supplementary materials


pk2497 scheme

Acta Cryst. (2013). E69, m639    [ doi:10.1107/S1600536813029838 ]

(3-Methyl­benzo­nitrile-[kappa]N)tetra­kis([mu]-N-phenyl­acetamidato)-[kappa]4N:O;[kappa]4O:N-di­rhodium(II)(Rh-Rh)

C. T. Eagle, N. Atem-Tambe, K. K. Kpogo, J. Tan and F. Quarshie

Abstract top

In the title compound, [Rh2(C8H8NO)4(C8H7N)], the four acetamidate ligands bridging the dirhodium core are arranged in a 2,2-trans manner. One RhII atom is five-coordinate, in a distorted pyramidal geometry, while the other is six-coord­in­ate, with a disorted octa­hedral geometry. For the six-coord­inate RhII atom, the axial nitrile ligand shows a non-linear Rh-nitrile coordination with an Rh-N-C bond angle of 166.4 (4)° and a nitrile N-C bond length of 1.138 (6) Å. Each unique RhII atom is coordinated by a trans pair of N atoms and a trans pair of O atoms from the four acetamide ligands. The Neq-Rh-Rh-Oeq torsion angles on the acetamide bridge varies between 12.55 (11) and 14.04 (8)°. In the crystal, the 3-methyl­benzo­nitrile ring shows a [pi]-[pi] inter­action with an inversion-related equivalent [inter­planar spacing = 3.360 (6) Å]. A phenyl ring on one of the acetamide ligands also has a face-to-face [pi]-[pi] inter­action with an inversion-related equivalent [inter­planar spacing = 3.416 (5) Å].

Comment top

Previous papers report the structures of the related complexes 2,2-trans-[Rh2(N(C6H5)COCH3)4]·2NCC6H5 (2) (Eagle et al., 2000), 2,2-trans-[Rh2(N(C9H11)COCH3]4·2NCC6H5 (3) (Eagle et al., 2012) and 2,2-cis-[Rh2(N(C6H5)COCH3)4]·2NCC6H5 (4) (Eagle et al., 2013). The numbering scheme of the title compound is adapted from that of compound 2.

The axial rhodium-nitrogen-carbon bond angle for the title compound, 1, of 166.4 (4)° (see Fig.1) is distinctly non-linear, and contrasts with those found in compound 2 [178.5 (5)° and 169.3 (5)°], compound 3 (180°; imposed by space group symmetry) and compound 4 [167.14 (15)°]. The axial carbon—nitrogen bond length in 1 is 1.138 (6) Å which is comparable to corresponding distances found in 2 [1.135 (8) Å and 1.145 (8) Å] as well as 4 [1.135 (3) Å] and slightly longer than 3 [1.106 (6) Å]. Compound 1 has torsion angles around each acetamide bridge varying between 12.55 (11)° and 14.04 (8)°. These can be compared to the range of 9.03° and 11.89° in 2, 1.12 (9)° in 3 and the range of 1.62 (4)° and 1.78 (4)° in 4. A packing diagram of the structure is shown in Fig. 2.

The infrared absorption spectrum of compound 1 showed a band at 2310.72 cm-1 attributable to the carbon—nitrogen bond stretching mode. The corresponding band for uncomplexed 3-methyl benzonitrile appears at 2227.78 cm-1. This indicates that there is a shortening of the carbon—nitrogen bond and a stronger σ-interaction to the rhodium metal compared to the π-back bonding which occurs upon complexation with trans-tetrakis(µ-N-phenylacetamidato)-κ4N:O;κ4O:N-dirhodium(II).

Related literature top

For the synthesis and structures of three related compounds, see Eagle et al. (2000, 2012, 2013).

Experimental top

Approximately 20 mg of the trans-tetrakis(µ-N-phenylacetamidato)-κ4N:O;κ4O:N-dirhodium(II) was dissolved in 5 ml dichloromethane. 6.5 µL of neat 3-methyl benzonitrile was then added to this solution, via a gas tight syringe, turning the solution from a forest green color to dark blue. Crystals grew over a two week period via vapor diffusion. From the structure determination, compound 1 is an adduct of trans-tetrakis(µ-N-phenylacetamidato)-κ4N:O;κ4O:N-dirhodium(II) with 3-methyl benzonitrile in one axial site.

Refinement top

H-atoms were included in calculated positions with C—H = 0.93 - 0.96 Å and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atom.

Computing details top

Data collection: CrystalClear-SM Auto (Rigaku, 2011); cell refinement: CrystalClear-SM Auto (Rigaku, 2011); data reduction: CrystalClear-SM Auto (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of title compound showing 30% probability ellipsoids. Hydrogen atoms are drawn as small spheres.
[Figure 2] Fig. 2. Packing diagram of title compound viewed down the a axis.
(3-Methylbenzonitrile-κN)tetrakis(µ-N-phenylacetamidato)-κ4N:O;κ4O:N-dirhodium(II)(RhRh) top
Crystal data top
[Rh2(C8H8NO)4(C8H7N)]Z = 2
Mr = 859.58F(000) = 872
Triclinic, P1Dx = 1.596 Mg m3
a = 11.7109 (13) ÅMo Kα radiation, λ = 0.71075 Å
b = 13.0181 (14) ÅCell parameters from 14162 reflections
c = 13.3980 (14) Åθ = 3.0–27.6°
α = 72.337 (5)°µ = 0.97 mm1
β = 66.780 (5)°T = 298 K
γ = 82.742 (6)°Block, blue
V = 1788.6 (3) Å30.16 × 0.08 × 0.07 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
8156 independent reflections
Radiation source: fine-focus sealed X-ray tube5635 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.065
Detector resolution: 6.827 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1515
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1616
Tmin = 0.774, Tmax = 0.934l = 1717
18460 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0345P)2 + 1.6123P]
where P = (Fo2 + 2Fc2)/3
8156 reflections(Δ/σ)max = 0.022
465 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Rh2(C8H8NO)4(C8H7N)]γ = 82.742 (6)°
Mr = 859.58V = 1788.6 (3) Å3
Triclinic, P1Z = 2
a = 11.7109 (13) ÅMo Kα radiation
b = 13.0181 (14) ŵ = 0.97 mm1
c = 13.3980 (14) ÅT = 298 K
α = 72.337 (5)°0.16 × 0.08 × 0.07 mm
β = 66.780 (5)°
Data collection top
Rigaku XtaLAB mini
diffractometer
8156 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
5635 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.934Rint = 0.065
18460 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.73 e Å3
S = 1.04Δρmin = 0.86 e Å3
8156 reflectionsAbsolute structure: ?
465 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. The 3-methyl benzonitrile rings (composed of carbon atoms C22–27) are π- stacked with inversion related symmetry equivalents (symmetry code: 2 - x, 2 - y, 1 - z). The interplanar spacing is 3.360 (6) Å. One of the phenyl rings on the acetamide ligand (composed of carbon atoms C34—C39) has face to face π-π interaction with its symmetry equivalent (symmetry code:2 - x, 1 - y, -z). The interplanar spacing is 3.416 (5) Å.

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.75889 (3)0.78294 (3)0.31656 (3)0.02306 (10)
Rh20.78739 (3)0.70205 (3)0.16908 (3)0.02409 (10)
O10.5727 (3)0.7891 (2)0.3547 (3)0.0289 (7)
O20.9463 (3)0.7741 (2)0.2746 (3)0.0278 (7)
O30.7241 (3)0.5591 (2)0.2870 (3)0.0299 (7)
O40.8450 (3)0.8478 (2)0.0536 (2)0.0296 (7)
N10.7374 (3)0.6280 (3)0.4193 (3)0.0248 (8)
N20.7779 (3)0.9298 (3)0.1961 (3)0.0281 (8)
N30.7472 (3)0.8541 (3)0.4466 (3)0.0269 (8)
N40.6066 (3)0.7502 (3)0.1894 (3)0.0262 (8)
N50.9663 (3)0.6645 (3)0.1648 (3)0.0264 (8)
C10.7162 (4)0.5487 (4)0.3882 (4)0.0300 (11)
C20.6808 (5)0.4375 (4)0.4681 (4)0.0438 (13)
H2A0.73460.38500.43450.053*
H2B0.59630.42340.48290.053*
H2C0.68890.43340.53780.053*
C30.8188 (4)0.9336 (4)0.0883 (4)0.0284 (10)
C40.8350 (5)1.0383 (4)0.0037 (4)0.0369 (12)
H4A0.82351.02620.06640.044*
H4B0.91711.06530.02840.044*
H4C0.77481.09000.02500.044*
C50.5350 (4)0.7823 (4)0.2789 (4)0.0281 (10)
C60.4014 (4)0.8139 (4)0.2994 (4)0.0358 (12)
H6A0.39710.88680.25550.043*
H6B0.35690.80850.37820.043*
H6C0.36500.76650.27760.043*
C71.0111 (4)0.7110 (4)0.2149 (4)0.0280 (10)
C81.1421 (4)0.6945 (4)0.2126 (4)0.0351 (11)
H8A1.14020.68100.28780.042*
H8B1.19000.75800.16450.042*
H8C1.17950.63390.18410.042*
C90.7291 (4)0.6104 (3)0.5329 (4)0.0281 (10)
C100.6180 (5)0.6224 (4)0.6171 (4)0.0441 (13)
H100.54580.63650.60180.053*
C110.6128 (6)0.6134 (4)0.7251 (5)0.0527 (15)
H110.53710.62040.78210.063*
C120.7197 (7)0.5942 (5)0.7474 (5)0.0609 (19)
H120.71690.58810.81930.073*
C130.8305 (7)0.5842 (5)0.6624 (5)0.0583 (17)
H130.90320.57270.67680.070*
C140.8359 (5)0.5908 (4)0.5556 (5)0.0414 (13)
H140.91140.58200.49940.050*
C150.7490 (4)1.0255 (4)0.2322 (4)0.0305 (10)
C160.6271 (5)1.0417 (4)0.3019 (4)0.0395 (12)
H160.56580.99270.32000.047*
C170.5971 (5)1.1305 (4)0.3442 (5)0.0503 (15)
H170.51601.14030.39170.060*
C180.6871 (6)1.2047 (4)0.3164 (5)0.0501 (15)
H180.66661.26510.34350.060*
C190.8053 (6)1.1884 (4)0.2493 (5)0.0493 (14)
H190.86581.23820.23110.059*
C200.8390 (5)1.0991 (4)0.2067 (4)0.0398 (12)
H200.92121.08900.16170.048*
C210.7660 (4)0.8925 (4)0.5043 (4)0.0326 (11)
C220.8002 (4)0.9440 (4)0.5702 (4)0.0311 (11)
C230.8453 (4)1.0479 (4)0.5197 (4)0.0327 (11)
H230.84601.08440.44800.039*
C240.8895 (4)1.0983 (4)0.5750 (4)0.0307 (11)
C250.8888 (5)1.0417 (4)0.6811 (4)0.0390 (12)
H250.92071.07340.71820.047*
C260.8411 (5)0.9385 (4)0.7323 (4)0.0431 (13)
H260.83900.90250.80450.052*
C270.7965 (5)0.8882 (4)0.6777 (4)0.0412 (13)
H270.76490.81870.71220.049*
C280.5586 (4)0.7518 (4)0.1057 (4)0.0281 (10)
C290.5650 (5)0.8446 (4)0.0197 (5)0.0427 (13)
H290.60230.90580.01470.051*
C300.5159 (5)0.8464 (5)0.0588 (5)0.0469 (14)
H300.51820.90990.11510.056*
C310.4634 (5)0.7554 (5)0.0555 (5)0.0484 (15)
H310.43110.75710.10920.058*
C320.4600 (5)0.6627 (5)0.0287 (5)0.0420 (13)
H320.42540.60080.03180.050*
C330.5076 (4)0.6602 (4)0.1093 (4)0.0359 (11)
H330.50510.59680.16570.043*
C341.0412 (4)0.5882 (4)0.1066 (4)0.0252 (10)
C351.0073 (4)0.4806 (4)0.1482 (4)0.0345 (11)
H350.93570.45820.21210.041*
C361.0814 (5)0.4059 (4)0.0934 (4)0.0404 (13)
H361.05900.33370.12210.048*
C371.1860 (4)0.4368 (5)0.0012 (4)0.0398 (13)
H371.23560.38600.03570.048*
C381.2171 (5)0.5446 (5)0.0452 (5)0.0454 (14)
H381.28640.56680.11130.054*
C391.1457 (4)0.6205 (4)0.0088 (4)0.0356 (11)
H391.16800.69280.02090.043*
C400.9357 (5)1.2124 (4)0.5211 (5)0.0439 (13)
H40A0.99561.22350.54910.053*
H40B0.86711.26150.53910.053*
H40C0.97381.22510.44050.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.0236 (2)0.0238 (2)0.0255 (2)0.00195 (15)0.01058 (16)0.01111 (15)
Rh20.0222 (2)0.0280 (2)0.0274 (2)0.00375 (15)0.01155 (16)0.01380 (16)
O10.0239 (16)0.0353 (19)0.0290 (18)0.0008 (14)0.0084 (14)0.0137 (15)
O20.0254 (17)0.0290 (17)0.0373 (18)0.0026 (13)0.0143 (15)0.0186 (15)
O30.0332 (18)0.0317 (18)0.0323 (18)0.0002 (14)0.0155 (15)0.0150 (15)
O40.0285 (17)0.0350 (18)0.0252 (17)0.0027 (14)0.0078 (14)0.0125 (14)
N10.029 (2)0.0221 (19)0.028 (2)0.0032 (16)0.0151 (17)0.0080 (16)
N20.030 (2)0.024 (2)0.032 (2)0.0030 (16)0.0142 (18)0.0073 (17)
N30.032 (2)0.023 (2)0.030 (2)0.0038 (16)0.0122 (18)0.0157 (17)
N40.0225 (19)0.030 (2)0.030 (2)0.0028 (16)0.0112 (17)0.0135 (17)
N50.024 (2)0.032 (2)0.029 (2)0.0041 (16)0.0128 (17)0.0147 (17)
C10.032 (3)0.023 (2)0.038 (3)0.003 (2)0.017 (2)0.010 (2)
C20.060 (4)0.034 (3)0.044 (3)0.000 (3)0.025 (3)0.012 (2)
C30.022 (2)0.032 (3)0.032 (3)0.003 (2)0.009 (2)0.011 (2)
C40.042 (3)0.036 (3)0.028 (3)0.004 (2)0.009 (2)0.007 (2)
C50.018 (2)0.031 (3)0.035 (3)0.0058 (19)0.010 (2)0.012 (2)
C60.027 (3)0.041 (3)0.040 (3)0.008 (2)0.011 (2)0.018 (2)
C70.032 (3)0.027 (2)0.029 (3)0.001 (2)0.016 (2)0.009 (2)
C80.028 (3)0.041 (3)0.043 (3)0.006 (2)0.015 (2)0.021 (2)
C90.038 (3)0.018 (2)0.028 (2)0.000 (2)0.016 (2)0.0025 (19)
C100.053 (3)0.041 (3)0.045 (3)0.001 (3)0.022 (3)0.017 (3)
C110.075 (4)0.044 (3)0.036 (3)0.007 (3)0.010 (3)0.017 (3)
C120.113 (6)0.043 (3)0.036 (3)0.030 (4)0.041 (4)0.005 (3)
C130.083 (5)0.044 (3)0.062 (4)0.017 (3)0.053 (4)0.006 (3)
C140.045 (3)0.038 (3)0.046 (3)0.003 (2)0.026 (3)0.006 (2)
C150.038 (3)0.027 (2)0.030 (3)0.004 (2)0.018 (2)0.008 (2)
C160.032 (3)0.035 (3)0.051 (3)0.006 (2)0.013 (3)0.018 (3)
C170.047 (3)0.040 (3)0.067 (4)0.014 (3)0.020 (3)0.027 (3)
C180.067 (4)0.038 (3)0.057 (4)0.007 (3)0.030 (3)0.023 (3)
C190.065 (4)0.032 (3)0.058 (4)0.010 (3)0.029 (3)0.011 (3)
C200.042 (3)0.035 (3)0.039 (3)0.009 (2)0.010 (2)0.010 (2)
C210.025 (2)0.033 (3)0.036 (3)0.004 (2)0.005 (2)0.015 (2)
C220.027 (2)0.039 (3)0.036 (3)0.004 (2)0.014 (2)0.022 (2)
C230.031 (3)0.041 (3)0.030 (3)0.011 (2)0.014 (2)0.015 (2)
C240.024 (2)0.034 (3)0.039 (3)0.006 (2)0.011 (2)0.019 (2)
C250.042 (3)0.044 (3)0.038 (3)0.004 (2)0.017 (2)0.020 (2)
C260.058 (4)0.043 (3)0.035 (3)0.005 (3)0.022 (3)0.012 (2)
C270.053 (3)0.032 (3)0.043 (3)0.005 (2)0.018 (3)0.015 (2)
C280.018 (2)0.036 (3)0.032 (3)0.0073 (19)0.009 (2)0.015 (2)
C290.039 (3)0.046 (3)0.051 (3)0.005 (2)0.026 (3)0.010 (3)
C300.051 (3)0.053 (4)0.039 (3)0.002 (3)0.026 (3)0.005 (3)
C310.038 (3)0.077 (4)0.042 (3)0.013 (3)0.022 (3)0.028 (3)
C320.035 (3)0.056 (4)0.052 (3)0.003 (3)0.022 (3)0.031 (3)
C330.031 (3)0.035 (3)0.047 (3)0.001 (2)0.018 (2)0.014 (2)
C340.026 (2)0.033 (3)0.025 (2)0.007 (2)0.017 (2)0.013 (2)
C350.025 (2)0.042 (3)0.041 (3)0.003 (2)0.015 (2)0.017 (2)
C360.040 (3)0.044 (3)0.052 (3)0.010 (2)0.024 (3)0.028 (3)
C370.027 (3)0.058 (4)0.051 (3)0.016 (2)0.020 (3)0.037 (3)
C380.034 (3)0.068 (4)0.042 (3)0.001 (3)0.014 (3)0.029 (3)
C390.031 (3)0.044 (3)0.032 (3)0.001 (2)0.010 (2)0.013 (2)
C400.039 (3)0.043 (3)0.056 (4)0.003 (2)0.017 (3)0.021 (3)
Geometric parameters (Å, º) top
Rh1—O12.030 (3)C11—C121.374 (9)
Rh1—O22.037 (3)C12—C131.371 (9)
Rh1—N12.049 (3)C13—C141.383 (7)
Rh1—N22.064 (4)C15—C201.386 (6)
Rh1—N32.161 (4)C15—C161.395 (7)
Rh1—Rh22.4039 (5)C16—C171.386 (7)
Rh2—O32.037 (3)C17—C181.382 (8)
Rh2—O42.041 (3)C18—C191.353 (8)
Rh2—N42.064 (4)C19—C201.393 (7)
Rh2—N52.072 (3)C21—C221.447 (6)
O1—C51.285 (5)C22—C231.382 (7)
O2—C71.285 (5)C22—C271.388 (7)
O3—C11.288 (5)C23—C241.391 (6)
O4—C31.294 (5)C24—C251.386 (7)
N1—C11.307 (5)C24—C401.505 (7)
N1—C91.433 (5)C25—C261.384 (7)
N2—C31.317 (6)C26—C271.384 (7)
N2—C151.426 (6)C28—C331.379 (6)
N3—C211.138 (6)C28—C291.379 (7)
N4—C51.318 (5)C29—C301.376 (7)
N4—C281.435 (5)C30—C311.382 (8)
N5—C71.303 (5)C31—C321.372 (8)
N5—C341.441 (5)C32—C331.387 (7)
C1—C21.508 (6)C34—C351.387 (6)
C3—C41.508 (6)C34—C391.387 (6)
C5—C61.503 (6)C35—C361.398 (7)
C7—C81.511 (6)C36—C371.363 (7)
C9—C101.374 (7)C37—C381.381 (8)
C9—C141.376 (7)C38—C391.396 (7)
C10—C111.394 (7)
O1—Rh1—O2178.13 (12)O1—C5—C6115.0 (4)
O1—Rh1—N188.19 (13)N4—C5—C6121.7 (4)
O2—Rh1—N191.47 (13)O2—C7—N5122.9 (4)
O1—Rh1—N289.89 (13)O2—C7—C8112.8 (4)
O2—Rh1—N290.19 (14)N5—C7—C8124.2 (4)
N1—Rh1—N2171.66 (14)C10—C9—C14119.4 (5)
O1—Rh1—N394.35 (13)C10—C9—N1120.9 (4)
O2—Rh1—N387.51 (13)C14—C9—N1119.4 (4)
N1—Rh1—N394.62 (14)C9—C10—C11120.5 (5)
N2—Rh1—N393.62 (14)C12—C11—C10119.9 (6)
O1—Rh1—Rh289.68 (8)C13—C12—C11119.3 (5)
O2—Rh1—Rh288.46 (8)C12—C13—C14121.1 (6)
N1—Rh1—Rh285.18 (10)C9—C14—C13119.8 (5)
N2—Rh1—Rh286.69 (10)C20—C15—C16119.0 (4)
N3—Rh1—Rh2175.96 (10)C20—C15—N2122.3 (4)
O3—Rh2—O4177.98 (12)C16—C15—N2118.6 (4)
O3—Rh2—N489.74 (14)C17—C16—C15120.2 (5)
O4—Rh2—N488.47 (13)C18—C17—C16120.4 (5)
O3—Rh2—N590.82 (14)C19—C18—C17119.3 (5)
O4—Rh2—N590.82 (14)C18—C19—C20121.8 (5)
N4—Rh2—N5172.16 (14)C15—C20—C19119.3 (5)
O3—Rh2—Rh190.08 (8)N3—C21—C22175.1 (5)
O4—Rh2—Rh188.86 (8)C23—C22—C27120.9 (4)
N4—Rh2—Rh185.65 (10)C23—C22—C21117.8 (4)
N5—Rh2—Rh186.53 (10)C27—C22—C21121.1 (4)
C5—O1—Rh1117.4 (3)C22—C23—C24120.5 (4)
C7—O2—Rh1119.2 (3)C25—C24—C23118.6 (5)
C1—O3—Rh2117.6 (3)C25—C24—C40120.9 (4)
C3—O4—Rh2118.7 (3)C23—C24—C40120.5 (4)
C1—N1—C9119.9 (4)C26—C25—C24120.5 (5)
C1—N1—Rh1121.5 (3)C25—C26—C27121.0 (5)
C9—N1—Rh1118.1 (3)C26—C27—C22118.3 (5)
C3—N2—C15121.4 (4)C33—C28—C29119.4 (5)
C3—N2—Rh1120.0 (3)C33—C28—N4120.4 (4)
C15—N2—Rh1118.6 (3)C29—C28—N4120.2 (4)
C21—N3—Rh1166.4 (4)C30—C29—C28119.9 (5)
C5—N4—C28119.3 (4)C29—C30—C31121.2 (5)
C5—N4—Rh2119.9 (3)C32—C31—C30118.6 (5)
C28—N4—Rh2120.7 (3)C31—C32—C33120.8 (5)
C7—N5—C34119.9 (4)C28—C33—C32120.0 (5)
C7—N5—Rh2119.4 (3)C35—C34—C39119.3 (4)
C34—N5—Rh2120.6 (3)C35—C34—N5119.5 (4)
O3—C1—N1122.7 (4)C39—C34—N5121.2 (4)
O3—C1—C2114.6 (4)C34—C35—C36119.5 (5)
N1—C1—C2122.6 (4)C37—C36—C35121.4 (5)
O4—C3—N2122.5 (4)C36—C37—C38119.1 (5)
O4—C3—C4115.0 (4)C37—C38—C39120.7 (5)
N2—C3—C4122.5 (4)C34—C39—C38119.9 (5)
O1—C5—N4123.4 (4)
O1—Rh1—Rh2—O375.69 (8)N1—Rh1—Rh2—O312.55 (11)
O1—Rh1—Rh2—O4102.59 (8)N1—Rh1—Rh2—O4169.17 (11)
O1—Rh1—Rh2—N414.04 (8)N1—Rh1—Rh2—N4102.28 (11)
O1—Rh1—Rh2—N5166.52 (8)N1—Rh1—Rh2—N578.28 (11)
O2—Rh1—Rh2—O3104.11 (8)N2—Rh1—Rh2—O3165.59 (11)
O2—Rh1—Rh2—O477.62 (8)N2—Rh1—Rh2—O412.69 (11)
O2—Rh1—Rh2—N4166.17 (8)N2—Rh1—Rh2—N475.86 (11)
O2—Rh1—Rh2—N513.28 (8)N2—Rh1—Rh2—N5103.59 (11)

Experimental details

Crystal data
Chemical formula[Rh2(C8H8NO)4(C8H7N)]
Mr859.58
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.7109 (13), 13.0181 (14), 13.3980 (14)
α, β, γ (°)72.337 (5), 66.780 (5), 82.742 (6)
V3)1788.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.16 × 0.08 × 0.07
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.774, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
18460, 8156, 5635
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.102, 1.04
No. of reflections8156
No. of parameters465
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.86

Computer programs: CrystalClear-SM Auto (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SHELXL2013 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010) and Mercury (Macrae et al., 2008).

Acknowledgements top

We thank Dr Lee Daniels of Rigaku Americas for training on the Rigaku XtaLAB diffractometer and his extended help in the completion of the structural determination. Support was provided by a Start Up Grant from ETSU. We thank Johnson Matthey for their generous loan of rhodium trichloride. We also thank Dr Scott J. Kirkby for useful conversations during the writing of this manuscript.

references
References top

Eagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90–94.

Eagle, C. T., Kpogo, K. K., Zink, L. C. & Smith, A. E. (2012). Acta Cryst. E68, m877.

Eagle, C. T., Quarshie, F., Ketron, M. E. & Atem-Tambe, N. (2013). Acta Cryst. E69, m329.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Rigaku (2011). CrystalClear-SM Auto. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.