600
C5—C61.377 (3)C16—H16C0.9600
C5—H50.9300C17—O11.412 (3)
C6—H60.9300C17—H17A0.9600
C7—C141.516 (3)C17—H17B0.9600
C7—C81.559 (3)C17—H17C0.9600
C7—H70.9800N1—H10.78 (3)
C8—O21.441 (2)O2—H2A0.81 (2)
C8—C131.527 (3)S1B—O3B1.405 (2)
C8—C91.530 (3)S1B—O1B1.4150 (18)
C9—C101.509 (3)S1B—O2B1.459 (3)
C9—H9A0.9700S1B—C3B1.762 (2)
C9—H9B0.9700C1B—C6B1.352 (4)
C10—C111.516 (3)C1B—C2B1.378 (4)
C10—H10A0.9700C1B—H1B0.9300
C10—H10B0.9700C2B—C3B1.379 (3)
C11—C121.523 (3)C2B—H2B0.9300
C11—H11A0.9700C3B—C4B1.377 (3)
C11—H11B0.9700C4B—C5B1.377 (3)
C12—C131.526 (4)C4B—H4B0.9300
C12—H12A0.9700C5B—C6B1.357 (4)
C12—H12B0.9700C5B—H5B0.9300
C13—H13A0.9700C6B—H6B0.9300
C13—H13B0.9700O1W—H1WA0.88 (3)
C14—N11.496 (3)O1W—H1WB0.84 (3)
C2—C1—C6116.87 (19)H13A—C13—H13B107.9
C2—C1—C7120.05 (18)N1—C14—C7113.01 (18)
C6—C1—C7123.08 (18)N1—C14—H14A109.0
C3—C2—C1121.5 (2)C7—C14—H14A109.0
C3—C2—H2119.2N1—C14—H14B109.0
C1—C2—H2119.2C7—C14—H14B109.0
C2—C3—C4120.4 (2)H14A—C14—H14B107.8
C2—C3—H3119.8N1—C15—H15A109.5
C4—C3—H3119.8N1—C15—H15B109.5
O1—C4—C5124.9 (2)H15A—C15—H15B109.5
O1—C4—C3115.6 (2)N1—C15—H15C109.5
C5—C4—C3119.5 (2)H15A—C15—H15C109.5
C6—C5—C4119.51 (19)H15B—C15—H15C109.5
C6—C5—H5120.2N1—C16—H16A109.5
C4—C5—H5120.2N1—C16—H16B109.5
C5—C6—C1122.22 (19)H16A—C16—H16B109.5
C5—C6—H6118.9N1—C16—H16C109.5
C1—C6—H6118.9H16A—C16—H16C109.5
C1—C7—C14110.96 (18)H16B—C16—H16C109.5
C1—C7—C8114.09 (16)O1—C17—H17A109.5
C14—C7—C8112.73 (18)O1—C17—H17B109.5
C1—C7—H7106.1H17A—C17—H17B109.5
C14—C7—H7106.1O1—C17—H17C109.5
C8—C7—H7106.1H17A—C17—H17C109.5
O2—C8—C13105.98 (16)H17B—C17—H17C109.5
O2—C8—C9110.41 (16)C15—N1—C16110.07 (18)
C13—C8—C9109.26 (17)C15—N1—C14113.67 (18)
O2—C8—C7106.88 (15)C16—N1—C14110.92 (19)
C13—C8—C7114.63 (18)C15—N1—H1105.9 (18)
C9—C8—C7109.58 (17)C16—N1—H1110.0 (18)
C10—C9—C8112.83 (18)C14—N1—H1106.1 (18)
C10—C9—H9A109.0C4—O1—C17116.91 (19)
C8—C9—H9A109.0C8—O2—H2A108.2 (19)
C10—C9—H9B109.0O3B—S1B—O1B114.29 (16)
C8—C9—H9B109.0O3B—S1B—O2B109.48 (19)
H9A—C9—H9B107.8O1B—S1B—O2B112.99 (15)
C9—C10—C11111.7 (2)O3B—S1B—C3B105.89 (13)
C9—C10—H10A109.3O1B—S1B—C3B107.97 (10)
C11—C10—H10A109.3O2B—S1B—C3B105.58 (12)
C9—C10—H10B109.3C6B—C1B—C2B120.6 (3)
C11—C10—H10B109.3C6B—C1B—H1B119.7
H10A—C10—H10B107.9C2B—C1B—H1B119.7
C10—C11—C12110.1 (2)C1B—C2B—C3B119.8 (3)
C10—C11—H11A109.6C1B—C2B—H2B120.1
C12—C11—H11A109.6C3B—C2B—H2B120.1
C10—C11—H11B109.6C4B—C3B—C2B119.1 (2)
C12—C11—H11B109.6C4B—C3B—S1B120.50 (19)
H11A—C11—H11B108.1C2B—C3B—S1B120.4 (2)
C11—C12—C13111.7 (2)C3B—C4B—C5B119.8 (2)
C11—C12—H12A109.3C3B—C4B—H4B120.1
C13—C12—H12A109.3C5B—C4B—H4B120.1
C11—C12—H12B109.3C6B—C5B—C4B120.5 (3)
C13—C12—H12B109.3C6B—C5B—H5B119.7
H12A—C12—H12B107.9C4B—C5B—H5B119.7
C12—C13—C8111.8 (2)C1B—C6B—C5B120.0 (3)
C12—C13—H13A109.3C1B—C6B—H6B120.0
C8—C13—H13A109.3C5B—C6B—H6B120.0
C12—C13—H13B109.3H1WA—O1W—H1WB102 (3)
C8—C13—H13B109.3
C6—C1—C2—C31.0 (3)C10—C11—C12—C1355.6 (3)
C7—C1—C2—C3179.1 (2)C11—C12—C13—C856.5 (3)
C1—C2—C3—C40.4 (4)O2—C8—C13—C1264.4 (2)
C2—C3—C4—O1179.6 (2)C9—C8—C13—C1254.5 (2)
C2—C3—C4—C50.3 (4)C7—C8—C13—C12177.97 (18)
O1—C4—C5—C6179.5 (2)C1—C7—C14—N1158.74 (18)
C3—C4—C5—C60.3 (4)C8—C7—C14—N171.9 (2)
C4—C5—C6—C10.4 (4)C7—C14—N1—C1574.7 (2)
C2—C1—C6—C51.0 (3)C7—C14—N1—C16160.7 (2)
C7—C1—C6—C5179.1 (2)C5—C4—O1—C170.4 (4)
C2—C1—C7—C14134.3 (2)C3—C4—O1—C17178.9 (2)
C6—C1—C7—C1445.6 (3)C6B—C1B—C2B—C3B0.5 (4)
C2—C1—C7—C897.0 (2)C1B—C2B—C3B—C4B0.4 (4)
C6—C1—C7—C883.1 (3)C1B—C2B—C3B—S1B179.60 (18)
C1—C7—C8—O2179.41 (16)O3B—S1B—C3B—C4B143.1 (2)
C14—C7—C8—O252.9 (2)O1B—S1B—C3B—C4B94.1 (2)
C1—C7—C8—C1363.5 (2)O2B—S1B—C3B—C4B27.0 (2)
C14—C7—C8—C1364.3 (2)O3B—S1B—C3B—C2B36.9 (2)
C1—C7—C8—C959.8 (2)O1B—S1B—C3B—C2B85.9 (2)
C14—C7—C8—C9172.50 (17)O2B—S1B—C3B—C2B153.0 (2)
O2—C8—C9—C1061.5 (2)C2B—C3B—C4B—C5B0.6 (4)
C13—C8—C9—C1054.7 (2)S1B—C3B—C4B—C5B179.39 (18)
C7—C8—C9—C10178.92 (17)C3B—C4B—C5B—C6B1.0 (4)
C8—C9—C10—C1156.0 (2)C2B—C1B—C6B—C5B0.8 (4)
C9—C10—C11—C1255.1 (3)C4B—C5B—C6B—C1B1.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1W0.81 (3)1.87 (3)2.673 (3)173 (3)
O1W—H1WB···O3B0.83 (3)1.92 (3)2.711 (4)159 (3)
O1W—H1WA···O2Bi0.88 (3)1.91 (3)2.785 (4)175 (3)
N1—H1···O20.78 (3)2.05 (3)2.719 (2)143 (3)
C15—H15C···O2B0.962.683.468 (4)140
C16—H16A···O1Bii0.962.443.395 (4)172
C2—H2···Cg10.933.173.928140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1W0.81 (3)1.87 (3)2.673 (3)173 (3)
O1W—H1WB···O3B0.83 (3)1.92 (3)2.711 (4)159 (3)
O1W—H1WA···O2Bi0.88 (3)1.91 (3)2.785 (4)175 (3)
N1—H1···O20.78 (3)2.05 (3)2.719 (2)143 (3)
C15—H15C···O2B0.962.683.468 (4)140
C16—H16A···O1Bii0.962.443.395 (4)172
C2—H2···Cg10.933.173.928140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
Acknowledgements top

We are grateful to Gador S.A. for providing the raw material. We also acknowledge PIP-11220090100889 and ANPCyT (project No. PME 2006–01113) for the purchase of the Oxford Gemini CCD diffractometer.

references
References top

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Banjeree, R., Bhatt, P. M., Ravindra, N. V. & Desiraju, G. R. (2005). Cryst. Growth Des. 5, 2299–2309.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 35, 1555–1573.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Roy, S., Bhatt, P. M., Nangia, A. & Kruger, G. J. (2007). Cryst. Growth Des. 7, 476–480.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sivalakshmidevi, A., Vyas, K., Mahender Rao, S. & Om Reddy, G. (2002). Acta Cryst. E58, o1072–o1074.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Tessler, L. & Goldberg, I. (2004). Acta Cryst. E60, o1868–o1869.

Van Eupen, J. Th. H., Elffrink, W. W. J., Keltjens, R., Bennema, P., de Gelder, R., Smits, J. M. M., van Eck, E. R. H., Kentgens, A. P. M., Deij, M. A., Meekes, H. & Vlieg, E. (2008). Cryst. Growth Des. 8, 71–79.

Vega, D., Fernández, D. & Echeverría, G. (2000). Acta Cryst. C56, 1009–1010.

Venu, N., Sreekanth, B. R., Ram, T. & Devarakonda, S. (2008). Acta Cryst. C64, o290–o292.

Yardley, J. P., Husbands, G. E. M., Stack, G., Butch, J., Bicksler, J., Moyer, J. A., Muth, E. A., Andree, T., Fletcher, H. III, James, M. N. G. & Sielecki, A. R. (1990). J. Med. Chem. 33, 2899–2905.