metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­chlorido­(1-ethyl­piperazin-1-ium)cobalt(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bDepartment of Chemistry and Biochemistry, St Catherine University, 2004 Randolph Avenue, #4282, St Paul, MN 55105, USA
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 24 March 2014; accepted 28 March 2014; online 5 April 2014)

In the title complex, [Co(C6H15N2)Cl3], the Co2+ ion is coordinated in a distorted tetra­hedral fashion by three chloride ions and one N atom of the piperazine ring; the ring adopts a chair conformation with the N—Co and N—CEt bonds in equatorial orientations. In the crystal, mol­ecules are connected by N—H⋯Cl hydrogen bonds, generating (10-1) sheets.

Related literature

For related structures, see: Ciccarese et al. (1998[Ciccarese, A., Clemente, D. A., Fanizzi, F. P., Marzotto, A. & Valle, G. (1998). Inorg. Chim. Acta, 410, 275-276.]); Clemente et al. (1999[Clemente, D. A., Marzotto, A., Valle, G. & Visona, C. J. (1999). Polyhedron, 18, 2749-2757.]); Marzotto et al. (2000[Marzotto, A., Clemente, D. A., Zampiron, A. & Carrara, M. (2000). Nucleosides Nucleotides Nucleic Acids, 19, 1311-1326.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H15N2)Cl3]

  • Mr = 280.49

  • Monoclinic, P 21 /n

  • a = 7.421 (3) Å

  • b = 18.160 (7) Å

  • c = 8.691 (4) Å

  • β = 90.524 (7)°

  • V = 1171.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 173 K

  • 0.32 × 0.13 × 0.13 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.529, Tmax = 0.761

  • 11015 measured reflections

  • 2399 independent reflections

  • 2099 reflections with F2 > 2σ(F2)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.050

  • S = 1.08

  • 2399 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Cl1 2.2720 (8)
Co1—Cl2 2.2419 (10)
Co1—Cl3 2.2691 (8)
Co1—N1 2.0686 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.854 (19) 2.347 (18) 3.1794 (16) 165.4 (15)
N1—H1⋯Cl3ii 0.83 (2) 2.49 (2) 3.3192 (17) 176.0 (17)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Piperazine (H2ppz) and its derivatives, are cyclic diamines possessing a non-planar six-membered ring analogous to cyclohexane with two basic nitrogen atoms in the 1,4 positions. As these nitrogen atoms are basic, piperazine (H2ppz) and its derivatives may coordinate metal ions as monodentate, bidentate or bidentate–chelate ligands. Several 1-methylpiperazine and 1,4-di- methylpiperazine platinum(II) complexes have been synthesized and characterized through X-ray diffraction (Ciccarese et al., 1998). The cobalt complexes [CoCl3(HMe2ppz)] and [CoCl3(H2Meppz)] have shown interesting cytotoxic activity on human colon and carcinoma cells (Marzotto et al., 2000). In order to explore possible biological applications and to gather further chemical and structural information on metal complexes capable of interacting selectively with nitrogen donors of DNA nucleobases, we have extended to cobalt(II) the study on the behaviour and coordinating properties of piperazine derivatives. This study includes the synthesis and structural characterization of the new complex, (C6H15N2)CoCl3 (I).

Complex I is present as a neutral zwitterionic (amphiionic) species. The negative charge of the –CoCl3 group is balanced by the positive charge at the ethylated N2 nitrogen atom of the 1-ethylpiperazin-1-ium ring. Zwitterionic complexes having the formula MX3LH (where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II); X = Cl, Br, I; LH = monoprotonated diamine), although rare, are already known. The six-membered piperazine ring in complex I possesses the characteristic chair conformation. The average of the Co(II)–Cl bond lengths, 2.261 Å, falls in the expected range. It is noteworthy that this Co(II)–Cl distance increases on increasing the number of chloride ions bonded to cobalt(II) atom, but also increases when the chloride ions are involved in strong hydrogen bonding. In the structure of I, the Co–Cl1, 2.2720 (8) Å, and Co–Cl3, 2.2691 (8) Å, distances are significantly longer than the Co–Cl2 distance, 2.2419 (10) Å , as the former are involved in strong hydrogen bonding while the latter is not. The Co(II)–N1 distance, 2.0686 (15) Å, is typical (Clemente et al., 1999).

The structure consists of a neutral Co(II) complex with a 4-Etppz ligand bonded through the secondary nitrogen atom and three chloride ligands. The tertiary nitrogen atom is protonated balancing the overall charge (Fig. 1). Each complex undergoes two hydrogen bonding interactions as donors (N1—H1 and N2—H2) and two interactions as accpetors (Cl1 and Cl3). Hydrogen bonding occurs in two-dimensional sheets (Fig. 2). Dimer donor-acceptor hydrogen-bonding interactions (related by inversion) dominate the hydrogen bonding motif (R22(8)) with additional single donor-acceptor hydrogen bonding interaction joining the dimer interactions. The same hydrogen-bonding pattern is found in the structure of the related [CoCl3(H2Meppz)] complex (Clemente et al., 1999).

Related literature top

For related structures, see: Ciccarese et al. (1998); Clemente et al. (1999); Marzotto et al. (2000).

Experimental top

The complex was synthesized by adding dropwise under stirring a blue-violet solution, previously prepared at 40°C, of anhydrous CoCl2 in 10 ml EtOH, to a 1-ethylpiperazine (HEtppz) solution dissolved in 5 ml EtOH in a molar ratio 1:1. After mixing, an aqueous hydrochloric acid solution was added to the blue powder compound and was stirred for 2 h. After filtration, the filtrate was allowed to stand at room temperature. Blue crystals were obtained by slow evaporation.

Refinement top

Many hydrogen atoms were treated in calculated positions and refined in the model as riding with distances of C—H = 0.98 and 0.99 Å for the methyl and methylene groups, respectively, and with Uiso(H) = k×Ueq(C), k = 1.2. Hydrogen atoms H1 and H2 were located in the electron density map, and their positions were refined with Uiso(H) = k×Ueq(C), k =1.2.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP-3 view of (C6H15N2)CoCl3 with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing of the title complex. Hydrogen bonds are shown as dashed lines.
Trichlorido(1-ethylpiperazin-1-ium)cobalt(II) top
Crystal data top
[Co(C6H15N2)Cl3]F(000) = 572.00
Mr = 280.49Dx = 1.591 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 7042 reflections
a = 7.421 (3) Åθ = 3.3–26.5°
b = 18.160 (7) ŵ = 2.10 mm1
c = 8.691 (4) ÅT = 173 K
β = 90.524 (7)°Prism, blue
V = 1171.1 (8) Å30.32 × 0.13 × 0.13 mm
Z = 4
Data collection top
Rigaku XtaLAB mini
diffractometer
2099 reflections with F2 > 2σ(F2)
Detector resolution: 6.849 pixels mm-1Rint = 0.025
ω scansθmax = 26.4°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 99
Tmin = 0.529, Tmax = 0.761k = 2222
11015 measured reflectionsl = 1010
2399 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0195P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Co(C6H15N2)Cl3]V = 1171.1 (8) Å3
Mr = 280.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.421 (3) ŵ = 2.10 mm1
b = 18.160 (7) ÅT = 173 K
c = 8.691 (4) Å0.32 × 0.13 × 0.13 mm
β = 90.524 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
2399 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2099 reflections with F2 > 2σ(F2)
Tmin = 0.529, Tmax = 0.761Rint = 0.025
11015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.27 e Å3
2399 reflectionsΔρmin = 0.27 e Å3
118 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50887 (3)0.124866 (12)0.13052 (2)0.02446 (7)
Cl10.62618 (6)0.22726 (2)0.24155 (5)0.03456 (11)
Cl20.21414 (6)0.13426 (3)0.07964 (6)0.04714 (13)
Cl30.58634 (6)0.02448 (2)0.27061 (5)0.03491 (11)
N10.62169 (18)0.11055 (8)0.08596 (15)0.0237 (3)
N20.87397 (18)0.13728 (7)0.34217 (15)0.0235 (3)
C10.6034 (3)0.17490 (9)0.19013 (19)0.0301 (4)
C20.6795 (3)0.15991 (10)0.34991 (19)0.0306 (4)
C30.8943 (3)0.07188 (9)0.23786 (19)0.0306 (4)
C40.8130 (3)0.08778 (10)0.07959 (19)0.0318 (4)
C50.9516 (3)0.12430 (10)0.50161 (19)0.0324 (4)
C61.1522 (3)0.10910 (10)0.5011 (3)0.0393 (5)
H1A0.47430.18800.19850.0361*
H1B0.66700.21760.14500.0361*
H2A0.66880.20480.41370.0367*
H2B0.60890.12030.39930.0367*
H20.932 (3)0.1733 (10)0.3034 (19)0.022 (5)*
H3A0.83330.02880.28370.0367*
H3B1.02370.05980.22720.0367*
H4A0.88350.12730.02980.0381*
H4B0.82270.04300.01510.0381*
H5A0.92830.16820.56600.0389*
H5B0.88900.08200.54900.0389*
H6A1.21410.14870.44610.0472*
H6B1.17490.06200.44970.0472*
H6C1.19740.10680.60730.0472*
H10.566 (3)0.0763 (11)0.128 (3)0.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02308 (12)0.02612 (12)0.02421 (12)0.00175 (8)0.00169 (8)0.00177 (9)
Cl10.0399 (3)0.0238 (2)0.0403 (3)0.00338 (17)0.01486 (18)0.00187 (17)
Cl20.0227 (3)0.0724 (4)0.0464 (3)0.0018 (2)0.00471 (18)0.0063 (3)
Cl30.0445 (3)0.0260 (3)0.0344 (3)0.00757 (17)0.01151 (18)0.00670 (17)
N10.0221 (7)0.0234 (8)0.0257 (7)0.0032 (6)0.0028 (6)0.0002 (6)
N20.0259 (7)0.0209 (7)0.0238 (7)0.0035 (6)0.0013 (6)0.0001 (6)
C10.0299 (9)0.0289 (9)0.0314 (9)0.0056 (7)0.0011 (7)0.0051 (7)
C20.0278 (9)0.0347 (10)0.0294 (9)0.0044 (7)0.0039 (7)0.0085 (8)
C30.0312 (9)0.0294 (9)0.0312 (9)0.0065 (7)0.0023 (7)0.0069 (7)
C40.0263 (9)0.0406 (11)0.0285 (9)0.0069 (8)0.0012 (7)0.0075 (8)
C50.0405 (10)0.0347 (10)0.0220 (9)0.0017 (8)0.0027 (7)0.0003 (7)
C60.0424 (11)0.0400 (11)0.0354 (10)0.0069 (8)0.0107 (8)0.0022 (8)
Geometric parameters (Å, º) top
Co1—Cl12.2720 (8)C1—H1A0.990
Co1—Cl22.2419 (10)C1—H1B0.990
Co1—Cl32.2691 (8)C2—H2A0.990
Co1—N12.0686 (15)C2—H2B0.990
N1—C11.485 (3)C3—H3A0.990
N1—C41.480 (3)C3—H3B0.990
N2—C21.502 (3)C4—H4A0.990
N2—C31.503 (3)C4—H4B0.990
N2—C51.514 (3)C5—H5A0.990
C1—C21.519 (3)C5—H5B0.990
C3—C41.525 (3)C6—H6A0.980
C5—C61.514 (3)C6—H6B0.980
N1—H10.83 (2)C6—H6C0.980
N2—H20.853 (18)
Cl1—Co1—Cl2113.57 (3)H1A—C1—H1B107.846
Cl1—Co1—Cl3109.25 (4)N2—C2—H2A109.442
Cl1—Co1—N1109.61 (5)N2—C2—H2B109.452
Cl2—Co1—Cl3114.80 (2)C1—C2—H2A109.445
Cl2—Co1—N1102.57 (5)C1—C2—H2B109.448
Cl3—Co1—N1106.53 (5)H2A—C2—H2B108.051
Co1—N1—C1114.64 (11)N2—C3—H3A109.507
Co1—N1—C4112.42 (10)N2—C3—H3B109.508
C1—N1—C4109.62 (13)C4—C3—H3A109.504
C2—N2—C3110.19 (13)C4—C3—H3B109.503
C2—N2—C5111.05 (13)H3A—C3—H3B108.076
C3—N2—C5112.93 (13)N1—C4—H4A108.972
N1—C1—C2112.39 (14)N1—C4—H4B108.974
N2—C2—C1110.95 (14)C3—C4—H4A108.977
N2—C3—C4110.70 (14)C3—C4—H4B108.982
N1—C4—C3113.02 (14)H4A—C4—H4B107.779
N2—C5—C6113.06 (14)N2—C5—H5A108.969
Co1—N1—H1107.3 (13)N2—C5—H5B108.974
C1—N1—H1105.7 (14)C6—C5—H5A108.963
C4—N1—H1106.6 (14)C6—C5—H5B108.971
C2—N2—H2107.2 (12)H5A—C5—H5B107.768
C3—N2—H2108.2 (12)C5—C6—H6A109.474
C5—N2—H2107.0 (11)C5—C6—H6B109.466
N1—C1—H1A109.127C5—C6—H6C109.477
N1—C1—H1B109.120H6A—C6—H6B109.472
C2—C1—H1A109.128H6A—C6—H6C109.470
C2—C1—H1B109.129H6B—C6—H6C109.468
Cl1—Co1—N1—C155.30 (9)C4—N1—C1—C255.55 (16)
Cl1—Co1—N1—C470.78 (9)C2—N2—C3—C454.82 (16)
Cl2—Co1—N1—C165.66 (8)C3—N2—C2—C155.64 (16)
Cl2—Co1—N1—C4168.27 (7)C2—N2—C5—C6174.02 (12)
Cl3—Co1—N1—C1173.39 (7)C5—N2—C2—C1178.47 (12)
Cl3—Co1—N1—C447.31 (9)C3—N2—C5—C661.63 (17)
Co1—N1—C1—C2176.93 (8)C5—N2—C3—C4179.64 (12)
Co1—N1—C4—C3176.03 (9)N1—C1—C2—N256.87 (17)
C1—N1—C4—C355.22 (17)N2—C3—C4—N155.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.854 (19)2.347 (18)3.1794 (16)165.4 (15)
N1—H1···Cl3ii0.83 (2)2.49 (2)3.3192 (17)176.0 (17)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
Selected bond lengths (Å) top
Co1—Cl12.2720 (8)Co1—Cl32.2691 (8)
Co1—Cl22.2419 (10)Co1—N12.0686 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.854 (19)2.347 (18)3.1794 (16)165.4 (15)
N1—H1···Cl3ii0.83 (2)2.49 (2)3.3192 (17)176.0 (17)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

We acknowledge the NSF–MRI grant No. 1125975 "MRI Consortium Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility".

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationCiccarese, A., Clemente, D. A., Fanizzi, F. P., Marzotto, A. & Valle, G. (1998). Inorg. Chim. Acta, 410, 275–276.
First citationClemente, D. A., Marzotto, A., Valle, G. & Visona, C. J. (1999). Polyhedron, 18, 2749–2757.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationMarzotto, A., Clemente, D. A., Zampiron, A. & Carrara, M. (2000). Nucleosides Nucleotides Nucleic Acids, 19, 1311–1326.  Web of Science CrossRef PubMed CAS
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds