organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N′-[(E)-2-chloro­benzyl­­idene]benzohydrazide monohydrate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eAnalytical Development Division, Manchester Metropolitan University, Manchester M1 5GD, England, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 10 April 2014; accepted 18 April 2014; online 26 April 2014)

The title compound, C14H10Cl2N2O·H2O, has a nearly planar extended conformation [C—N—N—C = −173.66 (15)°]. The dihedral angle between the aromatic rings is 4.6 (2)°. The water mol­ecules alternate with benzohydrazide mol­ecules in chains formed by O—H⋯O hydrogen bonds which run parallel to the a axis. These chains are linked to neighboring chains through N—H⋯O and C—H⋯O inter­actions, forming a layer parallel to (001).

Related literature

For the biological activity of hydrazone compounds, see: Koopaei et al. (2013[Koopaei, M. N., Assarzadeh, M. J., Almasirad, A., Ghasemi-Niri, S. F., Amini, M., Kebriaeezadeh, A., Koopaei, N. N., Ghadimi, M. & Tabei, A. (2013). Iran. J. Pharm. Res. 12, 721-727.]); Almasirad et al. (2005[Almasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M. J. & Esmaily, H. (2005). J. Pharm. Pharm. Sci. 8, 419-425.], 2006[Almasirad, A., Hosseini, R., Jalalizadeh, H., Rahimi-Moghaddam, Z., Abaeian, N., Janafrooz, M., Abbaspour, M., Ziaee, V., Dalvandi, A. & Shafiee, A. (2006). Biol. Pharm. Bull. 29, 1180-1185.]). For a similar structure, see: Cao (2009[Cao, G.-B. (2009). Acta Cryst. E65, o2384.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2N2O·H2O

  • Mr = 311.16

  • Monoclinic, P 21 /n

  • a = 4.6160 (5) Å

  • b = 12.8664 (15) Å

  • c = 23.681 (3) Å

  • β = 92.6760 (17)°

  • V = 1404.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 150 K

  • 0.17 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.78, Tmax = 0.97

  • 24861 measured reflections

  • 3511 independent reflections

  • 2604 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.02

  • 3511 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.91 1.95 2.8510 (19) 168
O2—H2A⋯O1ii 0.84 1.93 2.7632 (19) 172
O2—H2B⋯O1 0.84 1.95 2.7864 (19) 172
C2—H2⋯O2i 0.95 2.43 3.286 (2) 150
C8—H8⋯O2i 0.95 2.44 3.242 (2) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Use of non-steroidal anti-inflammatory drugs (NSAIDs) in treatment of pain and inflammation is usually associated with undesirable side effect such as gastrointestinal toxins and ulceration. Recently arylhydrazone scaffold compounds have showed safer profiles of activity and enhanced efficacy in the battle of pain in inflammatory diseases (Koopaei et al., 2013). They have been depicted as dual COX/5-LO inhibitors (Almasirad et al., 2005; Almasirad et al., 2006). In this context and as part of our on-going study in the synthesis of safe profiles of anti-inflammatory pro-drugs we report the synthesis and crystal structure of the title compound.

The title compound (I) in Fig. 1 is in the "extended" conformation with the ring C1–C6 making a dihedral angle of 15.3 (1)° with the mean plane of the C1/C7/N1/O1 unit while the ring C9–C14 makes a dihedral angle of 4.6 (2)° with the plane of the C8/C9/N2 unit. The bond lengths and angles of (I) are normal and comparable with those observed for a similar compound (Cao, 2009).

The lattice water molecules alternate with molecules of (I) in chains formed by O2—H2A(or B)···O1 hydrogen bonds (Table 1 and Fig. 2) which run parallel to the a axis. These chains are linked to neighboring chains through N1—H1···O2 and C8—H8···O2 interactions. In these, the mean plane of the benzohydrazide molecule is inclined approximately 48° to (110).

Related literature top

For the biological activity of hydrazone compounds, see: Koopaei et al. (2013); Almasirad et al. (2005, 2006). For a similar structure, see: Cao (2009).

Experimental top

The compound was prepared by refluxing a mixture of 4-chlorobenzohydrazide (1 mmol, 171 mg)) with 2-chlorobenzaldehyde (1 mmol, 141 mg) in ethanol (30 mL) for 5h in the presence of a catalytic amount of glacial acetic acid. The mixture was cooled and the precipitate was filtered off, dried and recrystallized from ethanol to give pale brown crystals of poor quality. Slow evaporation of an aqueous ethanolic solution of the product afforded colorless block-like crystals of sufficient quality for x-ray diffraction. M. p. 452 454 K

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference Fourier map and initially refined independently to ensure their initial positions were valid. In the final refinement, their coordinates adjusted to give N—H = 0.91 and O—H = 0.84 Å. All hydrogen atoms were then included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing one of the O—H···O interactions as a dotted line. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the title compound viewed down the a axis showing hydrogen interactions as dotted lines.
4-Chloro-N'-[(E)-2-chlorobenzylidene]benzohydrazide monohydrate top
Crystal data top
C14H10Cl2N2O·H2OF(000) = 640
Mr = 311.16Dx = 1.471 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7842 reflections
a = 4.6160 (5) Åθ = 2.3–28.1°
b = 12.8664 (15) ŵ = 0.46 mm1
c = 23.681 (3) ÅT = 150 K
β = 92.6760 (17)°Column, colourless
V = 1404.9 (3) Å30.17 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3511 independent reflections
Radiation source: fine-focus sealed tube2604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 8.3660 pixels mm-1θmax = 28.4°, θmin = 1.8°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1617
Tmin = 0.78, Tmax = 0.97l = 3131
24861 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.6801P]
where P = (Fo2 + 2Fc2)/3
3511 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H10Cl2N2O·H2OV = 1404.9 (3) Å3
Mr = 311.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6160 (5) ŵ = 0.46 mm1
b = 12.8664 (15) ÅT = 150 K
c = 23.681 (3) Å0.17 × 0.08 × 0.06 mm
β = 92.6760 (17)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3511 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2604 reflections with I > 2σ(I)
Tmin = 0.78, Tmax = 0.97Rint = 0.064
24861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
3511 reflectionsΔρmin = 0.29 e Å3
181 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46090 (11)0.93219 (4)0.06216 (2)0.0343 (2)
Cl21.10272 (13)1.00504 (4)0.41832 (2)0.0434 (2)
O10.4046 (3)0.64950 (9)0.23672 (6)0.0271 (4)
N10.5525 (3)0.80924 (11)0.26635 (6)0.0213 (4)
N20.7522 (3)0.76724 (11)0.30567 (6)0.0223 (4)
C10.1777 (3)0.79601 (13)0.19187 (7)0.0195 (5)
C20.0963 (4)0.90021 (13)0.19483 (8)0.0229 (5)
C30.1015 (4)0.94238 (14)0.15527 (8)0.0246 (5)
C40.2175 (4)0.87909 (14)0.11261 (7)0.0228 (5)
C50.1440 (4)0.77569 (14)0.10916 (8)0.0267 (6)
C60.0548 (4)0.73438 (14)0.14875 (8)0.0248 (5)
C70.3874 (3)0.74541 (13)0.23339 (7)0.0202 (5)
C80.8769 (4)0.83478 (14)0.33826 (7)0.0235 (5)
C91.0970 (4)0.80330 (14)0.38149 (7)0.0231 (5)
C101.2181 (4)0.87532 (15)0.41988 (8)0.0277 (6)
C111.4287 (4)0.84754 (16)0.46082 (8)0.0337 (6)
C121.5197 (4)0.74555 (17)0.46427 (8)0.0338 (6)
C131.4015 (4)0.67216 (16)0.42740 (8)0.0315 (6)
C141.1943 (4)0.70056 (15)0.38619 (8)0.0266 (6)
O20.9062 (3)0.53028 (10)0.23079 (6)0.0339 (4)
H10.542500.879800.264000.0260*
H20.177300.942800.224300.0280*
H30.156401.013400.157400.0300*
H50.228400.733100.080000.0320*
H60.107700.663200.146400.0300*
H80.826200.906100.334400.0280*
H111.509200.898200.486200.0400*
H121.664100.725700.492100.0410*
H131.462800.601800.430300.0380*
H141.116900.649500.360700.0320*
H2A1.047600.571400.233000.0410*
H2B0.762600.569100.235100.0410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0347 (3)0.0399 (3)0.0273 (3)0.0029 (2)0.0098 (2)0.0061 (2)
Cl20.0618 (4)0.0240 (3)0.0424 (3)0.0030 (2)0.0175 (3)0.0013 (2)
O10.0226 (6)0.0179 (6)0.0401 (8)0.0003 (5)0.0062 (5)0.0002 (5)
N10.0193 (7)0.0184 (7)0.0258 (8)0.0001 (5)0.0042 (6)0.0022 (6)
N20.0193 (7)0.0230 (8)0.0242 (8)0.0020 (6)0.0027 (6)0.0039 (6)
C10.0179 (8)0.0201 (8)0.0206 (9)0.0016 (6)0.0013 (6)0.0017 (7)
C20.0244 (9)0.0201 (8)0.0240 (9)0.0011 (7)0.0024 (7)0.0016 (7)
C30.0249 (9)0.0217 (9)0.0272 (10)0.0027 (7)0.0000 (7)0.0015 (7)
C40.0202 (8)0.0295 (9)0.0186 (9)0.0006 (7)0.0001 (7)0.0041 (7)
C50.0326 (10)0.0268 (10)0.0203 (9)0.0043 (8)0.0035 (7)0.0030 (7)
C60.0288 (9)0.0208 (9)0.0247 (9)0.0001 (7)0.0009 (7)0.0020 (7)
C70.0166 (8)0.0192 (8)0.0251 (9)0.0010 (6)0.0028 (6)0.0003 (7)
C80.0233 (9)0.0228 (9)0.0243 (9)0.0000 (7)0.0004 (7)0.0018 (7)
C90.0202 (8)0.0265 (9)0.0223 (9)0.0036 (7)0.0009 (7)0.0027 (7)
C100.0308 (10)0.0265 (10)0.0256 (10)0.0037 (7)0.0018 (8)0.0043 (8)
C110.0366 (11)0.0383 (11)0.0252 (10)0.0077 (9)0.0082 (8)0.0010 (9)
C120.0294 (10)0.0461 (12)0.0252 (10)0.0031 (9)0.0055 (8)0.0089 (9)
C130.0305 (10)0.0340 (11)0.0298 (11)0.0069 (8)0.0003 (8)0.0058 (8)
C140.0263 (9)0.0272 (10)0.0261 (10)0.0004 (7)0.0011 (7)0.0014 (8)
O20.0232 (6)0.0178 (6)0.0601 (10)0.0009 (5)0.0037 (6)0.0041 (6)
Geometric parameters (Å, º) top
Cl1—C41.7410 (18)C8—C91.465 (2)
Cl2—C101.752 (2)C9—C101.397 (3)
O1—C71.239 (2)C9—C141.399 (3)
O2—H2B0.8400C10—C111.387 (3)
O2—H2A0.8400C11—C121.379 (3)
N1—C71.345 (2)C12—C131.381 (3)
N1—N21.389 (2)C13—C141.383 (3)
N2—C81.281 (2)C2—H20.9500
N1—H10.9100C3—H30.9500
C1—C61.393 (2)C5—H50.9500
C1—C21.395 (2)C6—H60.9500
C1—C71.496 (2)C8—H80.9500
C2—C31.388 (3)C11—H110.9500
C3—C41.386 (3)C12—H120.9500
C4—C51.376 (3)C13—H130.9500
C5—C61.387 (3)C14—H140.9500
H2A—O2—H2B103.00Cl2—C10—C11117.56 (15)
N2—N1—C7119.47 (14)C10—C11—C12119.22 (18)
N1—N2—C8113.93 (14)C11—C12—C13120.19 (18)
N2—N1—H1117.00C12—C13—C14120.34 (19)
C7—N1—H1123.00C9—C14—C13120.97 (18)
C2—C1—C7123.55 (15)C3—C2—H2120.00
C2—C1—C6118.86 (15)C1—C2—H2120.00
C6—C1—C7117.58 (15)C2—C3—H3121.00
C1—C2—C3120.81 (16)C4—C3—H3121.00
C2—C3—C4118.82 (16)C6—C5—H5120.00
Cl1—C4—C3119.00 (14)C4—C5—H5120.00
C3—C4—C5121.56 (17)C1—C6—H6120.00
Cl1—C4—C5119.44 (14)C5—C6—H6120.00
C4—C5—C6119.18 (17)C9—C8—H8120.00
C1—C6—C5120.77 (16)N2—C8—H8120.00
N1—C7—C1116.57 (14)C10—C11—H11120.00
O1—C7—C1120.85 (15)C12—C11—H11120.00
O1—C7—N1122.58 (15)C13—C12—H12120.00
N2—C8—C9120.72 (16)C11—C12—H12120.00
C10—C9—C14117.26 (16)C12—C13—H13120.00
C8—C9—C14121.76 (16)C14—C13—H13120.00
C8—C9—C10120.99 (16)C9—C14—H14120.00
Cl2—C10—C9120.42 (14)C13—C14—H14120.00
C9—C10—C11122.01 (18)
C7—N1—N2—C8173.66 (15)C3—C4—C5—C61.2 (3)
N2—N1—C7—O10.3 (2)C4—C5—C6—C10.5 (3)
N2—N1—C7—C1179.81 (13)N2—C8—C9—C10175.19 (17)
N1—N2—C8—C9178.99 (15)N2—C8—C9—C144.7 (3)
C6—C1—C2—C30.6 (3)C8—C9—C10—Cl21.6 (2)
C7—C1—C2—C3179.41 (16)C8—C9—C10—C11179.38 (17)
C2—C1—C6—C50.4 (3)C14—C9—C10—Cl2178.37 (14)
C7—C1—C6—C5179.20 (16)C14—C9—C10—C110.7 (3)
C2—C1—C7—O1163.87 (16)C8—C9—C14—C13179.76 (17)
C2—C1—C7—N116.0 (2)C10—C9—C14—C130.2 (3)
C6—C1—C7—O114.9 (2)Cl2—C10—C11—C12178.38 (15)
C6—C1—C7—N1165.23 (15)C9—C10—C11—C120.7 (3)
C1—C2—C3—C40.0 (3)C10—C11—C12—C130.1 (3)
C2—C3—C4—Cl1178.89 (14)C11—C12—C13—C141.0 (3)
C2—C3—C4—C50.9 (3)C12—C13—C14—C91.0 (3)
Cl1—C4—C5—C6178.61 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911.952.8510 (19)168
O2—H2A···O1ii0.841.932.7632 (19)172
O2—H2B···O10.841.952.7864 (19)172
C2—H2···O2i0.952.433.286 (2)150
C8—H8···O2i0.952.443.242 (2)143
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911.952.8510 (19)168
O2—H2A···O1ii0.841.932.7632 (19)172
O2—H2B···O10.841.952.7864 (19)172
C2—H2···O2i0.952.433.286 (2)150
C8—H8···O2i0.952.443.242 (2)143
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

We thank Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAlmasirad, A., Hosseini, R., Jalalizadeh, H., Rahimi-Moghaddam, Z., Abaeian, N., Janafrooz, M., Abbaspour, M., Ziaee, V., Dalvandi, A. & Shafiee, A. (2006). Biol. Pharm. Bull. 29, 1180–1185.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlmasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M. J. & Esmaily, H. (2005). J. Pharm. Pharm. Sci. 8, 419–425.  Web of Science PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2009). Acta Cryst. E65, o2384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoopaei, M. N., Assarzadeh, M. J., Almasirad, A., Ghasemi-Niri, S. F., Amini, M., Kebriaeezadeh, A., Koopaei, N. N., Ghadimi, M. & Tabei, A. (2013). Iran. J. Pharm. Res. 12, 721–727.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds