supplementary materials


rz5095 scheme

Acta Cryst. (2013). E69, o1801    [ doi:10.1107/S1600536813031383 ]

1-Octylindoline-2,3-dione

F.-Z. Qachchachi, Y. Kandri Rodi, E. M. Essassi, W. Kunz and L. El Ammari

Abstract top

In the title compound, C16H21NO2, the indoline ring and the two ketone O atoms are approximately coplanar, the largest deviation from the mean plane being 0.063 (2) Å. The mean plane through the fused ring system is nearly perpendicular to the mean plane passing through the 1-octyl chain [dihedral angle = 77.53 (17)°]. In the crystal, mol­ecules are linked by C-H...O hydrogen bonds, forming a three-dimensional network.

Comment top

Isatin, 1H-indole-2,3-dione, is a heterocyclic compound of significant importance in medicinal chemistry. It is a synthetically versatile molecule, a precursor for a large number of pharmacologically active compounds. Isatin and its derivatives have aroused great attention in recent years due to their wide variety of biological activities, relevant to application as insecticides and fungicides and in a broad range of drug therapies, including anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Ramachandran, 2011; Smitha et al., 2008). As a continuation of our research work devoted to the development of isatin derivatives (Mamari et al., 2010), we report in this paper the synthesis of a new indoline-2,3-dione derivative by action of alkyl halides to explore other applications.

The molecule of title compound is build up from a fused five- and six-membered rings linked to a 1-octyl chain and to two ketonic oxygen atoms as shown in Fig. 1. The indoline ring and the two ketonic oxygen atoms are nearly coplanar, with the largest deviation from the mean plane of 0.063 (2) Å for atom O2. The fused ring system plan is nearly perpendicular to the mean plane passing through the 1-octyl chain as indicated by the torsion angle C1–N1–C9–C10 of -93.2 (2)°. In the crystal, the molecules are linked by C–H···O hydrogen bonds (Table 1) to build a three-dimensional network as shown in Fig. 2.

Related literature top

For the biological activity of indoline derivatives, see: Bhrigu et al. (2010); Malhotra et al. (2011); Da Silva et al. (2001); Ramachandran (2011); Smitha et al. (2008). For the structure of a related compound, see: Mamari et al. (2010).

Experimental top

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (30 ml) was added 1-bromooctane (0.7 ml, 3.4 mmol), potassium carbonate (0.61 g, 4.4 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol). The mixture was stirred for 48 h and the reaction monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield: 72%; mp = 317 K).

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO (Oxford Diffraction, 2012); data reduction: CrysAlis PRO (Oxford Diffraction, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular plot the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Intermolecular hydrogen interactions (dashed lines) in the title compound. Atoms labelled with suffixes a, b and c are generated by the symmetry operators 1-x, 3-y, 1-z; x, 3/2-y, 1/2+z and x, 5/2-y, 1/2+z, respectively.
1-Octylindoline-2,3-dione top
Crystal data top
C16H21NO2F(000) = 560
Mr = 259.34Dx = 1.214 Mg m3
Monoclinic, P21/cMelting point: 317 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.5418 Å
a = 20.266 (4) ÅCell parameters from 5321 reflections
b = 4.6925 (1) Åθ = 3.0–73.5°
c = 15.7807 (11) ŵ = 0.63 mm1
β = 108.941 (18)°T = 123 K
V = 1419.5 (3) Å3Plate, orange
Z = 40.31 × 0.07 × 0.04 mm
Data collection top
Oxford Diffraction SuperNova (single source at offset, Atlas)
diffractometer
2811 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2462 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 20.7092 pixels mm-1θmax = 73.7°, θmin = 4.6°
ω scansh = 2425
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 55
Tmin = 0.899, Tmax = 0.979l = 1719
13541 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0633P)2 + 1.1901P]
where P = (Fo2 + 2Fc2)/3
2811 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H21NO2V = 1419.5 (3) Å3
Mr = 259.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 20.266 (4) ŵ = 0.63 mm1
b = 4.6925 (1) ÅT = 123 K
c = 15.7807 (11) Å0.31 × 0.07 × 0.04 mm
β = 108.941 (18)°
Data collection top
Oxford Diffraction SuperNova (single source at offset, Atlas)
diffractometer
2811 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
2462 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.979Rint = 0.029
13541 measured reflectionsθmax = 73.7°
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.167Δρmax = 0.49 e Å3
S = 1.18Δρmin = 0.22 e Å3
2811 reflectionsAbsolute structure: ?
172 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33354 (9)0.7667 (4)0.34657 (10)0.0397 (4)
O20.44511 (8)1.1900 (4)0.42454 (10)0.0385 (4)
N10.32574 (9)0.7836 (4)0.48939 (11)0.0272 (4)
C10.35221 (11)0.8574 (5)0.42319 (14)0.0299 (5)
C20.40999 (10)1.0835 (5)0.46468 (14)0.0288 (5)
C30.40798 (10)1.1295 (4)0.55543 (13)0.0258 (4)
C40.44509 (10)1.3124 (5)0.62281 (15)0.0296 (5)
H40.47911.43250.61480.036*
C50.43015 (11)1.3116 (5)0.70275 (14)0.0308 (5)
H50.45401.43430.74880.037*
C60.37992 (11)1.1290 (5)0.71428 (13)0.0290 (5)
H60.37101.13100.76850.035*
C70.34230 (10)0.9420 (5)0.64691 (13)0.0272 (4)
H70.30890.81960.65530.033*
C80.35685 (9)0.9471 (4)0.56786 (13)0.0241 (4)
C90.26652 (10)0.5930 (5)0.47581 (15)0.0303 (5)
H9A0.27320.48190.52980.036*
H9B0.26450.46180.42750.036*
C100.19768 (10)0.7542 (5)0.45315 (15)0.0300 (5)
H10A0.19400.88370.40390.036*
H10B0.19760.86740.50450.036*
C110.13437 (10)0.5572 (5)0.42731 (15)0.0305 (5)
H11A0.13820.42620.47630.037*
H11B0.13410.44550.37540.037*
C120.06565 (10)0.7207 (5)0.40574 (15)0.0311 (5)
H12A0.06510.82300.45890.037*
H12B0.06350.86050.35970.037*
C130.00107 (10)0.5314 (5)0.37394 (15)0.0317 (5)
H13A0.00140.42980.32050.038*
H13B0.00310.39120.41990.038*
C140.06690 (11)0.6980 (5)0.35310 (15)0.0327 (5)
H14A0.06830.84120.30820.039*
H14B0.06750.79620.40690.039*
C150.13189 (11)0.5123 (5)0.31923 (16)0.0358 (5)
H15A0.13060.36830.36380.043*
H15B0.13170.41540.26500.043*
C160.19929 (12)0.6838 (6)0.29952 (18)0.0429 (6)
H16A0.23860.55780.27880.064*
H16B0.20150.82340.25420.064*
H16C0.20010.77780.35320.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0396 (9)0.0494 (10)0.0293 (8)0.0081 (7)0.0102 (7)0.0051 (7)
O20.0303 (8)0.0559 (11)0.0335 (8)0.0040 (7)0.0160 (7)0.0132 (7)
N10.0222 (8)0.0314 (9)0.0271 (9)0.0000 (7)0.0067 (7)0.0028 (7)
C10.0265 (10)0.0372 (12)0.0262 (10)0.0098 (8)0.0087 (8)0.0014 (8)
C20.0224 (9)0.0349 (11)0.0297 (10)0.0088 (8)0.0092 (8)0.0086 (9)
C30.0225 (9)0.0285 (10)0.0275 (10)0.0050 (7)0.0096 (8)0.0072 (8)
C40.0207 (9)0.0307 (11)0.0364 (11)0.0008 (8)0.0078 (8)0.0049 (9)
C50.0267 (10)0.0319 (11)0.0312 (11)0.0000 (8)0.0059 (8)0.0013 (8)
C60.0275 (10)0.0353 (11)0.0243 (10)0.0047 (8)0.0084 (8)0.0026 (8)
C70.0240 (9)0.0306 (11)0.0286 (10)0.0001 (8)0.0107 (8)0.0031 (8)
C80.0188 (9)0.0257 (10)0.0263 (9)0.0040 (7)0.0053 (7)0.0011 (8)
C90.0250 (10)0.0284 (11)0.0350 (11)0.0012 (8)0.0064 (8)0.0031 (8)
C100.0247 (10)0.0299 (11)0.0340 (11)0.0014 (8)0.0074 (8)0.0014 (8)
C110.0238 (10)0.0311 (11)0.0345 (11)0.0004 (8)0.0063 (8)0.0026 (9)
C120.0236 (10)0.0324 (11)0.0353 (11)0.0011 (8)0.0067 (8)0.0013 (9)
C130.0253 (10)0.0337 (12)0.0347 (11)0.0000 (8)0.0079 (8)0.0023 (9)
C140.0256 (11)0.0365 (12)0.0344 (11)0.0004 (9)0.0075 (9)0.0005 (9)
C150.0271 (11)0.0404 (13)0.0388 (12)0.0014 (9)0.0092 (9)0.0039 (10)
C160.0244 (11)0.0546 (15)0.0462 (14)0.0006 (10)0.0069 (10)0.0003 (12)
Geometric parameters (Å, º) top
O1—C11.220 (3)C10—H10A0.9700
O2—C21.204 (3)C10—H10B0.9700
N1—C11.365 (3)C11—C121.528 (3)
N1—C81.419 (3)C11—H11A0.9700
N1—C91.456 (3)C11—H11B0.9700
C1—C21.558 (3)C12—C131.526 (3)
C2—C31.462 (3)C12—H12A0.9700
C3—C41.383 (3)C12—H12B0.9700
C3—C81.406 (3)C13—C141.524 (3)
C4—C51.390 (3)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.387 (3)C14—C151.524 (3)
C5—H50.9300C14—H14A0.9700
C6—C71.398 (3)C14—H14B0.9700
C6—H60.9300C15—C161.528 (3)
C7—C81.372 (3)C15—H15A0.9700
C7—H70.9300C15—H15B0.9700
C9—C101.524 (3)C16—H16A0.9600
C9—H9A0.9700C16—H16B0.9600
C9—H9B0.9700C16—H16C0.9600
C10—C111.526 (3)
C1—N1—C8110.93 (17)H10A—C10—H10B107.8
C1—N1—C9123.59 (18)C10—C11—C12112.44 (18)
C8—N1—C9124.91 (17)C10—C11—H11A109.1
O1—C1—N1126.7 (2)C12—C11—H11A109.1
O1—C1—C2127.1 (2)C10—C11—H11B109.1
N1—C1—C2106.24 (17)C12—C11—H11B109.1
O2—C2—C3131.6 (2)H11A—C11—H11B107.8
O2—C2—C1123.6 (2)C13—C12—C11113.79 (18)
C3—C2—C1104.83 (16)C13—C12—H12A108.8
C4—C3—C8120.78 (18)C11—C12—H12A108.8
C4—C3—C2131.56 (19)C13—C12—H12B108.8
C8—C3—C2107.65 (18)C11—C12—H12B108.8
C3—C4—C5118.16 (19)H12A—C12—H12B107.7
C3—C4—H4120.9C14—C13—C12113.04 (18)
C5—C4—H4120.9C14—C13—H13A109.0
C6—C5—C4120.4 (2)C12—C13—H13A109.0
C6—C5—H5119.8C14—C13—H13B109.0
C4—C5—H5119.8C12—C13—H13B109.0
C5—C6—C7122.01 (19)H13A—C13—H13B107.8
C5—C6—H6119.0C13—C14—C15113.60 (19)
C7—C6—H6119.0C13—C14—H14A108.8
C8—C7—C6117.09 (19)C15—C14—H14A108.8
C8—C7—H7121.5C13—C14—H14B108.8
C6—C7—H7121.5C15—C14—H14B108.8
C7—C8—C3121.54 (19)H14A—C14—H14B107.7
C7—C8—N1128.20 (18)C14—C15—C16112.6 (2)
C3—C8—N1110.25 (17)C14—C15—H15A109.1
N1—C9—C10112.20 (17)C16—C15—H15A109.1
N1—C9—H9A109.2C14—C15—H15B109.1
C10—C9—H9A109.2C16—C15—H15B109.1
N1—C9—H9B109.2H15A—C15—H15B107.8
C10—C9—H9B109.2C15—C16—H16A109.5
H9A—C9—H9B107.9C15—C16—H16B109.5
C9—C10—C11112.85 (17)H16A—C16—H16B109.5
C9—C10—H10A109.0C15—C16—H16C109.5
C11—C10—H10A109.0H16A—C16—H16C109.5
C9—C10—H10B109.0H16B—C16—H16C109.5
C11—C10—H10B109.0
C8—N1—C1—O1175.8 (2)C6—C7—C8—N1179.05 (19)
C9—N1—C1—O14.1 (3)C4—C3—C8—C70.5 (3)
C8—N1—C1—C23.3 (2)C2—C3—C8—C7179.61 (18)
C9—N1—C1—C2174.96 (17)C4—C3—C8—N1179.39 (18)
O1—C1—C2—O22.5 (3)C2—C3—C8—N10.3 (2)
N1—C1—C2—O2178.42 (19)C1—N1—C8—C7177.49 (19)
O1—C1—C2—C3176.1 (2)C9—N1—C8—C75.9 (3)
N1—C1—C2—C33.0 (2)C1—N1—C8—C32.4 (2)
O2—C2—C3—C41.1 (4)C9—N1—C8—C3173.93 (18)
C1—C2—C3—C4177.4 (2)C1—N1—C9—C1093.2 (2)
O2—C2—C3—C8180.0 (2)C8—N1—C9—C1077.3 (2)
C1—C2—C3—C81.6 (2)N1—C9—C10—C11172.83 (17)
C8—C3—C4—C50.3 (3)C9—C10—C11—C12179.35 (18)
C2—C3—C4—C5178.5 (2)C10—C11—C12—C13176.35 (18)
C3—C4—C5—C60.8 (3)C11—C12—C13—C14179.79 (18)
C4—C5—C6—C70.5 (3)C12—C13—C14—C15178.69 (18)
C5—C6—C7—C80.3 (3)C13—C14—C15—C16179.56 (19)
C6—C7—C8—C30.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.493.156 (3)129
C6—H6···O2ii0.932.573.260 (3)131
C4—H4···O2iii0.932.553.470 (3)170
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+5/2, z+1/2; (iii) x+1, y+3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.493.156 (3)129.0
C6—H6···O2ii0.932.573.260 (3)131.0
C4—H4···O2iii0.932.553.470 (3)170.2
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+5/2, z+1/2; (iii) x+1, y+3, z+1.
references
References top

Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229–235.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Da Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751.

Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1410.

Oxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.