supplementary materials


tk5270 scheme

Acta Cryst. (2013). E69, o1799-o1800    [ doi:10.1107/S1600536813031036 ]

A P212121 polymorph of (+)-clusianone

S. Vaneesa Nagalingam, J. Wong Pik Ching, M. Khaled bin Break, M. I. M. Tahir and T.-J. Khoo

Abstract top

The title compound, C33H42O4 [systematic name: (1S,5S,7R)-3-benzoyl-4-hy­droxy-8,8-dimethyl-1,5,7-tris­(3-methyl­but-2-­enyl)bi­cyclo­[3.3.1]nona-3-ene-2,9-dione], has a central bi­cyclo­[3.3.1]nonane-2,4,9-trione surrounded by tetra­prenyl­ated and benzoyl groups. The compound was recrystallized several times in methanol using both a slow evaporation method and with a crystal-seeding technique. This subsequently produced diffraction-quality crystals which crystallize in the ortho­rhom­bic space group P212121, in contrast to a previous report of a structure determination in the Pna21 space group [McCandlish et al. (1976). Acta Cryst. B32, 1793-1801]. The title compound has a melting point of 365-366 K, and a specific rotation [[alpha]]20 value of +51.94°. A strong intra­molecular O-H...O hydrogen bond is noted. In the crystal, mol­ecules are assembled in the ab plane by weak C-H...O inter­actions.

Comment top

Clusianone is a polycyclic polyprenylated acyl­pholroglucinols (PPAP) isolated from the plants of the family Clusiaceae (Guttiferae) and has gained considerable inter­est from both the natural product and synthetic chemistry community due to its potential bioactivity. Clusianone, both naturally occurring and synthetic, exhibits anti-HIV (Piccinelli et al., 2005; Garnsey et al., 2011) and anti-cancer properties (Simpkins, 2013).

Clusianone was isolated from the roots of Clusia congestiflora and analysis of X-ray diffraction has firmly established the equatorial orientation of the 3-methyl-2-butenyl group at C-7 which crystallized in the Pna21 space group (McCandlish et al., 1976). Subsequent isolation of the compound from Clusia Sandiensis (Monache et al., 1991) and Clusia spiritu-santensis (de Oliveira et al., 1996) led to NMR studies of clusianone and its methyl derivative, respectively, but gave contradictory NMR data for clusianone. Unfortunately, due to the complexity of the data and the unavailability of authentic sample of clusianone, no report was made of the C7 stereochemistry. Santos and co-workers isolated 7-epiclusianone from Rheedia gardneriana and reported its NMR and X-ray crystal structure, showing the C7 exo isomerism (Santos et al., 1998; Santos et al., 2001). Thereafter, the absolute structure of (+)-7- epiclusianone possessing an axial C7-prenyl group while comparison to clusianone isolated from the roots of Clusia congestiflora (McCandlish et al., 1976) had the C7-prenyl group as equatorial. The title compound's epimer (+)-7- epiclusianone crystallized in space group of P212121 (Santos et al., 1998).

To date, the absolute configuration of (+)-clusianone determined by X-ray crystallography at room temperature has been only confirmed by (McCandlish et al., 1976). Previously reported clusianone isolated from Clusia congestiflora crystallizes in the Pna21 space group. The crystal was obtained from a 95% ethanol solution (McCandlish et al.,1976). However, the lack of the specific optical rotation of the clusianone isolated by McCandlish et al. (1976) indicates that further investigation might be required to discover the uncertainty in stereochemistry of this compound.

Herein, we report the clusianone with melting point 365–366 K and a specific rotation [α]20 value of +51.94 °. We report (+)-clusianone to crystallize in the orthorhombic space group P212121, Fig. 1, when crystals were isolated from methanol solution. Intra­molecular O—H···O hydrogen bonds are noted, Table 1. Supra­molecular layers in the ab plane are stabilised by weak C—H···O inter­actions, Fig. 2. The different solvent used to crystallize the compound might be the reason for the polymorph occurance.

Experimental top

Isolation and crystallization top

G. Parvifolia leaves were collected from trees in a reserved forest, Sungai Congkak, Selangor, Malaysia. The leaves (133 g) were dried, powdered and macerated with n-hexane (3 x 1.0 L) frequently over three days. Each maceration were filtered, evaporated and then dried using a rotary evaporator under reduced pressure at 40 °C. The hexane extract of the leaves (9.7 g) was then chromatographed on silica gel (70-230 mesh) and eluted with di­ethyl ether and evaporated. This fraction of the extract which contains a major portion of chloro­phyll compounds was then mixed with silica gel:activated charcoal in proportion of 1:3:1, respectively, and placed in a column with a porous frit. The material was eluted with hexane (500 ml) followed by di­chloro­methane (500 ml) with the aid of vacuum pressure. To isolate the compound, the di­chloro­methane dried fractions (4.8 g) was further chromatographed on silica gel (70-230 mesh) and eluted with mixtures of cyclo­hexane/chloro­form and chloro­form/methanol of increasing polarity. A total of 122 fractions were collected in 20 ml vials and fractions from F51—F60 were crystallized via slow methanol evaporation. Growth of diffraction quality crystals were obtained through several recrystallizations in methanol using both slow evaporation method and crystal seeding technique over a period of 10 days. Yellow cubic crystals (119 mg) were obtained and the melting point was 365-366 K and the specific optical rotation [α]20 was +51.94 °. The specific optical rotation was measured using an ADP-440 Perkin Elmer digital polarimeter using a sodium lamp at 589 nm. The melting point was recorded on Stuart's melting point apparatus SMP100. All the data analysis relevant to melting point, specific rotation and X-ray diffraction analysis were repeated three times to determine the reproducibility of the data and various parameters.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints except the hydroxyl hydrogen which were refined freely (Cooper et al., 2010).

Related literature top

For related structural studies, see: McCandlish et al. (1976); Santos et al. (1998, 2001). For background to Clusiaceae metabolites, see: Monache et al. (1991); de Oliveira et al. (1996). For discussion of polycyclic polyprenylated acylphloroglucinols, including their biological properties, see: Piccinelli et al. (2005); Garnsey et al. (2011); Simpkins (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003; Cooper et al., 2010); molecular graphics: CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. View of the molecule showing intramolecular hydrogen bond.
[Figure 2] Fig. 2. Partial packing diagram showing the C—H···O intermolecular interactions. Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, y + 1/2, -z + 3/2; (iii) -x + 2, y - 1/2, -z + 3/2; (iv) -x + 1, y + 1/2, -z + 3/2.
(1S,5S,7R)-3-Benzoyl-4-hydroxy-8,8-dimethyl-1,5,7-tris(3-methylbut-2-enyl)bicyclo[3.3.1]nona-3-ene-2,9-dione top
Crystal data top
C33H42O4Dx = 1.174 Mg m3
Mr = 502.69Melting point: 365 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 19011 reflections
a = 9.2035 (2) Åθ = 3–71°
b = 13.4629 (2) ŵ = 0.59 mm1
c = 22.9607 (5) ÅT = 100 K
V = 2844.96 (10) Å3Prismatic, colourless
Z = 40.21 × 0.14 × 0.08 mm
F(000) = 1088
Data collection top
Oxford Diffraction Gemini
diffractometer
5498 independent reflections
Radiation source: Cu Ka5269 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 71.6°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2002)
h = 1111
Tmin = 0.86, Tmax = 0.95k = 1616
39826 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 1.02P] ,
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 0.96Δρmax = 0.24 e Å3
5498 reflectionsΔρmin = 0.18 e Å3
335 parametersAbsolute structure: Flack (1983), 2383 Friedel pairs
0 restraintsAbsolute structure parameter: 0.04 (15)
Primary atom site location: other
Crystal data top
C33H42O4V = 2844.96 (10) Å3
Mr = 502.69Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.2035 (2) ŵ = 0.59 mm1
b = 13.4629 (2) ÅT = 100 K
c = 22.9607 (5) Å0.21 × 0.14 × 0.08 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
5269 reflections with I > 2.0σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2002)
Rint = 0.034
Tmin = 0.86, Tmax = 0.95θmax = 71.6°
39826 measured reflectionsStandard reflections: 0
5498 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.24 e Å3
S = 0.96Δρmin = 0.18 e Å3
5498 reflectionsAbsolute structure: Flack (1983), 2383 Friedel pairs
335 parametersAbsolute structure parameter: 0.04 (15)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.01156 (11)0.23087 (8)0.70014 (5)0.0254
H10.99760.33860.71230.0500*
C20.89022 (15)0.21427 (11)0.67631 (6)0.0196
C30.87580 (15)0.11723 (10)0.64619 (6)0.0196
C40.81066 (17)0.10926 (12)0.59161 (7)0.0252
C50.81469 (18)0.01993 (13)0.56225 (7)0.0333
C60.87951 (19)0.06283 (13)0.58714 (8)0.0364
C70.94348 (19)0.05514 (12)0.64160 (8)0.0338
C80.94353 (17)0.03472 (11)0.67054 (7)0.0260
C90.78010 (15)0.29113 (10)0.67650 (6)0.0189
C100.82224 (15)0.38637 (11)0.69421 (6)0.0200
O110.95023 (11)0.40387 (7)0.71561 (4)0.0244
C120.72277 (16)0.47533 (10)0.69123 (6)0.0207
C130.60033 (16)0.45383 (10)0.64825 (6)0.0204
O140.56632 (12)0.51181 (7)0.61064 (5)0.0285
C150.51798 (15)0.35827 (10)0.66056 (6)0.0198
C160.62421 (15)0.26982 (10)0.66719 (6)0.0187
O170.57659 (11)0.18581 (7)0.66667 (5)0.0232
C180.43562 (16)0.37607 (10)0.72158 (6)0.0215
C190.55121 (16)0.40042 (10)0.76906 (6)0.0211
C200.64960 (16)0.48756 (11)0.75201 (6)0.0220
C210.48510 (17)0.42104 (11)0.83005 (7)0.0255
C220.59687 (18)0.41885 (11)0.87765 (7)0.0268
C230.61287 (19)0.35035 (12)0.91878 (7)0.0297
C240.7280 (2)0.36145 (15)0.96492 (8)0.0415
C250.5211 (2)0.25871 (14)0.92400 (9)0.0454
C260.32752 (17)0.46277 (12)0.71414 (7)0.0286
C270.35104 (16)0.28311 (12)0.73993 (7)0.0275
C280.41309 (16)0.33433 (10)0.60982 (6)0.0227
C290.48887 (16)0.31514 (11)0.55260 (7)0.0234
C300.48971 (16)0.23037 (11)0.52250 (6)0.0235
C310.41774 (19)0.13577 (11)0.54147 (7)0.0297
C320.56841 (18)0.22262 (12)0.46514 (7)0.0286
C330.80586 (17)0.57064 (11)0.67524 (6)0.0238
C340.90501 (18)0.55841 (11)0.62358 (6)0.0269
C351.03353 (17)0.60074 (10)0.61558 (6)0.0242
C361.10148 (18)0.67277 (11)0.65730 (7)0.0283
C371.1235 (2)0.57708 (12)0.56262 (7)0.0336
H410.76290.16480.57470.0322*
H510.77200.01540.52450.0408*
H610.87670.12390.56620.0448*
H710.98820.11200.66030.0423*
H810.98880.04100.70730.0323*
H1910.61410.34130.77390.0240*
H2010.72850.49390.78140.0255*
H2020.59480.54920.75150.0250*
H2110.44040.48550.82980.0302*
H2120.40980.37240.83760.0308*
H2210.66500.47240.87830.0333*
H2410.78080.42520.96040.0629*
H2420.68260.35871.00290.0630*
H2430.79680.30640.96240.0633*
H2510.47740.25710.96260.0712*
H2520.44050.25580.89750.0712*
H2530.57830.19960.92030.0711*
H2610.24890.44600.68690.0435*
H2620.37260.52280.70090.0443*
H2630.27930.47600.75160.0424*
H2710.28270.29890.77200.0415*
H2720.41330.23000.75290.0415*
H2730.29350.25880.70650.0413*
H2810.34880.39130.60460.0275*
H2820.35280.27900.62140.0274*
H2910.54150.36990.53690.0295*
H3110.34500.11610.51210.0463*
H3120.36410.14210.57850.0443*
H3130.48820.08120.54620.0471*
H3210.50280.19780.43550.0443*
H3220.65300.17810.46870.0436*
H3230.60610.28780.45170.0438*
H3310.86190.59020.70930.0268*
H3320.73550.62250.66830.0297*
H3410.86820.51500.59370.0329*
H3611.13710.73250.63790.0438*
H3621.18840.64360.67530.0454*
H3631.03910.69260.68770.0428*
H3711.14240.63550.53920.0501*
H3721.07930.52840.53730.0518*
H3731.21860.55200.57390.0518*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (5)0.0295 (5)0.0279 (5)0.0028 (4)0.0055 (4)0.0029 (4)
C20.0186 (7)0.0247 (7)0.0157 (6)0.0013 (6)0.0009 (5)0.0033 (5)
C30.0143 (6)0.0228 (7)0.0216 (7)0.0013 (6)0.0031 (5)0.0010 (5)
C40.0223 (7)0.0281 (8)0.0250 (7)0.0033 (6)0.0014 (6)0.0008 (6)
C50.0277 (8)0.0415 (9)0.0307 (8)0.0014 (7)0.0041 (7)0.0124 (7)
C60.0330 (9)0.0281 (8)0.0480 (10)0.0050 (7)0.0038 (8)0.0156 (7)
C70.0331 (9)0.0251 (7)0.0432 (9)0.0107 (7)0.0017 (7)0.0014 (7)
C80.0231 (7)0.0299 (8)0.0251 (7)0.0045 (6)0.0002 (6)0.0012 (6)
C90.0199 (7)0.0209 (7)0.0160 (6)0.0006 (5)0.0006 (5)0.0015 (5)
C100.0192 (6)0.0250 (7)0.0157 (6)0.0026 (6)0.0016 (5)0.0013 (5)
O110.0215 (5)0.0246 (5)0.0270 (5)0.0021 (4)0.0028 (4)0.0040 (4)
C120.0222 (7)0.0186 (7)0.0215 (7)0.0026 (5)0.0020 (6)0.0015 (5)
C130.0213 (7)0.0186 (6)0.0214 (7)0.0034 (6)0.0024 (6)0.0028 (5)
O140.0349 (6)0.0215 (5)0.0291 (6)0.0015 (4)0.0056 (5)0.0039 (4)
C150.0170 (6)0.0196 (6)0.0227 (7)0.0005 (5)0.0002 (5)0.0006 (5)
C160.0194 (6)0.0199 (6)0.0169 (6)0.0011 (5)0.0005 (5)0.0007 (5)
O170.0195 (5)0.0185 (5)0.0318 (6)0.0007 (4)0.0004 (4)0.0005 (4)
C180.0181 (7)0.0214 (7)0.0248 (7)0.0010 (6)0.0026 (6)0.0010 (5)
C190.0213 (7)0.0179 (6)0.0242 (7)0.0021 (5)0.0028 (6)0.0005 (5)
C200.0236 (7)0.0200 (7)0.0223 (7)0.0000 (6)0.0018 (6)0.0023 (5)
C210.0270 (7)0.0222 (7)0.0272 (7)0.0026 (6)0.0057 (6)0.0009 (6)
C220.0305 (8)0.0241 (7)0.0259 (7)0.0004 (6)0.0081 (6)0.0059 (6)
C230.0340 (8)0.0285 (8)0.0267 (8)0.0077 (7)0.0078 (7)0.0029 (6)
C240.0491 (11)0.0477 (10)0.0278 (9)0.0143 (9)0.0009 (8)0.0037 (8)
C250.0507 (12)0.0352 (10)0.0503 (11)0.0003 (9)0.0050 (10)0.0126 (8)
C260.0232 (7)0.0291 (8)0.0335 (8)0.0066 (6)0.0013 (7)0.0016 (7)
C270.0225 (8)0.0293 (8)0.0306 (8)0.0031 (6)0.0043 (6)0.0013 (7)
C280.0178 (7)0.0214 (6)0.0290 (8)0.0030 (5)0.0052 (6)0.0002 (6)
C290.0196 (7)0.0252 (7)0.0254 (7)0.0011 (6)0.0056 (6)0.0039 (6)
C300.0187 (7)0.0283 (7)0.0235 (7)0.0022 (6)0.0060 (6)0.0012 (6)
C310.0312 (8)0.0258 (7)0.0322 (8)0.0000 (7)0.0025 (7)0.0028 (6)
C320.0283 (8)0.0328 (8)0.0247 (7)0.0003 (7)0.0015 (6)0.0001 (6)
C330.0282 (8)0.0199 (7)0.0232 (7)0.0041 (6)0.0019 (6)0.0015 (6)
C340.0381 (9)0.0209 (6)0.0217 (7)0.0045 (6)0.0022 (7)0.0021 (6)
C350.0327 (8)0.0173 (6)0.0227 (7)0.0020 (6)0.0033 (6)0.0028 (5)
C360.0280 (8)0.0250 (7)0.0317 (8)0.0024 (6)0.0034 (6)0.0012 (6)
C370.0409 (9)0.0267 (8)0.0332 (9)0.0057 (7)0.0124 (8)0.0030 (6)
Geometric parameters (Å, º) top
O1—C21.2635 (17)C23—C241.506 (3)
H1—O110.984C23—C251.500 (3)
C2—C31.4842 (19)C24—H2410.992
C2—C91.448 (2)C24—H2420.968
C3—C41.393 (2)C24—H2430.977
C3—C81.391 (2)C25—H2510.974
C4—C51.379 (2)C25—H2520.960
C4—H410.950C25—H2530.958
C5—C61.387 (3)C26—H2610.983
C5—H510.953C26—H2620.958
C6—C71.386 (3)C26—H2630.984
C6—H610.953C27—H2710.992
C7—C81.380 (2)C27—H2720.964
C7—H710.969C27—H2730.988
C8—H810.945C28—C291.510 (2)
C9—C101.400 (2)C28—H2810.975
C9—C161.479 (2)C28—H2820.967
C10—O111.2979 (17)C29—C301.334 (2)
C10—C121.509 (2)C29—H2910.953
C12—C131.526 (2)C30—C311.500 (2)
C12—C201.5582 (19)C30—C321.507 (2)
C12—C331.5381 (19)C31—H3110.987
C13—O141.2054 (18)C31—H3120.987
C13—C151.5198 (19)C31—H3130.986
C15—C161.5482 (19)C32—H3210.969
C15—C181.6110 (19)C32—H3220.986
C15—C281.5469 (19)C32—H3230.993
C16—O171.2131 (17)C33—C341.506 (2)
C18—C191.558 (2)C33—H3310.973
C18—C261.543 (2)C33—H3320.966
C18—C271.533 (2)C34—C351.326 (2)
C19—C201.5328 (19)C34—H3410.964
C19—C211.552 (2)C35—C361.500 (2)
C19—H1910.990C35—C371.505 (2)
C20—H2010.994C36—H3610.977
C20—H2020.971C36—H3620.982
C21—C221.501 (2)C36—H3630.943
C21—H2110.961C37—H3710.969
C21—H2120.969C37—H3720.966
C22—C231.328 (2)C37—H3730.973
C22—H2210.955
O1—C2—C3115.88 (13)C22—C23—C25124.43 (16)
O1—C2—C9119.39 (13)C24—C23—C25114.94 (15)
C3—C2—C9124.59 (12)C23—C24—H241110.9
C2—C3—C4121.69 (13)C23—C24—H242109.1
C2—C3—C8118.39 (13)H241—C24—H242109.8
C4—C3—C8119.53 (14)C23—C24—H243109.8
C3—C4—C5119.68 (15)H241—C24—H243109.4
C3—C4—H41120.4H242—C24—H243107.7
C5—C4—H41119.9C23—C25—H251108.9
C4—C5—C6120.70 (15)C23—C25—H252114.7
C4—C5—H51119.3H251—C25—H252104.9
C6—C5—H51120.0C23—C25—H253111.5
C5—C6—C7119.63 (15)H251—C25—H253106.8
C5—C6—H61118.2H252—C25—H253109.5
C7—C6—H61122.1C18—C26—H261111.8
C6—C7—C8120.00 (15)C18—C26—H262113.2
C6—C7—H71121.4H261—C26—H262108.1
C8—C7—H71118.6C18—C26—H263109.3
C3—C8—C7120.41 (14)H261—C26—H263105.5
C3—C8—H81119.0H262—C26—H263108.7
C7—C8—H81120.6C18—C27—H271110.6
C2—C9—C10117.48 (13)C18—C27—H272112.9
C2—C9—C16122.67 (13)H271—C27—H272107.8
C10—C9—C16119.24 (13)C18—C27—H273109.2
C9—C10—O11121.85 (13)H271—C27—H273108.0
C9—C10—C12123.08 (13)H272—C27—H273108.3
O11—C10—C12115.06 (12)C15—C28—C29113.75 (11)
H1—O11—C10102.2C15—C28—H281107.9
C10—C12—C13109.07 (11)C29—C28—H281107.9
C10—C12—C20107.79 (11)C15—C28—H282108.1
C13—C12—C20106.27 (11)C29—C28—H282111.9
C10—C12—C33111.80 (12)H281—C28—H282107.0
C13—C12—C33111.78 (12)C28—C29—C30126.86 (14)
C20—C12—C33109.91 (11)C28—C29—H291115.6
C12—C13—O14122.17 (13)C30—C29—H291117.5
C12—C13—C15114.12 (11)C29—C30—C31124.98 (14)
O14—C13—C15123.50 (13)C29—C30—C32120.98 (14)
C13—C15—C16110.76 (11)C31—C30—C32114.03 (13)
C13—C15—C18105.69 (11)C30—C31—H311109.2
C16—C15—C18109.03 (11)C30—C31—H312113.4
C13—C15—C28110.33 (11)H311—C31—H312105.8
C16—C15—C28107.93 (11)C30—C31—H313112.0
C18—C15—C28113.10 (11)H311—C31—H313108.7
C15—C16—C9118.54 (12)H312—C31—H313107.4
C15—C16—O17119.21 (13)C30—C32—H321109.7
C9—C16—O17122.20 (13)C30—C32—H322110.4
C15—C18—C19108.57 (11)H321—C32—H322110.0
C15—C18—C26108.64 (12)C30—C32—H323112.3
C19—C18—C26111.01 (12)H321—C32—H323107.7
C15—C18—C27110.89 (12)H322—C32—H323106.7
C19—C18—C27109.04 (12)C12—C33—C34113.47 (12)
C26—C18—C27108.70 (12)C12—C33—H331107.3
C18—C19—C20112.70 (11)C34—C33—H331110.0
C18—C19—C21113.66 (12)C12—C33—H332108.0
C20—C19—C21108.97 (11)C34—C33—H332110.8
C18—C19—H191108.0H331—C33—H332107.0
C20—C19—H191107.4C33—C34—C35127.09 (14)
C21—C19—H191105.7C33—C34—H341114.5
C19—C20—C12113.78 (11)C35—C34—H341118.4
C19—C20—H201108.9C34—C35—C36124.15 (14)
C12—C20—H201107.5C34—C35—C37120.78 (14)
C19—C20—H202110.5C36—C35—C37115.06 (14)
C12—C20—H202107.7C35—C36—H361112.4
H201—C20—H202108.2C35—C36—H362110.5
C19—C21—C22112.63 (12)H361—C36—H362104.3
C19—C21—H211108.9C35—C36—H363113.8
C22—C21—H211108.4H361—C36—H363108.0
C19—C21—H212108.7H362—C36—H363107.3
C22—C21—H212110.3C35—C37—H371112.1
H211—C21—H212107.8C35—C37—H372113.5
C21—C22—C23127.39 (15)H371—C37—H372106.9
C21—C22—H221116.5C35—C37—H373110.7
C23—C22—H221116.1H371—C37—H373105.5
C22—C23—C24120.62 (16)H372—C37—H373107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O10.981.482.4227 (14)158
C27—H273···O1i0.992.633.330 (2)128
C36—H363···O1ii0.942.673.523 (2)151
C8—H81···O11iii0.952.623.300 (2)129
C21—H211···O17iv0.962.703.610 (2)158
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H1···O10.981.482.4227 (14)158
C27—H273···O1i0.992.633.330 (2)128
C36—H363···O1ii0.942.673.523 (2)151
C8—H81···O11iii0.952.623.300 (2)129
C21—H211···O17iv0.962.703.610 (2)158
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Acknowledgements top

The authors would like to thank the Ministry of Science, Technology and Innovation in Malaysia (MOSTI 02–02-12-SF0055) for providing a grant for this study. Professor C. Moody is thanked for access to instrumentation at the University of Nottingham, UK.

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Garnsey, M. R., Matous, J. A., Kwiek, J. J. & Coltart, D. M. (2011). Bioorg. Med. Chem. Lett. 21, 2406–2409.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

McCandlish, L. E., Hanson, J. C. & Stout, G. H. (1976). Acta Cryst. B32, 1793–1801.

Monache, F. D., Monache, G. D. & Gacs-Baitz, E. (1991). Phytochemistry, 30, 2003–2005.

Oliveira, C. M. A. de, Porto, A. M., Bittrich, V., Vencato, I. & Marsaioli, A. J. (1996). Tetrahedron Lett. 37, 6427–6430.

Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Piccinelli, A. L., Cuesta-Rubio, O., Chica, M. B., Mahmood, N., Pagano, B., Pavone, M., Barone, V. & Rastrelli, L. (2005). Tetrahedron, 61, 8206–8211.

Santos, M. H., Nagem, T. J., Braz-Filho, R., Lula, I. S. & Speziali, N. L. (2001). Magn. Reson. Chem. 39, 155–159.

Santos, M. H., Speziali, N. L., Nagem, T. J. & Oliveira, T. T. (1998). Acta Cryst. C54, 1990–1992.

Simpkins, N. S. (2013). Chem. Commun. 49, 1042–1051.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.