organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o584-o585

O-Ethyl S-{(S)-1-oxo-1-[(R)-2-oxo-4-phenyl­oxazolidin-3-yl]propan-2-yl} carbonodi­thio­ate

aÁrea Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de La Reforma, Hidalgo, CP 42076, Mexico, and bInstituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58000, Mexico
*Correspondence e-mail: jpgarciam@gmail.com

(Received 18 March 2014; accepted 4 April 2014; online 18 April 2014)

In the title compound, C15H17NO4S2, synthesized by addition of O-ethylxanthic acid potassium salt to a diastereomeric mixture of (4R)-3-(2-chloro­propano­yl)-4-phenyl­oxazolidin-2-one, the oxazolidinone ring has a twist conformation on the C—C bond. The phenyl ring is inclined to the mean plane of the oxazolidinone ring by 76.4 (3)°. In the chain the methine H atom is involved in a C—H⋯S and a C—H⋯O intra­molecular inter­action. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains along [001]. The S configuration at the C atom to which the xanthate group is attached was determined by comparison to the known R configuration of the C atom to which the phenyl group is attached.

Related literature

For the use of chiral oxazolidinones auxiliaries in asymmetric synthesis, see: Evans (1982[Evans, D. A. (1982). Aldrichim. Acta, 15, 23-32.]); Ager et al. (1997[Ager, D. J., Prakash, I. & Schaad, D. R. (1997). Aldrichim. Acta, 30, 3-12.]). For the oral activity of oxazolidinonas against multidrug-resistant Gram-positive bacteria, see: Müller & Schimz (1999[Müller, M. & Schimz, K.-L. (1999). Cell. Mol. Life Sci. 56, 280-285.]). For our work on the synthesis of novel heterocyclic compounds, see for example: López-Ruiz et al. (2011[López-Ruiz, H., Cortés-Hernández, M., Rojas-Lima, S. & Höpfl, H. (2011). J. Mex. Chem. Soc. 55, 168-175.]). For the crystal structures of similar compounds, see: Bartczak et al. (2001[Bartczak, T. J., Kruszynski, R., Chilmonczyk, Z. & Cybulski, J. (2001). Acta Cryst. E57, o341-o343.]); Kruszynski et al. (2001[Kruszynski, R., Bartczak, T. J., Chilmonczyk, Z. & Cybulski, J. (2001). Acta Cryst. E57, o469-o471.]); Wouters et al. (1997[Wouters, J., Ooms, F. & Durant, F. (1997). Acta Cryst. C53, 895-897.]). For the crystal structures of 3,4-disubstituted oxazolidinone derivatives, see: Marsh et al. (1992[Marsh, R. E., Schaefer, W. P., Kukkola, P. J. & Myers, A. G. (1992). Acta Cryst. C48, 1622-1624.]); Evain et al. (2002[Evain, M., Pauvert, M., Collet, S. & Guingant, A. (2002). Acta Cryst. E58, o1121-o1122.]); Hwang et al. (2006[Hwang, I.-C., Jang, J. H., Kim, T. H. & Ha, K. (2006). Acta Cryst. C62, o196-o198.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO4S2

  • Mr = 339.42

  • Monoclinic, P 21

  • a = 10.8558 (15) Å

  • b = 6.1867 (9) Å

  • c = 12.3057 (17) Å

  • β = 94.911 (4)°

  • V = 823.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.2 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10191 measured reflections

  • 3223 independent reflections

  • 1681 reflections with I > 2σ(I)

  • Rint = 0.152

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.191

  • S = 0.87

  • 3223 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6968 Friedel pairs

  • Absolute structure parameter: 0.08 (18)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S1 0.98 2.65 3.180 (9) 114
C4—H4⋯O3 0.98 2.34 2.895 (10) 115
C2—H2BCgi 0.97 2.90 3.807 (8) 156
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Oxazolidinones and their derivatives show interesting chemical and biological activities. The use of chiral oxazolidinones auxiliaries in asymmetric synthesis has found wide application in a variety of stereoselective reactions over the last two decades (Evans, 1982; Ager et al., 1997). In addition oxazolidinonas represent a novel class of synthetic antimicrobial agents, the most promising feature of these compounds is their oral activity against multidrug-resistant Gram-positive bacteria which have created tremendous therapeutic problems in recent years (Müller et al., 1999). Based on this, and as part of our ongoing research program directed toward the synthesis of novel heterocyclic compounds (see for example: López-Ruiz et al., 2011) we report herein on the use of (R)-4-phenyloxazolidin-2-one for the synthesis of the title xanthate-oxazilidinone derivative, which has potential applications as a chiral auxiliary in asymmetric reactions.

The title compound was obtained by addition of O-Ethylxanthic acid potassium salt to a diastereomeric mixture of (4R)-3-(2-Chloropropanoyl)-4-phenyloxazolidin-2-one in acetone.

The absolute configuration of the newly created stereogenic carbon, C4, could be deduced from the relative configuration of carbon atom C9, see Fig. 1. The oxazolidinone ring has a twisted conformation on bond C9—C8 [puckering parameters (Cremer & Pople, 1975), ϕ = 313 (4)°] similar to the twisted conformation on bond C6—C8 for the axazolidinone ring in the 3-amino-2-oxazolidinone derivatives [ϕ = 53.6174° and ϕ = 54.0837°] (Bartczak et al., 2001; Kruszynski et al., 2001) and the same conformation was observed for unsubstituted 2-oxazolidinone (Wouters et al., 1997).

The bond angles around atom N1 in the oxazolidinone ring are in agreement with the observed tendencies for the bond angles in 3,4-disustituted oxazolidinone derivatives (Marsh et al., 1992; Evain et al., 2002; Hwang et al., 2006). The C9—N1, C7—N1 and C6—N1 bond distances, 1.483 (7), 1.382 (8) and 1.411 (8) Å, respectively, are slightly longer than the average values reported for Csp3—N(3) and Csp2—N(3) in γ-lactams [C*—N(—C*)—C=O (endo) = 1.462 and C*—N(—C*)—C=O = 1.347 Å respectively] (Allen et al., 1987).

The C7O3 bond length 1.198 (8) Å is slightly shorter than a Csp2=O(1) in γ-lactams [C*—N(—C*)—C=O = 1.225 Å] and close to normal Csp2=O(1) in γ-lactones [C*—C(=O)—O—C* = 1.201 Å]. The C8—O4 bond, 1.449 (8) is slightly shorter than the Csp3—O(2) [C*—O—C(=O) = 1.464 Å] in γ-lactones while C7—O4 bond 1.343 (7) Å is close to normal Csp2=O(2) in γ-lactones [C*—C(O)—O—C* = 1.350 Å]. Moreover the C4—S2 and C3=S1 bond distances are 1.811 (6) and 1.642 (7) Å respectively being slightly shorter than Csp3—S(2) and Csp2S(1) [C—CH—S—C = 1.819 and (X)2—CS (X = C, N, O, S) = 1.671 Å, respectively].

In the crystal, molecules are linked via C-H···π interactions forming zigzag chains along [001]; (Table 1 and Fig. 2).

Related literature top

For the use of chiral oxazolidinones auxiliaries in asymmetric synthesis, see: Evans (1982); Ager et al. (1997). For the oral activity of oxazolidinonas against multidrug-resistant Gram-positive bacteria, see: Müller & Schimz (1999). For our work on the synthesis of novel heterocyclic compounds, see for example: López-Ruiz et al. (2011). For the crystal structures of similar compounds, see: Bartczak et al. (2001); Kruszynski et al. (2001); Wouters et al. (1997). For the crystal structures of 3,4-disubstituted oxazolidinone derivatives, see: Marsh et al. (1992); Evain et al. (2002); Hwang et al. (2006). For standard bond lengths, see: Allen et al. (1987). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, a solution of (4R)-4-phenyloxazolidin-2-one (10.70 mmol) in distilled THF (25 ml) was cooled to 195 K under a nitrogen atmosphere, and a solution of n-butyllithium in hexane (12.95 mmol) was added dropwise. After 2-chloropropanoyl chloride (10.79 mmol) was introduced dropwise and stirring was continued at 195 K for 6 h. Then the reaction mixture was diluted with saturated solution of NH3SO4 and extracted with dichloromethane (3 × 10 ml). The combined organic layers were washed with water and brine, dried over anhydrous Na2SO4 and concentrated under vacuum. Purification by chromatography column on silica gel (eluent: hexane/ethyl acetate 9:1) gave the diastereomeric mixture of (4R)-3- (2-Chloropropanoyl)-4-phenyloxazolidin-2-one in 98% yield. To a solution of this diastereomeric mixture (31.19 mmol) in acetone at 273 K was added the O-Ethylxanthic acid potassium salt (46.78 mmol) and the reaction was stirred at room temperature for 12 h. Then the reaction mixture was diluted with a saturated solution of NH3SO4 and extracted with dichloromethane (3 × 10 ml). The organic layer was dried over anhydrous Na2SO4 and concentrated under vacuum. Purification by chromatography column on silica gel (eluent: hexane/ethyl acetate 9:1) gave the diastereomeric mixture of (4R)-3-((2R)-(2-O-Ethyl carbonodithioate) propanoyl)-4-phenyloxazolidin-2-one in a 77% of yield. Block-like colourless crystals of the title compound were obtained by slow evaporation of an hexane/ethyl acetate (9:1) solution. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

The H atoms were inlcuded in calculated positions and treated as riding atoms: C-H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The dashed lines indicate the C—H···π interactions (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
O-Ethyl S-{(S)-1-oxo-1-[(R)-2-oxo-4-phenyloxazolidin-3-yl]propan-2-yl} carbonodithioate top
Crystal data top
C15H17NO4S2F(000) = 356
Mr = 339.42Dx = 1.369 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1321 reflections
a = 10.8558 (15) Åθ = 1.7–26.0°
b = 6.1867 (9) ŵ = 0.34 mm1
c = 12.3057 (17) ÅT = 293 K
β = 94.911 (4)°Block, colourless
V = 823.4 (2) Å30.2 × 0.17 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1681 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.152
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ϕ and ω scansh = 1313
10191 measured reflectionsk = 77
3223 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0945P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
3223 reflectionsΔρmax = 0.38 e Å3
201 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 6968 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (18)
Crystal data top
C15H17NO4S2V = 823.4 (2) Å3
Mr = 339.42Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.8558 (15) ŵ = 0.34 mm1
b = 6.1867 (9) ÅT = 293 K
c = 12.3057 (17) Å0.2 × 0.17 × 0.16 mm
β = 94.911 (4)°
Data collection top
Bruker SMART CCD
diffractometer
1681 reflections with I > 2σ(I)
10191 measured reflectionsRint = 0.152
3223 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.191Δρmax = 0.38 e Å3
S = 0.87Δρmin = 0.35 e Å3
3223 reflectionsAbsolute structure: Flack (1983), 6968 Friedel pairs
201 parametersAbsolute structure parameter: 0.08 (18)
1 restraint
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR (400 MHz, CDCl3)δ: 7.2 (m, 5H, CH, arom), 5.6 (q, 1H, CH (H-4), J= 7.3 Hz), 5.4 (dd, CH (H-9), J1= 3.2 Hz, J2=8.6 Hz), 4.7 (t, 1H (H-8a), CH2, J= 8.8 Hz), 4.6 (m, 2H, CH2(H-2)), 4.3 (dd, 1H (H-8 b), J1= 3.2 Hz, J2= 8.6 Hz), 1.4 (d,3H,CH3 (H-5), J= 7.3 Hz), 1.4 (t, 3H,CH3 (H-1), J= 7.3 Hz); 13C NMR (100 MHz, CDCl3) δ: 213 (CS), 171.05 (CO), 153.53 (CO), 138.74 (C), 129.33 (CH), 128.93 (2CH), 125.90 (CH), 70.35 (2CH2), 58.03 (CH), 57.94 (CH), 47.20 (CH), 15.80 (CH3), 13.60 (CH3).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8431 (7)0.9153 (19)1.0271 (7)0.101 (3)
H1A0.84150.92260.94910.151*
H1B0.92090.96931.05910.151*
H1C0.77721.00151.05130.151*
C20.8275 (6)0.6889 (16)1.0609 (6)0.082 (2)
H2A0.89320.60111.03540.098*
H2B0.83280.68041.13990.098*
C30.6967 (6)0.5034 (10)0.9216 (5)0.0560 (17)
C40.5331 (5)0.2814 (10)0.7734 (5)0.0479 (15)
H40.60110.32100.72980.057*
C50.5440 (7)0.0432 (10)0.8030 (6)0.069 (2)
H5A0.47630.00230.84390.103*
H5B0.62060.01850.84620.103*
H5C0.54210.04150.73750.103*
C60.4117 (6)0.3295 (9)0.7086 (5)0.0459 (14)
C70.4827 (6)0.1846 (9)0.5343 (5)0.0481 (15)
C80.2958 (6)0.1740 (13)0.4298 (5)0.0613 (17)
H8A0.25660.03480.41530.074*
H8B0.26530.27480.37340.074*
C90.2687 (5)0.2584 (10)0.5439 (4)0.0458 (14)
H90.24340.41040.53880.055*
C100.1727 (5)0.1287 (9)0.5970 (4)0.0420 (14)
C110.0555 (5)0.2134 (10)0.6019 (5)0.0516 (16)
H110.03570.34790.57150.062*
C120.0328 (6)0.0959 (11)0.6529 (6)0.0632 (19)
H120.11160.15280.65670.076*
C130.0047 (6)0.1024 (13)0.6975 (5)0.066 (2)
H130.06410.17760.73240.080*
C140.1105 (7)0.1919 (11)0.6912 (6)0.0673 (19)
H140.12920.32790.72040.081*
C150.1990 (5)0.0740 (13)0.6399 (5)0.0583 (15)
H150.27700.13320.63460.070*
N10.3934 (4)0.2412 (7)0.6027 (4)0.0423 (11)
O10.7069 (4)0.6056 (9)1.0155 (4)0.0770 (15)
O20.3286 (4)0.4268 (9)0.7448 (3)0.0631 (11)
O30.5918 (4)0.1651 (7)0.5559 (4)0.0566 (12)
O40.4291 (4)0.1544 (7)0.4330 (3)0.0551 (11)
S10.80766 (14)0.4339 (4)0.84599 (14)0.0760 (6)
S20.53803 (14)0.4534 (3)0.89279 (13)0.0631 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (5)0.143 (8)0.091 (6)0.024 (6)0.002 (4)0.019 (7)
C20.054 (4)0.126 (8)0.063 (4)0.001 (4)0.010 (4)0.019 (5)
C30.049 (3)0.072 (5)0.046 (4)0.001 (3)0.002 (3)0.003 (3)
C40.040 (3)0.054 (4)0.051 (3)0.004 (3)0.011 (3)0.003 (3)
C50.081 (5)0.067 (5)0.057 (4)0.006 (4)0.000 (4)0.006 (3)
C60.048 (3)0.043 (3)0.048 (4)0.006 (3)0.011 (3)0.002 (3)
C70.057 (4)0.038 (3)0.051 (4)0.003 (3)0.016 (3)0.002 (3)
C80.053 (4)0.083 (5)0.048 (4)0.002 (3)0.005 (3)0.002 (4)
C90.041 (3)0.050 (3)0.046 (3)0.002 (3)0.005 (3)0.002 (3)
C100.045 (3)0.039 (3)0.042 (3)0.004 (3)0.003 (3)0.003 (3)
C110.049 (4)0.056 (4)0.049 (4)0.007 (3)0.003 (3)0.002 (3)
C120.040 (3)0.076 (5)0.075 (5)0.007 (4)0.010 (3)0.013 (4)
C130.056 (4)0.085 (6)0.060 (4)0.034 (4)0.016 (3)0.003 (4)
C140.060 (4)0.070 (5)0.071 (4)0.009 (4)0.000 (4)0.007 (4)
C150.042 (3)0.060 (4)0.073 (4)0.001 (4)0.010 (3)0.003 (4)
N10.034 (2)0.050 (3)0.044 (3)0.000 (2)0.009 (2)0.000 (2)
O10.049 (3)0.116 (4)0.065 (3)0.009 (3)0.003 (2)0.028 (3)
O20.047 (2)0.088 (3)0.055 (2)0.014 (3)0.0065 (19)0.019 (3)
O30.044 (3)0.065 (3)0.063 (3)0.006 (2)0.015 (2)0.006 (2)
O40.059 (3)0.061 (3)0.047 (3)0.001 (2)0.017 (2)0.004 (2)
S10.0462 (9)0.1207 (15)0.0621 (10)0.0011 (13)0.0095 (7)0.0115 (13)
S20.0438 (8)0.0872 (12)0.0585 (9)0.0036 (10)0.0067 (7)0.0216 (10)
Geometric parameters (Å, º) top
C1—C21.475 (13)C7—O41.344 (7)
C1—H1A0.9600C7—N11.382 (7)
C1—H1B0.9600C8—O41.449 (8)
C1—H1C0.9600C8—C91.550 (8)
C2—O11.472 (8)C8—H8A0.9700
C2—H2A0.9700C8—H8B0.9700
C2—H2B0.9700C9—N11.483 (7)
C3—O11.313 (7)C9—C101.507 (8)
C3—S11.642 (6)C9—H90.9800
C3—S21.756 (6)C10—C151.381 (9)
C4—C61.511 (8)C10—C111.383 (8)
C4—C51.520 (8)C11—C121.395 (9)
C4—S21.811 (6)C11—H110.9300
C4—H40.9800C12—C131.367 (10)
C5—H5A0.9600C12—H120.9300
C5—H5B0.9600C13—C141.376 (10)
C5—H5C0.9600C13—H130.9300
C6—O21.201 (7)C14—C151.399 (9)
C6—N11.411 (7)C14—H140.9300
C7—O31.198 (8)C15—H150.9300
C2—C1—H1A109.5C9—C8—H8A110.6
C2—C1—H1B109.5O4—C8—H8B110.6
H1A—C1—H1B109.5C9—C8—H8B110.6
C2—C1—H1C109.5H8A—C8—H8B108.7
H1A—C1—H1C109.5N1—C9—C10112.7 (5)
H1B—C1—H1C109.5N1—C9—C8100.5 (4)
O1—C2—C1110.2 (6)C10—C9—C8113.9 (5)
O1—C2—H2A109.6N1—C9—H9109.8
C1—C2—H2A109.6C10—C9—H9109.8
O1—C2—H2B109.6C8—C9—H9109.8
C1—C2—H2B109.6C15—C10—C11119.2 (5)
H2A—C2—H2B108.1C15—C10—C9121.4 (5)
O1—C3—S1127.9 (5)C11—C10—C9119.3 (5)
O1—C3—S2105.7 (4)C10—C11—C12119.5 (6)
S1—C3—S2126.4 (4)C10—C11—H11120.2
C6—C4—C5111.4 (5)C12—C11—H11120.2
C6—C4—S2106.1 (4)C13—C12—C11120.6 (6)
C5—C4—S2112.3 (5)C13—C12—H12119.7
C6—C4—H4109.0C11—C12—H12119.7
C5—C4—H4109.0C12—C13—C14120.8 (6)
S2—C4—H4109.0C12—C13—H13119.6
C4—C5—H5A109.5C14—C13—H13119.6
C4—C5—H5B109.5C13—C14—C15118.5 (7)
H5A—C5—H5B109.5C13—C14—H14120.7
C4—C5—H5C109.5C15—C14—H14120.7
H5A—C5—H5C109.5C10—C15—C14121.3 (6)
H5B—C5—H5C109.5C10—C15—H15119.4
O2—C6—N1119.1 (5)C14—C15—H15119.4
O2—C6—C4123.5 (5)C7—N1—C6127.6 (5)
N1—C6—C4117.3 (5)C7—N1—C9112.3 (5)
O3—C7—O4122.3 (5)C6—N1—C9118.2 (4)
O3—C7—N1128.5 (6)C3—O1—C2120.5 (5)
O4—C7—N1109.3 (5)C7—O4—C8111.5 (5)
O4—C8—C9105.7 (5)C3—S2—C4103.2 (3)
O4—C8—H8A110.6
C5—C4—C6—O2108.2 (7)O3—C7—N1—C9177.2 (6)
S2—C4—C6—O214.3 (7)O4—C7—N1—C91.9 (6)
C5—C4—C6—N167.3 (7)O2—C6—N1—C7158.5 (6)
S2—C4—C6—N1170.3 (4)C4—C6—N1—C725.8 (8)
O4—C8—C9—N18.7 (6)O2—C6—N1—C94.6 (8)
O4—C8—C9—C10129.5 (5)C4—C6—N1—C9171.1 (5)
N1—C9—C10—C1540.0 (8)C10—C9—N1—C7128.3 (5)
C8—C9—C10—C1573.6 (7)C8—C9—N1—C76.7 (6)
N1—C9—C10—C11140.7 (5)C10—C9—N1—C666.1 (6)
C8—C9—C10—C11105.7 (6)C8—C9—N1—C6172.3 (5)
C15—C10—C11—C121.9 (9)S1—C3—O1—C25.3 (10)
C9—C10—C11—C12178.7 (5)S2—C3—O1—C2175.1 (6)
C10—C11—C12—C130.3 (10)C1—C2—O1—C392.6 (8)
C11—C12—C13—C141.2 (10)O3—C7—O4—C8176.3 (6)
C12—C13—C14—C151.1 (10)N1—C7—O4—C84.5 (6)
C11—C10—C15—C142.0 (9)C9—C8—O4—C78.6 (7)
C9—C10—C15—C14178.6 (6)O1—C3—S2—C4172.4 (5)
C13—C14—C15—C100.5 (10)S1—C3—S2—C47.2 (5)
O3—C7—N1—C613.3 (10)C6—C4—S2—C3149.4 (4)
O4—C7—N1—C6165.8 (5)C5—C4—S2—C388.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···S10.982.653.180 (9)114
C4—H4···O30.982.342.895 (10)115
C2—H2B···Cgi0.972.903.807 (8)156
Symmetry code: (i) x+1, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···S10.982.653.180 (9)114
C4—H4···O30.982.342.895 (10)115
C2—H2B···Cgi0.972.903.807 (8)156
Symmetry code: (i) x+1, y+1/2, z+2.
 

Acknowledgements

Financial support from CONACYT (project No. 183980) and CIC–UMSNH is gratefully acknowledged. JM is grateful to CONACYT for a scholarship (grant: 186053) to support his studies. YLC is grateful to CONACYT (project No. 183980) for providing a license to use the Cambridge Structural Database. We are indebted to Dr Rosa Santi­llan and Marco A. Leyva-Ramírez (CINVESTAV–IPN) for helpful discussions.

References

First citationAger, D. J., Prakash, I. & Schaad, D. R. (1997). Aldrichim. Acta, 30, 3–12.  CAS
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBartczak, T. J., Kruszynski, R., Chilmonczyk, Z. & Cybulski, J. (2001). Acta Cryst. E57, o341–o343.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationEvain, M., Pauvert, M., Collet, S. & Guingant, A. (2002). Acta Cryst. E58, o1121–o1122.  Web of Science CSD CrossRef CAS IUCr Journals
First citationEvans, D. A. (1982). Aldrichim. Acta, 15, 23–32.  CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationHwang, I.-C., Jang, J. H., Kim, T. H. & Ha, K. (2006). Acta Cryst. C62, o196–o198.  Web of Science CSD CrossRef CAS IUCr Journals
First citationKruszynski, R., Bartczak, T. J., Chilmonczyk, Z. & Cybulski, J. (2001). Acta Cryst. E57, o469–o471.  Web of Science CSD CrossRef CAS IUCr Journals
First citationLópez-Ruiz, H., Cortés-Hernández, M., Rojas-Lima, S. & Höpfl, H. (2011). J. Mex. Chem. Soc. 55, 168–175.
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals
First citationMarsh, R. E., Schaefer, W. P., Kukkola, P. J. & Myers, A. G. (1992). Acta Cryst. C48, 1622–1624.  CSD CrossRef CAS Web of Science IUCr Journals
First citationMüller, M. & Schimz, K.-L. (1999). Cell. Mol. Life Sci. 56, 280–285.  Web of Science PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWouters, J., Ooms, F. & Durant, F. (1997). Acta Cryst. C53, 895–897.  CSD CrossRef CAS Web of Science IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o584-o585
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds