supplementary materials


lh5667 scheme

Acta Cryst. (2013). E69, m684-m685    [ doi:10.1107/S1600536813031760 ]

Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) penta­cyanido­nitro­soferrate(II)

J. A. Rusanova, O. V. Kozachuk, V. V. Semenaka and V. V. Dyakonenko

Abstract top

The asymmetric unit of the title complex [Cu(C14H12N2)2]2[Fe(CN)5(NO)], consists of a [Cu(dmp)2]+ cation (dmp is 2,9-dimethyl-1,10-phenanthroline) and half an [Fe(CN)5(NO)]2- anion. The anion is disordered across an inversion center with the FeII ion slightly offset (ca 0.205Å) from the inversion center in the direction of the disordered trans-coordinating CN/NO ligands. The anion has a distorted octa­hedral coordination geometry. The CuI ion is coordinated by two phenanthroline ligands in a distorted tetra­hedral geometry. The dihedral angle between the phenanthroline ligands is 77.16 (4) Å. In the crystal, the cations are connected to the anions by weak C-H...N hydrogen bonds. In addition, weak [pi]-[pi] stacking inter­actions are observed, with centroid-centroid distances in the range 3.512 (3)-3.859 (3) Å.

Comment top

The title compound was obtained as part of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Kokozay et al., 2002; Nikitina et al., 2008, 2009; Nesterova et al., 2004, 2005, 2008; Pryma et al.,2003). Complexes of copper chelated with phenanthroline (in particular 2,9-dimethyl-1,10-phenanthroline) have attracted attention due to their longlived excited states and potential use in solar energy conversion (Blake et al., 1998; Chen et al., 2002; Morpurgo et al., 1984; Cuttell et al., 2002; King et al., 2005).

In this paper we present a novel Cu/Fe heterometallic ionic complex [Cu(dmp)2]2[Fe(CN)5NO] which consists of discrete [Cu(dmp)2]+ and [Fe(CN)5NO]2- ions (Fig. 1). The CuI ion adopts a distorted tetrahedral environment by coordinating with four nitrogen atoms from two dmp ligands. The dihedral angle between the two dmp ligands (77.16 (4) Å) as well as the range of Cu—N bond distances of 2.034 (3) - 2.079 (3) Å is in good agreement with the previously reported values for analagous complexes (King et al., 2005 and references therein). The nitroprusside anion lies on an inversion centre and disordered over two positions so that iron atom occupies two very close positions (Fe···Fe distance is 0.410 (15) Å) corresponding to the coordination of two disordered CN and NO groups in the axial sites with very close positions. However, geometric parameters (average Fe—CN and Fe—NO bond distances of 1.96 Å and 1.63 Å respectively) are in a good agreement with literature values (Soria et al. (2002); Shevyakova et al. (2002); Peresypkina et al. (2012).

In the crystal, cations are connected to the anions by weak C—H···N hydrogen bonds. In addition weak ππ stacking interactions with centroid–centroid distances in the range 3.512 (3)–3.859 (3)° are observed (Fig. 2).

Related literature top

For background to the direct synthesis of coordination compounds, see: Kokozay & Vassilyeva (2002); Nesterova et al. (2008). For the direct synthesis of heterometallic Cu-containing complexes, see: Buvaylo et al. (2005); Nesterova et al. (2004, 2005); Pryma et al. (2003). For the application of anionic complexes in the preparation of heterometallic compounds, see: Nikitina et al. (2008, 2009). For the structures of related complexes, see: Blake et al. (1998); Chen et al. (2002); Morpurgo et al. (1984); Cuttell et al. (2002); King et al. (2005); Soria et al. (2002); Shevyakova et al. (2002); Peresypkina & Vostrikova (2012).

Experimental top

Copper powder (0.04 g, 0.63 mmol), NH4Br (0.123 g, 1.25 mmol), Na2[Fe(CN)5(NO)].2H2O (0.188 g, 0.63 mmol) and dmp (0.262 g, 1.26 mmol) in DMF (30 ml) were heated to 333–343 K and stirred magnetically until total dissolution of copper was observed (2.5 h). Red needle-shaped crystals suitable for X-ray crystallography was isolated from the resulting dark-red solution with addition of 2-propanol and diethyl ether in a few days. The crystals (0.1 g, yield 30%) were filtered off, washed with dry methanol, and finally dried in vacuo at room temperature.

Refinement top

All non-hydrogen atoms were refined isotropically. All hydrogen atoms were placed at calculated position and refined in a riding-model approximation. The symmetry realted Fe atoms are offset from an inversion centre by 0.214 Å and were refined with multiplicity 0.5. Atoms of disordered CN and NO groups occupy close positions and also were refined with multiplicity 0.5.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code (A); 2 -x,1-y,-z. The disorder is not shown.
[Figure 2] Fig. 2. Part of the crystal structure with weak hydrogen bonds shown as dashed lines.
Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) pentacyanidonitrosoferrate(II) top
Crystal data top
[Cu(C14H12N2)2]2[Fe(CN)5(NO)]Z = 1
Mr = 1176.06F(000) = 604
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.371 (3) ÅCell parameters from 4215 reflections
b = 13.741 (3) Åθ = 2.7–24.8°
c = 15.065 (4) ŵ = 1.12 mm1
α = 115.269 (4)°T = 293 K
β = 95.327 (3)°Needle-shaped, red
γ = 101.323 (4)°0.50 × 0.40 × 0.20 mm
V = 1325.9 (7) Å3
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
5112 independent reflections
Radiation source: Enhance (Mo) X-ray Source3100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.1827 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω–scansh = 89
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1616
Tmin = 0.604, Tmax = 0.807l = 1815
8613 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
5112 reflections(Δ/σ)max = 0.001
377 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C14H12N2)2]2[Fe(CN)5(NO)]γ = 101.323 (4)°
Mr = 1176.06V = 1325.9 (7) Å3
Triclinic, P1Z = 1
a = 7.371 (3) ÅMo Kα radiation
b = 13.741 (3) ŵ = 1.12 mm1
c = 15.065 (4) ÅT = 293 K
α = 115.269 (4)°0.50 × 0.40 × 0.20 mm
β = 95.327 (3)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
5112 independent reflections
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2010)
3100 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.807Rint = 0.048
8613 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.38 e Å3
S = 0.93Δρmin = 0.31 e Å3
5112 reflectionsAbsolute structure: ?
377 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.24477 (7)0.18237 (4)0.30785 (3)0.04709 (18)
Fe10.9747 (13)0.5030 (13)0.0033 (11)0.0423 (14)0.50
N10.3564 (4)0.2540 (2)0.2232 (2)0.0377 (7)
N20.1731 (4)0.0423 (2)0.1741 (2)0.0369 (7)
N30.3933 (4)0.1682 (2)0.4241 (2)0.0379 (7)
N40.1040 (4)0.2617 (2)0.4159 (2)0.0377 (7)
C10.4355 (5)0.3608 (3)0.2474 (3)0.0464 (10)
C20.5081 (5)0.3909 (3)0.1771 (3)0.0551 (11)
H20.56100.46560.19540.066*
C30.5025 (5)0.3129 (4)0.0833 (3)0.0542 (11)
H30.55610.33350.03830.065*
C40.4148 (5)0.2001 (3)0.0542 (3)0.0407 (9)
C50.3423 (4)0.1751 (3)0.1269 (3)0.0345 (8)
C60.2450 (4)0.0621 (3)0.1008 (3)0.0336 (8)
C70.2248 (5)0.0217 (3)0.0027 (3)0.0381 (9)
C80.3039 (5)0.0072 (4)0.0683 (3)0.0481 (10)
H80.29230.04830.13310.058*
C90.3950 (5)0.1129 (4)0.0439 (3)0.0492 (10)
H90.44570.12920.09180.059*
C100.1271 (5)0.1296 (3)0.0187 (3)0.0458 (10)
H100.10920.18760.08290.055*
C110.0583 (5)0.1498 (3)0.0538 (3)0.0460 (10)
H110.00520.22200.03940.055*
C120.0824 (5)0.0622 (3)0.1510 (3)0.0383 (9)
C130.4435 (6)0.4460 (3)0.3521 (3)0.0654 (12)
H13A0.56960.49340.38040.098*
H13B0.40810.40910.39190.098*
H13C0.35800.49020.35120.098*
C140.0096 (6)0.0831 (3)0.2332 (3)0.0559 (11)
H14A0.08700.12090.25450.084*
H14B0.11820.12860.20860.084*
H14C0.01370.01330.28880.084*
C150.5321 (5)0.1207 (3)0.4270 (3)0.0454 (10)
C160.6193 (6)0.1264 (3)0.5157 (3)0.0547 (11)
H160.71970.09470.51570.066*
C170.5581 (6)0.1786 (3)0.6032 (3)0.0549 (11)
H170.61760.18300.66250.066*
C180.4051 (5)0.2251 (3)0.6023 (3)0.0451 (10)
C190.3273 (5)0.2190 (3)0.5108 (3)0.0394 (9)
C200.1730 (5)0.2687 (3)0.5074 (3)0.0358 (9)
C210.1046 (5)0.3217 (3)0.5935 (3)0.0420 (9)
C220.1808 (6)0.3230 (3)0.6840 (3)0.0528 (11)
H220.12980.35510.74050.063*
C230.3275 (6)0.2779 (3)0.6893 (3)0.0548 (11)
H230.37800.28130.74980.066*
C240.0412 (6)0.3721 (3)0.5857 (3)0.0516 (11)
H240.09220.40820.64120.062*
C250.1066 (6)0.3674 (3)0.4963 (3)0.0516 (10)
H250.20050.40220.49120.062*
C260.0338 (5)0.3106 (3)0.4117 (3)0.0417 (9)
C270.5909 (6)0.0609 (4)0.3308 (3)0.0619 (12)
H27A0.52520.01680.30050.093*
H27B0.72450.06900.34320.093*
H27C0.56110.09170.28660.093*
C280.1065 (6)0.3050 (4)0.3126 (3)0.0544 (11)
H28A0.04580.26010.26270.082*
H28B0.07980.37880.31820.082*
H28C0.24040.27230.29370.082*
C291.0149 (5)0.4533 (3)0.1060 (3)0.0446 (9)
N51.0271 (5)0.4286 (3)0.1677 (3)0.0631 (10)
C301.1809 (6)0.6397 (3)0.0926 (3)0.0440 (9)
N61.2879 (5)0.7213 (3)0.1470 (3)0.0626 (10)
C310.812 (5)0.559 (2)0.036 (2)0.070 (5)0.50
N70.681 (4)0.603 (2)0.0546 (17)0.070 (5)0.50
N80.805 (3)0.5579 (11)0.0446 (12)0.026 (3)0.50
O10.688 (3)0.5921 (16)0.0752 (11)0.055 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0659 (3)0.0491 (3)0.0278 (3)0.0167 (2)0.0157 (2)0.0169 (2)
Fe10.057 (4)0.0453 (14)0.0274 (15)0.012 (3)0.009 (3)0.0199 (12)
N10.0449 (17)0.0362 (18)0.0314 (17)0.0069 (14)0.0073 (14)0.0166 (14)
N20.0400 (16)0.0401 (18)0.0323 (17)0.0114 (14)0.0067 (14)0.0176 (14)
N30.0423 (16)0.0398 (18)0.0323 (17)0.0120 (15)0.0089 (15)0.0162 (14)
N40.0433 (17)0.0362 (17)0.0302 (17)0.0064 (14)0.0041 (15)0.0143 (14)
C10.047 (2)0.045 (2)0.045 (2)0.0067 (19)0.006 (2)0.0210 (19)
C20.059 (2)0.046 (3)0.064 (3)0.005 (2)0.015 (2)0.032 (2)
C30.056 (2)0.065 (3)0.053 (3)0.009 (2)0.019 (2)0.038 (2)
C40.0384 (19)0.057 (3)0.034 (2)0.0162 (19)0.0086 (18)0.0255 (19)
C50.0341 (18)0.043 (2)0.0300 (19)0.0145 (17)0.0068 (16)0.0184 (17)
C60.0358 (18)0.040 (2)0.0295 (19)0.0158 (17)0.0084 (17)0.0175 (16)
C70.0377 (19)0.048 (2)0.030 (2)0.0209 (18)0.0048 (17)0.0153 (17)
C80.050 (2)0.063 (3)0.027 (2)0.017 (2)0.0100 (19)0.0155 (19)
C90.046 (2)0.080 (3)0.031 (2)0.022 (2)0.0159 (19)0.030 (2)
C100.047 (2)0.048 (3)0.036 (2)0.020 (2)0.0036 (19)0.0117 (19)
C110.045 (2)0.037 (2)0.053 (3)0.0118 (18)0.004 (2)0.017 (2)
C120.042 (2)0.039 (2)0.039 (2)0.0130 (18)0.0068 (18)0.0210 (18)
C130.081 (3)0.043 (3)0.058 (3)0.010 (2)0.013 (3)0.013 (2)
C140.067 (3)0.048 (3)0.061 (3)0.015 (2)0.022 (2)0.031 (2)
C150.049 (2)0.045 (2)0.042 (2)0.005 (2)0.001 (2)0.024 (2)
C160.054 (2)0.055 (3)0.058 (3)0.017 (2)0.003 (2)0.029 (2)
C170.067 (3)0.055 (3)0.041 (3)0.008 (2)0.005 (2)0.027 (2)
C180.058 (2)0.041 (2)0.033 (2)0.006 (2)0.004 (2)0.0179 (18)
C190.052 (2)0.034 (2)0.029 (2)0.0044 (18)0.0058 (18)0.0152 (16)
C200.047 (2)0.033 (2)0.0260 (19)0.0058 (17)0.0075 (18)0.0142 (16)
C210.053 (2)0.039 (2)0.031 (2)0.0065 (19)0.0102 (19)0.0147 (17)
C220.072 (3)0.054 (3)0.026 (2)0.009 (2)0.014 (2)0.0142 (19)
C230.080 (3)0.053 (3)0.026 (2)0.009 (2)0.006 (2)0.0180 (19)
C240.064 (3)0.050 (3)0.035 (2)0.013 (2)0.022 (2)0.0115 (19)
C250.058 (2)0.050 (3)0.050 (3)0.023 (2)0.017 (2)0.020 (2)
C260.046 (2)0.040 (2)0.039 (2)0.0096 (19)0.0086 (19)0.0193 (18)
C270.067 (3)0.070 (3)0.060 (3)0.031 (2)0.027 (2)0.032 (2)
C280.062 (2)0.065 (3)0.041 (2)0.024 (2)0.009 (2)0.026 (2)
C290.055 (2)0.045 (2)0.037 (2)0.0171 (19)0.015 (2)0.0185 (19)
N50.093 (3)0.067 (3)0.044 (2)0.028 (2)0.020 (2)0.0347 (19)
C300.058 (2)0.048 (3)0.033 (2)0.021 (2)0.009 (2)0.0222 (19)
N60.069 (2)0.062 (3)0.052 (2)0.016 (2)0.003 (2)0.025 (2)
C310.087 (9)0.109 (9)0.050 (8)0.044 (7)0.017 (7)0.061 (7)
N70.087 (9)0.109 (9)0.050 (8)0.044 (7)0.017 (7)0.061 (7)
N80.039 (5)0.022 (4)0.011 (5)0.012 (4)0.009 (4)0.001 (4)
O10.082 (6)0.087 (7)0.027 (5)0.057 (5)0.026 (5)0.036 (5)
Geometric parameters (Å, º) top
Cu1—N22.034 (3)C13—H13A0.9600
Cu1—N42.039 (3)C13—H13B0.9600
Cu1—N12.053 (3)C13—H13C0.9600
Cu1—N32.079 (3)C14—H14A0.9600
Fe1—Fe1i0.410 (15)C14—H14B0.9600
Fe1—C311.56 (4)C14—H14C0.9600
Fe1—N81.625 (19)C15—C161.392 (5)
Fe1—C30i1.908 (15)C15—C271.484 (5)
Fe1—C31i1.96 (4)C16—C171.373 (6)
Fe1—C291.961 (16)C16—H160.9300
Fe1—C29i1.981 (16)C17—C181.403 (5)
Fe1—C301.998 (15)C17—H170.9300
Fe1—N8i2.03 (2)C18—C191.404 (5)
N1—C11.341 (4)C18—C231.435 (5)
N1—C51.370 (4)C19—C201.446 (5)
N2—C121.334 (4)C20—C211.388 (5)
N2—C61.372 (4)C21—C241.410 (5)
N3—C151.324 (5)C21—C221.416 (5)
N3—C191.379 (4)C22—C231.360 (6)
N4—C261.334 (4)C22—H220.9300
N4—C201.380 (4)C23—H230.9300
C1—C21.404 (5)C24—C251.358 (5)
C1—C131.497 (5)C24—H240.9300
C2—C31.351 (5)C25—C261.401 (5)
C2—H20.9300C25—H250.9300
C3—C41.409 (5)C26—C281.502 (5)
C3—H30.9300C27—H27A0.9600
C4—C51.399 (5)C27—H27B0.9600
C4—C91.421 (5)C27—H27C0.9600
C5—C61.439 (5)C28—H28A0.9600
C6—C71.403 (5)C28—H28B0.9600
C7—C101.397 (5)C28—H28C0.9600
C7—C81.425 (5)C29—N51.120 (4)
C8—C91.346 (5)C29—Fe1i1.981 (16)
C8—H80.9300C30—N61.140 (5)
C9—H90.9300C30—Fe1i1.908 (15)
C10—C111.354 (5)C31—N71.23 (5)
C10—H100.9300C31—Fe1i1.96 (4)
C11—C121.410 (5)N8—O11.11 (3)
C11—H110.9300N8—Fe1i2.03 (2)
C12—C141.507 (5)
N2—Cu1—N4135.31 (11)C8—C9—H9119.6
N2—Cu1—N182.52 (12)C4—C9—H9119.6
N4—Cu1—N1121.22 (12)C11—C10—C7120.1 (4)
N2—Cu1—N3114.85 (12)C11—C10—H10120.0
N4—Cu1—N382.49 (12)C7—C10—H10120.0
N1—Cu1—N3126.67 (11)C10—C11—C12120.4 (4)
Fe1i—Fe1—C31165 (5)C10—C11—H11119.8
Fe1i—Fe1—N8166 (5)C12—C11—H11119.8
C31—Fe1—N84.6 (19)N2—C12—C11121.3 (3)
Fe1i—Fe1—C30i97 (4)N2—C12—C14117.4 (3)
C31—Fe1—C30i96.8 (11)C11—C12—C14121.3 (3)
N8—Fe1—C30i96.8 (7)C1—C13—H13A109.5
Fe1i—Fe1—C31i12 (4)C1—C13—H13B109.5
C31—Fe1—C31i176.8 (10)H13A—C13—H13B109.5
N8—Fe1—C31i175.8 (18)C1—C13—H13C109.5
C30i—Fe1—C31i86.0 (10)H13A—C13—H13C109.5
Fe1i—Fe1—C2987 (4)H13B—C13—H13C109.5
C31—Fe1—C2999.8 (13)C12—C14—H14A109.5
N8—Fe1—C2995.2 (10)C12—C14—H14B109.5
C30i—Fe1—C2993.0 (7)H14A—C14—H14B109.5
C31i—Fe1—C2981.6 (11)C12—C14—H14C109.5
Fe1i—Fe1—C29i81 (4)H14A—C14—H14C109.5
C31—Fe1—C29i91.8 (14)H14B—C14—H14C109.5
N8—Fe1—C29i96.4 (10)N3—C15—C16121.8 (4)
C30i—Fe1—C29i88.4 (6)N3—C15—C27116.8 (3)
C31i—Fe1—C29i86.7 (11)C16—C15—C27121.3 (4)
C29—Fe1—C29i168.1 (5)C17—C16—C15120.5 (4)
Fe1i—Fe1—C3072 (4)C17—C16—H16119.8
C31—Fe1—C3094.9 (12)C15—C16—H16119.8
N8—Fe1—C3094.9 (9)C16—C17—C18119.5 (4)
C30i—Fe1—C30168.2 (5)C16—C17—H17120.3
C31i—Fe1—C3082.3 (9)C18—C17—H17120.3
C29—Fe1—C3086.5 (6)C17—C18—C19117.0 (3)
C29i—Fe1—C3089.7 (6)C17—C18—C23123.4 (4)
Fe1i—Fe1—N8i11 (4)C19—C18—C23119.6 (4)
C31—Fe1—N8i174.2 (19)N3—C19—C18122.7 (3)
N8—Fe1—N8i177.2 (10)N3—C19—C20118.5 (3)
C30i—Fe1—N8i85.9 (6)C18—C19—C20118.8 (3)
C31i—Fe1—N8i3.6 (15)N4—C20—C21123.7 (3)
C29—Fe1—N8i85.2 (8)N4—C20—C19116.3 (3)
C29i—Fe1—N8i83.1 (7)C21—C20—C19120.1 (3)
C30—Fe1—N8i82.4 (5)C20—C21—C24117.1 (4)
C1—N1—C5118.1 (3)C20—C21—C22120.0 (4)
C1—N1—Cu1130.8 (2)C24—C21—C22122.9 (4)
C5—N1—Cu1111.1 (2)C23—C22—C21120.9 (4)
C12—N2—C6118.1 (3)C23—C22—H22119.6
C12—N2—Cu1130.3 (2)C21—C22—H22119.6
C6—N2—Cu1111.5 (2)C22—C23—C18120.6 (4)
C15—N3—C19118.5 (3)C22—C23—H23119.7
C15—N3—Cu1131.4 (3)C18—C23—H23119.7
C19—N3—Cu1110.1 (2)C25—C24—C21119.4 (4)
C26—N4—C20117.4 (3)C25—C24—H24120.3
C26—N4—Cu1130.0 (2)C21—C24—H24120.3
C20—N4—Cu1112.6 (2)C24—C25—C26120.5 (4)
N1—C1—C2121.0 (4)C24—C25—H25119.7
N1—C1—C13117.3 (3)C26—C25—H25119.7
C2—C1—C13121.7 (4)N4—C26—C25121.9 (4)
C3—C2—C1121.1 (4)N4—C26—C28117.5 (3)
C3—C2—H2119.5C25—C26—C28120.6 (4)
C1—C2—H2119.5C15—C27—H27A109.5
C2—C3—C4119.4 (4)C15—C27—H27B109.5
C2—C3—H3120.3H27A—C27—H27B109.5
C4—C3—H3120.3C15—C27—H27C109.5
C5—C4—C3117.0 (3)H27A—C27—H27C109.5
C5—C4—C9119.5 (4)H27B—C27—H27C109.5
C3—C4—C9123.5 (4)C26—C28—H28A109.5
N1—C5—C4123.2 (3)C26—C28—H28B109.5
N1—C5—C6117.1 (3)H28A—C28—H28B109.5
C4—C5—C6119.7 (3)C26—C28—H28C109.5
N2—C6—C7123.2 (3)H28A—C28—H28C109.5
N2—C6—C5117.4 (3)H28B—C28—H28C109.5
C7—C6—C5119.4 (3)N5—C29—Fe1174.5 (4)
C10—C7—C6116.9 (3)N5—C29—Fe1i173.2 (5)
C10—C7—C8124.0 (3)N6—C30—Fe1i173.6 (4)
C6—C7—C8119.0 (3)N6—C30—Fe1174.6 (4)
C9—C8—C7121.6 (4)N7—C31—Fe1175 (3)
C9—C8—H8119.2N7—C31—Fe1i173 (3)
C7—C8—H8119.2O1—N8—Fe1176.5 (19)
C8—C9—C4120.8 (4)O1—N8—Fe1i176.7 (16)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N6ii0.932.553.393 (6)151
Symmetry code: (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N6i0.932.553.393 (6)151.2
Symmetry code: (i) x+2, y+1, z+1.
Acknowledgements top

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).

references
References top

Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W. S. (1998). J. Chem. Soc. Dalton Trans. pp. 909–915.

Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.

Chen, L. X., Jenning, G., Liu, T., Gosztola, D. J., Hessler, J. P., Scaltrito, D. V. & Meyers, G. J. (2002). J. Am. Chem. Soc. 124, 10861–10867.

Cuttell, D. G., Kuang, S. M., Fanwick, P. E., McMillin, D. R. & Walton, R. A. (2002). J. Am. Chem. Soc. 124, 6–7.

King, G., Gembicky, M. & Coppens, P. (2005). Acta Cryst. C61, m329–m332.

Kokozay, V. N. & Vassilyeva, O. Yu. (2002). Transition Met. Chem. 27, 693–699.

Morpurgo, G., Dessy, G. & Fares, V. (1984). J. Chem. Soc. Dalton Trans. pp. 785–791.

Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.

Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436.

Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.

Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Inorg. Chem. Commun. 12, 101–104.

Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–, 2430.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Peresypkina, E. V. & Vostrikova, K. E. (2012). Dalton Trans. 41, 4100–4106.

Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shevyakova, I. Yu., Buravov, L. I., Kushch, L. A., Yagubskii, E. B., Khasanov, S. S., Zorina, L. V., Shibaeva, R. P., Drichko, N. V. & Olejniczak, I. (2002). Russ. J. Coord. Chem. 28, 520–529.

Soria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767–1774.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.