organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o537-o538

Bis{2-[(Tri­phenyl­meth­yl)amino]­phen­yl} diselenide aceto­nitrile monosolvate

aUniversität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 27 March 2014; accepted 8 April 2014; online 12 April 2014)

The mol­ecular structure of the title compound, C50H40N2Se2·C2H3N, shows a syn conformation of the benzene rings bound to the Se atoms, with an Se—Se bond length of 2.3529 (6) Å and a C—Se—Se—C torsion angle of 93.53 (14)°. The two Se-bonded aromatic ring planes make a dihedral angle of 18.42 (16)°. Intra­molecular N—H⋯Se hydrogen bonds are noted. Inter­molecular C—H⋯Se inter­actions give rise to supra­molecular chains extended along [100]. One severely disordered aceto­nitrile solvent mol­ecule per asymmetric unit was treated with SQUEEZE in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]; the crystal data take the presence of this mol­ecule into account.

Related literature

Due to the importance of seleno­proteins (e.g. thio­redoxin reductases and gluta­thione peroxidases) for essential metabolic processes, we have studied organo diselenide systems with N-donor functions with the aim of synthesizing redox-active selenium copper complexes. For the structure of the sulfido compound, see: Tommasi et al. (1999[Tommasi, G., Bruni, P., Greci, L., Sgarabotto, P., Righi, L. & Petrucci, R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2123-2128.]). For related structures of other bis­aryl diselenides, see: Jones & Ramírez de Arellano (1996[Jones, P. G. & Ramírez de Arellano, M. C. (1996). J. Chem. Soc. Dalton Trans. pp. 2713-2717.]); Meyers et al. (1995[Meyers, E. A., Zingaro, R. A. & Dereu, N. L. M. (1995). Z. Kristallogr. 210, 305-305.]); Warin et al. (1993[Warin, V., Guelzim, A., Baert, F., Galet, V., Houssin, R. & Lesieur, D. (1993). Acta Cryst. C49, 2005-2007.]); Wojtowicz et al. (2003[Wojtowicz, H., Chojnacka, M., Miochowski, J., Paulus, J., Syper, L., Hudecova, D., Uher, M., Piasecki, E. & Rybka, M. (2003). II Farmaco, 58, 1235-1242.]).

[Scheme 1]

Experimental

Crystal data
  • C50H40N2Se2·C2H3N

  • Mr = 867.81

  • Triclinic, [P \overline 1]

  • a = 9.2364 (16) Å

  • b = 13.245 (2) Å

  • c = 18.248 (3) Å

  • α = 104.956 (4)°

  • β = 103.578 (4)°

  • γ = 101.636 (5)°

  • V = 2013.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 130 K

  • 0.20 × 0.17 × 0.06 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.705, Tmax = 0.896

  • 19357 measured reflections

  • 9548 independent reflections

  • 5060 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.068

  • S = 0.64

  • 9548 reflections

  • 495 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Se1 0.88 (1) 2.62 (3) 3.106 (3) 115 (19)
N2—H2⋯Se2 0.89 (2) 2.64 (2) 3.140 (2) 117 (2)
C35—H35A⋯Se1i 0.95 2.92 3.777 (3) 150
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Synthesis and crystallization top

The title compound was prepared as follows: 2.08 g (5 mmol) bis­(2-amino­phenyl)­diselenide bis hydro­chloride (Wojtowicz et al., 2003), 2.77 ml tri­ethyl­amine (2.02 g; 20 mmol) and 200 ml of dried aceto­nitrile were placed in a N2-flushed 250 ml 2-necked flask. 2.79 g (10 mmol) tri­phenyl­chloro­methane was added and the mixture stirred for one hour. After the solvent was evaporated 100 ml water was added and the mixture was extracted with di­chloro­methane (3 x 80 ml). The combined organic layers were dried over Na2SO4. After filtration the solvent was removed und the crude product was obtained as a yellow powder. For purification, the raw product was stirred in aceto­nitrile (250 ml) for one hour at 80 °C. The hot suspension was filtered. The collected solid was washed with aceto­nitrile and dried under reduced poressure. Yield: 3.5 g (85%). Yellow crystals suitable for X-ray diffraction were obtained by diffusion of Et2O into a cold saturated MeCN solution.

Spectroscopic analyses.

1H-NMR: (500 MHz, 25 °C, CDCl3, δ [p.p.m.]) 6.15 (dd, 3JHH= 8.3 Hz, 4JHH= 1.1 Hz, 2H, 6.27) (ddd, 3JHH= 7.4 Hz, 3JHH= 7.4 Hz, 4JHH= 1.1 Hz, 2H); 6.56 (s, 2H,NH); 6.75 (ddd, 3JHH= 8.3 Hz, 3JHH= 7.4 Hz, 4JHH=1.5 Hz 2H); 7.19–7.39 (m, 32 H)

13C-NMR: (125 MHz,, 25 °C, CDCl3 δ [p.p.m.]): 71.7 (Cq); 115.1 (CH); 116.3 (Cq); 116.9 (CH); 126.8 (CH); 128.1 (CH); 129.1 (CH); 130.4 (CH); 138.2 (2 C,CH) 145.2 (Cq)

15N-NMR (50,7 MHz,, 25 °C, CDCl3 δ [p.p.m.]): 101 (N)

IR (KBr, ν, [cm-1]): 2850 s, 2604 s, 1945w, 1602m, 1564m, 1500m, 1467 s, 1301w, 1191w, 1122m, 1051w, 756 s, 543w, 507w, 440 s

EI—MS (m/z (%)): 828.1 (1) [M+], 243.0 (100) [C(Ph)3]+; 165.02 (79) [C(Ph)(C6H4)]+; 183.0 (26) [NH2C(Ph)2]+; 105.0 (24)[NH2C(Ph)]+.

Elemental analysis (M = 826.79 g mol-1): calcd. for C50H40N2Se2: C: 72.64; H: 4.48; N: 3.39; found C: 71.81, H: 4.94, N: 3.47.

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) and C—H 0.95 Å. H(N) atom positions were refined with N—H = 0.90±0.01 Å, the Uiso were refined freely. One severely disordered aceto­nitrile solvent molecule per asymmetric unit was treated with the SQUEEZE facility in PLATON (Spek, 2009) which gave a void count of 43 electrons in the unit cell.

Related literature top

Due to the importance of selenoproteins (e.g. thioredoxin reductases and glutathione peroxidases) for essential metabolic processes, we have studied organo diselenide systems with N-donor functions with the aim of synthesizing redox-active selenium copper complexes. For the structure of the sulfido compound, see: Tommasi et al. (1999). For related structures of other bisaryl diselenides, see: Jones & Ramírez de Arellano (1996); Meyers et al. (1995); Warin et al. (1993); Wojtowicz et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Anisotropic displacement ellipsoids are drawn at the 50% probability level.
Bis{2-[(Triphenylmethyl)amino]phenyl} diselenide acetonitrile monosolvate top
Crystal data top
C50H40N2Se2·C2H3NZ = 2
Mr = 867.81F(000) = 888
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2364 (16) ÅCell parameters from 1733 reflections
b = 13.245 (2) Åθ = 2.3–20.0°
c = 18.248 (3) ŵ = 1.88 mm1
α = 104.956 (4)°T = 130 K
β = 103.578 (4)°Prism, yellow
γ = 101.636 (5)°0.20 × 0.17 × 0.06 mm
V = 2013.0 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
9548 independent reflections
Radiation source: sealed tube5060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.705, Tmax = 0.896k = 1717
19357 measured reflectionsl = 2421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.64 w = 1/[σ2(Fo2) + (0.0025P)2]
where P = (Fo2 + 2Fc2)/3
9548 reflections(Δ/σ)max = 0.001
495 parametersΔρmax = 0.53 e Å3
2 restraintsΔρmin = 0.49 e Å3
Crystal data top
C50H40N2Se2·C2H3Nγ = 101.636 (5)°
Mr = 867.81V = 2013.0 (6) Å3
Triclinic, P1Z = 2
a = 9.2364 (16) ÅMo Kα radiation
b = 13.245 (2) ŵ = 1.88 mm1
c = 18.248 (3) ÅT = 130 K
α = 104.956 (4)°0.20 × 0.17 × 0.06 mm
β = 103.578 (4)°
Data collection top
Bruker SMART APEX
diffractometer
9548 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5060 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.896Rint = 0.059
19357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 0.64Δρmax = 0.53 e Å3
9548 reflectionsΔρmin = 0.49 e Å3
495 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.27997 (4)0.00117 (3)0.12906 (2)0.02063 (9)
Se20.16179 (4)0.11762 (3)0.07419 (2)0.02247 (9)
N10.0981 (3)0.0249 (2)0.24933 (15)0.0194 (6)
H10.182 (2)0.0250 (18)0.2542 (17)0.023 (10)*
N20.3766 (3)0.3529 (2)0.17496 (16)0.0200 (7)
H20.391 (3)0.2987 (16)0.1392 (13)0.016 (9)*
C10.0733 (4)0.0128 (3)0.32780 (18)0.0178 (8)
C20.5110 (3)0.4497 (2)0.21235 (18)0.0156 (7)
C110.0380 (4)0.1129 (3)0.18084 (18)0.0181 (8)
C120.0872 (4)0.2010 (2)0.16825 (19)0.0206 (8)
H12A0.13570.20140.20870.025*
C130.1421 (4)0.2869 (3)0.09890 (19)0.0239 (8)
H13A0.22870.34510.09200.029*
C140.0739 (4)0.2906 (3)0.03873 (19)0.0244 (8)
H14A0.11170.35110.00880.029*
C150.0500 (4)0.2048 (3)0.04903 (18)0.0202 (8)
H15A0.09810.20670.00820.024*
C160.1061 (3)0.1151 (2)0.11865 (18)0.0154 (7)
C210.0682 (4)0.1204 (3)0.34699 (18)0.0197 (8)
C220.1758 (4)0.1756 (3)0.33070 (19)0.0283 (9)
H22A0.25180.14580.30910.034*
C230.1743 (5)0.2727 (3)0.3454 (2)0.0399 (11)
H23A0.24750.31010.33300.048*
C240.0652 (5)0.3158 (3)0.3784 (2)0.0413 (11)
H24A0.06350.38270.38870.050*
C250.0394 (4)0.2612 (3)0.3960 (2)0.0339 (10)
H25A0.11270.28990.41950.041*
C260.0395 (4)0.1646 (3)0.38004 (19)0.0261 (9)
H26A0.11400.12820.39180.031*
C310.0729 (4)0.0236 (2)0.33063 (19)0.0186 (8)
C320.0959 (4)0.0684 (3)0.40307 (19)0.0243 (8)
H32A0.01770.07930.45100.029*
C330.2307 (4)0.0976 (3)0.4072 (2)0.0307 (9)
H33A0.24420.12790.45750.037*
C340.3450 (4)0.0826 (3)0.3381 (2)0.0291 (9)
H34A0.43920.09990.34040.035*
C350.3209 (4)0.0420 (3)0.2653 (2)0.0264 (9)
H35A0.39680.03450.21750.032*
C360.1876 (4)0.0125 (2)0.26208 (19)0.0194 (8)
H36A0.17360.01620.21170.023*
C410.2175 (4)0.0787 (3)0.38798 (18)0.0181 (8)
C420.3011 (4)0.0692 (3)0.4582 (2)0.0296 (9)
H42A0.26940.00490.47110.036*
C430.4303 (4)0.1517 (3)0.5100 (2)0.0328 (10)
H43A0.48530.14430.55840.039*
C440.4787 (4)0.2441 (3)0.4911 (2)0.0292 (9)
H44A0.56940.29950.52560.035*
C450.3956 (4)0.2567 (3)0.42217 (19)0.0251 (8)
H45A0.42810.32110.40940.030*
C460.2639 (4)0.1745 (3)0.37143 (18)0.0206 (8)
H46A0.20500.18420.32480.025*
C510.2541 (4)0.3238 (3)0.20419 (19)0.0180 (8)
C520.2299 (4)0.3938 (3)0.26885 (18)0.0216 (8)
H52A0.30490.46190.29810.026*
C530.0977 (4)0.3651 (3)0.2909 (2)0.0249 (8)
H53A0.08440.41360.33560.030*
C540.0151 (4)0.2677 (3)0.2494 (2)0.0276 (9)
H54A0.10660.24980.26410.033*
C550.0084 (4)0.1967 (3)0.18580 (19)0.0236 (8)
H55A0.06850.12960.15650.028*
C560.1419 (4)0.2218 (2)0.16399 (18)0.0181 (8)
C610.6142 (4)0.4383 (2)0.15633 (19)0.0175 (8)
C620.5446 (4)0.4133 (3)0.07474 (19)0.0241 (8)
H62A0.43570.40120.05480.029*
C630.6328 (4)0.4056 (3)0.0219 (2)0.0311 (9)
H63A0.58380.38820.03350.037*
C640.7904 (4)0.4235 (3)0.0502 (2)0.0300 (9)
H64A0.85040.41690.01440.036*
C650.8608 (4)0.4509 (3)0.1303 (2)0.0294 (9)
H65A0.97000.46450.14990.035*
C660.7727 (4)0.4591 (3)0.1838 (2)0.0227 (8)
H66A0.82300.47910.23930.027*
C710.4658 (4)0.5555 (3)0.21059 (18)0.0169 (8)
C720.5797 (4)0.6535 (3)0.24184 (18)0.0210 (8)
H72A0.68310.65510.26680.025*
C730.5466 (4)0.7494 (3)0.23759 (19)0.0244 (8)
H73A0.62670.81610.25980.029*
C740.3965 (4)0.7483 (3)0.20087 (19)0.0252 (9)
H74A0.37270.81410.19850.030*
C750.2825 (4)0.6508 (3)0.16801 (19)0.0238 (8)
H75A0.17970.64930.14210.029*
C760.3160 (4)0.5551 (3)0.17223 (18)0.0186 (8)
H76A0.23620.48830.14880.022*
C810.5973 (3)0.4516 (2)0.29626 (18)0.0166 (8)
C820.6575 (4)0.3647 (3)0.3028 (2)0.0229 (8)
H82A0.63910.30480.25660.028*
C830.7435 (4)0.3650 (3)0.3758 (2)0.0274 (9)
H83A0.78910.30740.37880.033*
C840.7640 (4)0.4470 (3)0.4438 (2)0.0275 (9)
H84A0.82350.44650.49370.033*
C850.6982 (4)0.5298 (3)0.43931 (19)0.0263 (9)
H85A0.70860.58560.48650.032*
C860.6159 (4)0.5324 (3)0.36573 (19)0.0224 (8)
H86A0.57180.59090.36330.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0179 (2)0.0230 (2)0.0227 (2)0.00798 (16)0.00666 (17)0.00801 (17)
Se20.0271 (2)0.01750 (19)0.01792 (19)0.00341 (16)0.00054 (17)0.00554 (16)
N10.0179 (17)0.0189 (16)0.0158 (15)0.0024 (14)0.0043 (14)0.0029 (13)
N20.0171 (16)0.0178 (16)0.0214 (17)0.0014 (13)0.0078 (14)0.0012 (13)
C10.0187 (19)0.0202 (19)0.0126 (18)0.0030 (15)0.0041 (15)0.0045 (15)
C20.0085 (17)0.0156 (18)0.0198 (18)0.0003 (14)0.0041 (15)0.0034 (15)
C110.0181 (19)0.0187 (18)0.0150 (18)0.0074 (15)0.0002 (15)0.0038 (15)
C120.0168 (19)0.0218 (19)0.0199 (19)0.0033 (15)0.0025 (16)0.0056 (16)
C130.018 (2)0.0194 (19)0.029 (2)0.0019 (16)0.0010 (17)0.0078 (17)
C140.027 (2)0.0184 (19)0.020 (2)0.0085 (17)0.0029 (17)0.0005 (16)
C150.027 (2)0.0224 (19)0.0156 (18)0.0152 (17)0.0048 (16)0.0081 (16)
C160.0182 (19)0.0133 (17)0.0168 (17)0.0076 (14)0.0014 (15)0.0090 (14)
C210.022 (2)0.0208 (19)0.0108 (17)0.0036 (16)0.0013 (15)0.0029 (15)
C220.037 (2)0.031 (2)0.0154 (19)0.0116 (19)0.0040 (18)0.0063 (17)
C230.056 (3)0.034 (2)0.025 (2)0.026 (2)0.005 (2)0.0059 (19)
C240.063 (3)0.016 (2)0.030 (2)0.006 (2)0.011 (2)0.0103 (19)
C250.032 (2)0.028 (2)0.028 (2)0.0073 (19)0.0076 (19)0.0127 (19)
C260.022 (2)0.029 (2)0.023 (2)0.0058 (17)0.0011 (17)0.0077 (17)
C310.0189 (19)0.0135 (17)0.024 (2)0.0012 (15)0.0067 (16)0.0096 (15)
C320.026 (2)0.029 (2)0.021 (2)0.0112 (17)0.0072 (17)0.0109 (17)
C330.038 (2)0.028 (2)0.035 (2)0.0159 (19)0.020 (2)0.0126 (19)
C340.019 (2)0.025 (2)0.049 (3)0.0107 (17)0.011 (2)0.0166 (19)
C350.020 (2)0.022 (2)0.033 (2)0.0031 (16)0.0013 (18)0.0091 (17)
C360.0175 (19)0.0175 (18)0.0203 (19)0.0015 (15)0.0043 (16)0.0053 (15)
C410.0163 (19)0.0215 (19)0.0144 (18)0.0053 (15)0.0036 (15)0.0031 (15)
C420.029 (2)0.030 (2)0.026 (2)0.0021 (18)0.0021 (18)0.0127 (18)
C430.034 (2)0.039 (2)0.015 (2)0.005 (2)0.0072 (18)0.0083 (18)
C440.023 (2)0.031 (2)0.023 (2)0.0015 (18)0.0036 (17)0.0048 (18)
C450.026 (2)0.020 (2)0.025 (2)0.0036 (17)0.0049 (18)0.0059 (17)
C460.020 (2)0.023 (2)0.0146 (18)0.0048 (16)0.0001 (16)0.0046 (16)
C510.0137 (18)0.0199 (19)0.0219 (19)0.0045 (15)0.0040 (16)0.0105 (16)
C520.020 (2)0.0176 (19)0.027 (2)0.0032 (15)0.0068 (17)0.0076 (16)
C530.029 (2)0.024 (2)0.031 (2)0.0153 (17)0.0148 (18)0.0144 (18)
C540.023 (2)0.028 (2)0.047 (2)0.0133 (18)0.0199 (19)0.023 (2)
C550.0158 (19)0.0206 (19)0.033 (2)0.0026 (16)0.0014 (17)0.0144 (17)
C560.0190 (19)0.0149 (18)0.0218 (19)0.0057 (15)0.0036 (16)0.0100 (15)
C610.0177 (19)0.0153 (18)0.0210 (19)0.0048 (15)0.0080 (16)0.0060 (15)
C620.021 (2)0.029 (2)0.023 (2)0.0079 (17)0.0073 (17)0.0086 (17)
C630.039 (3)0.032 (2)0.023 (2)0.0105 (19)0.0122 (19)0.0055 (18)
C640.034 (2)0.032 (2)0.036 (2)0.0136 (19)0.025 (2)0.0148 (19)
C650.018 (2)0.036 (2)0.041 (2)0.0088 (18)0.0114 (19)0.020 (2)
C660.018 (2)0.025 (2)0.024 (2)0.0029 (16)0.0060 (17)0.0106 (17)
C710.0188 (19)0.0199 (19)0.0142 (18)0.0058 (15)0.0089 (16)0.0053 (15)
C720.0185 (19)0.022 (2)0.0204 (19)0.0053 (16)0.0033 (16)0.0067 (16)
C730.025 (2)0.0169 (19)0.031 (2)0.0035 (16)0.0106 (18)0.0069 (17)
C740.033 (2)0.028 (2)0.029 (2)0.0178 (18)0.0171 (19)0.0206 (18)
C750.0166 (19)0.036 (2)0.021 (2)0.0104 (17)0.0073 (16)0.0109 (18)
C760.0164 (19)0.0226 (19)0.0176 (18)0.0040 (15)0.0052 (15)0.0088 (16)
C810.0135 (18)0.0157 (18)0.0210 (19)0.0002 (14)0.0092 (16)0.0059 (15)
C820.025 (2)0.0206 (19)0.027 (2)0.0068 (16)0.0138 (18)0.0090 (17)
C830.027 (2)0.028 (2)0.036 (2)0.0117 (18)0.0109 (19)0.0202 (19)
C840.031 (2)0.033 (2)0.021 (2)0.0054 (18)0.0043 (17)0.0161 (18)
C850.029 (2)0.024 (2)0.020 (2)0.0024 (17)0.0054 (17)0.0029 (17)
C860.024 (2)0.0188 (19)0.025 (2)0.0058 (16)0.0091 (17)0.0071 (16)
Geometric parameters (Å, º) top
Se1—C161.922 (3)C43—C441.372 (4)
Se1—Se22.3529 (6)C43—H43A0.9500
Se2—C561.923 (3)C44—C451.381 (4)
N1—C111.375 (4)C44—H44A0.9500
N1—C11.476 (4)C45—C461.393 (4)
N1—H10.883 (10)C45—H45A0.9500
N2—C511.389 (4)C46—H46A0.9500
N2—C21.469 (4)C51—C521.394 (4)
N2—H20.893 (10)C51—C561.415 (4)
C1—C311.530 (4)C52—C531.385 (4)
C1—C211.547 (4)C52—H52A0.9500
C1—C411.557 (4)C53—C541.381 (4)
C2—C611.554 (4)C53—H53A0.9500
C2—C811.543 (4)C54—C551.383 (4)
C2—C711.547 (4)C54—H54A0.9500
C11—C121.395 (4)C55—C561.387 (4)
C11—C161.417 (4)C55—H55A0.9500
C12—C131.370 (4)C61—C661.375 (4)
C12—H12A0.9500C61—C621.396 (4)
C13—C141.384 (4)C62—C631.399 (4)
C13—H13A0.9500C62—H62A0.9500
C14—C151.379 (4)C63—C641.374 (4)
C14—H14A0.9500C63—H63A0.9500
C15—C161.399 (4)C64—C651.369 (4)
C15—H15A0.9500C64—H64A0.9500
C21—C261.387 (4)C65—C661.408 (4)
C21—C221.389 (4)C65—H65A0.9500
C22—C231.379 (5)C66—H66A0.9500
C22—H22A0.9500C71—C721.379 (4)
C23—C241.391 (5)C71—C761.394 (4)
C23—H23A0.9500C72—C731.381 (4)
C24—C251.366 (5)C72—H72A0.9500
C24—H24A0.9500C73—C741.386 (4)
C25—C261.385 (4)C73—H73A0.9500
C25—H25A0.9500C74—C751.375 (4)
C26—H26A0.9500C74—H74A0.9500
C31—C321.387 (4)C75—C761.380 (4)
C31—C361.389 (4)C75—H75A0.9500
C32—C331.389 (4)C76—H76A0.9500
C32—H32A0.9500C81—C861.381 (4)
C33—C341.380 (4)C81—C821.395 (4)
C33—H33A0.9500C82—C831.380 (4)
C34—C351.387 (4)C82—H82A0.9500
C34—H34A0.9500C83—C841.366 (4)
C35—C361.374 (4)C83—H83A0.9500
C35—H35A0.9500C84—C851.368 (4)
C36—H36A0.9500C84—H84A0.9500
C41—C461.387 (4)C85—C861.392 (4)
C41—C421.382 (4)C85—H85A0.9500
C42—C431.387 (4)C86—H86A0.9500
C42—H42A0.9500
C16—Se1—Se2103.03 (9)C44—C43—H43A120.1
C56—Se2—Se1104.45 (9)C45—C44—C43120.1 (3)
C11—N1—C1129.2 (3)C45—C44—H44A119.9
C11—N1—H1118.4 (19)C43—C44—H44A119.9
C1—N1—H1109.9 (19)C44—C45—C46119.6 (3)
C51—N2—C2127.0 (3)C44—C45—H45A120.2
C51—N2—H2115.5 (18)C46—C45—H45A120.2
C2—N2—H2114.4 (18)C41—C46—C45120.9 (3)
N1—C1—C31110.8 (3)C41—C46—H46A119.5
N1—C1—C21109.6 (3)C45—C46—H46A119.5
C31—C1—C21112.4 (3)C52—C51—C56117.8 (3)
N1—C1—C41104.9 (2)C52—C51—N2122.8 (3)
C31—C1—C41109.0 (3)C56—C51—N2119.3 (3)
C21—C1—C41109.8 (3)C51—C52—C53120.6 (3)
N2—C2—C61105.1 (2)C51—C52—H52A119.7
N2—C2—C81109.8 (3)C53—C52—H52A119.7
C61—C2—C81111.4 (2)C52—C53—C54121.6 (3)
N2—C2—C71112.1 (3)C52—C53—H53A119.2
C61—C2—C71104.0 (3)C54—C53—H53A119.2
C81—C2—C71113.9 (3)C55—C54—C53118.4 (3)
C12—C11—N1124.0 (3)C55—C54—H54A120.8
C12—C11—C16117.4 (3)C53—C54—H54A120.8
N1—C11—C16118.6 (3)C54—C55—C56121.3 (3)
C11—C12—C13121.6 (3)C54—C55—H55A119.4
C11—C12—H12A119.2C56—C55—H55A119.4
C13—C12—H12A119.2C51—C56—C55120.2 (3)
C14—C13—C12121.3 (3)C51—C56—Se2121.9 (2)
C14—C13—H13A119.4C55—C56—Se2117.8 (2)
C12—C13—H13A119.4C66—C61—C62118.3 (3)
C13—C14—C15118.8 (3)C66—C61—C2123.0 (3)
C13—C14—H14A120.6C62—C61—C2118.5 (3)
C15—C14—H14A120.6C61—C62—C63121.0 (3)
C14—C15—C16121.0 (3)C61—C62—H62A119.5
C14—C15—H15A119.5C63—C62—H62A119.5
C16—C15—H15A119.5C64—C63—C62119.9 (3)
C15—C16—C11120.0 (3)C64—C63—H63A120.1
C15—C16—Se1118.7 (2)C62—C63—H63A120.1
C11—C16—Se1121.3 (2)C65—C64—C63119.8 (3)
C26—C21—C22118.2 (3)C65—C64—H64A120.1
C26—C21—C1122.8 (3)C63—C64—H64A120.1
C22—C21—C1118.9 (3)C64—C65—C66120.6 (3)
C23—C22—C21121.1 (4)C64—C65—H65A119.7
C23—C22—H22A119.4C66—C65—H65A119.7
C21—C22—H22A119.4C61—C66—C65120.4 (3)
C22—C23—C24119.7 (4)C61—C66—H66A119.8
C22—C23—H23A120.1C65—C66—H66A119.8
C24—C23—H23A120.1C72—C71—C76118.1 (3)
C25—C24—C23119.6 (4)C72—C71—C2119.2 (3)
C25—C24—H24A120.2C76—C71—C2122.4 (3)
C23—C24—H24A120.2C71—C72—C73121.4 (3)
C24—C25—C26120.6 (4)C71—C72—H72A119.3
C24—C25—H25A119.7C73—C72—H72A119.3
C26—C25—H25A119.7C74—C73—C72120.0 (3)
C25—C26—C21120.6 (3)C74—C73—H73A120.0
C25—C26—H26A119.7C72—C73—H73A120.0
C21—C26—H26A119.7C73—C74—C75119.2 (3)
C32—C31—C36117.4 (3)C73—C74—H74A120.4
C32—C31—C1120.4 (3)C75—C74—H74A120.4
C36—C31—C1122.2 (3)C74—C75—C76120.7 (3)
C33—C32—C31121.5 (3)C74—C75—H75A119.7
C33—C32—H32A119.3C76—C75—H75A119.7
C31—C32—H32A119.3C71—C76—C75120.6 (3)
C34—C33—C32119.9 (3)C71—C76—H76A119.7
C34—C33—H33A120.0C75—C76—H76A119.7
C32—C33—H33A120.0C86—C81—C82117.6 (3)
C33—C34—C35119.2 (3)C86—C81—C2124.3 (3)
C33—C34—H34A120.4C82—C81—C2118.0 (3)
C35—C34—H34A120.4C83—C82—C81120.6 (3)
C36—C35—C34120.2 (3)C83—C82—H82A119.7
C36—C35—H35A119.9C81—C82—H82A119.7
C34—C35—H35A119.9C82—C83—C84120.9 (3)
C35—C36—C31121.7 (3)C82—C83—H83A119.6
C35—C36—H36A119.2C84—C83—H83A119.6
C31—C36—H36A119.2C85—C84—C83119.5 (3)
C46—C41—C42118.2 (3)C85—C84—H84A120.3
C46—C41—C1119.1 (3)C83—C84—H84A120.3
C42—C41—C1122.7 (3)C84—C85—C86120.2 (3)
C43—C42—C41121.2 (3)C84—C85—H85A119.9
C43—C42—H42A119.4C86—C85—H85A119.9
C41—C42—H42A119.4C81—C86—C85121.1 (3)
C42—C43—C44119.9 (3)C81—C86—H86A119.5
C42—C43—H43A120.1C85—C86—H86A119.5
C16—Se1—Se2—C5693.53 (14)C42—C41—C46—C453.1 (5)
C11—N1—C1—C3185.7 (4)C1—C41—C46—C45177.6 (3)
C11—N1—C1—C2138.9 (4)C44—C45—C46—C411.9 (5)
C11—N1—C1—C41156.7 (3)C2—N2—C51—C5210.7 (5)
C51—N2—C2—C61177.4 (3)C2—N2—C51—C56173.7 (3)
C51—N2—C2—C8157.5 (4)C56—C51—C52—C532.0 (5)
C51—N2—C2—C7170.2 (4)N2—C51—C52—C53173.6 (3)
C1—N1—C11—C1214.9 (5)C51—C52—C53—C540.9 (5)
C1—N1—C11—C16165.3 (3)C52—C53—C54—C551.8 (5)
N1—C11—C12—C13179.7 (3)C53—C54—C55—C560.3 (5)
C16—C11—C12—C130.5 (5)C52—C51—C56—C554.1 (5)
C11—C12—C13—C140.9 (5)N2—C51—C56—C55171.7 (3)
C12—C13—C14—C151.0 (5)C52—C51—C56—Se2179.8 (2)
C13—C14—C15—C160.3 (5)N2—C51—C56—Se24.4 (4)
C14—C15—C16—C111.8 (5)C54—C55—C56—C513.3 (5)
C14—C15—C16—Se1179.7 (2)C54—C55—C56—Se2179.6 (2)
C12—C11—C16—C151.8 (4)Se1—Se2—C56—C5195.1 (3)
N1—C11—C16—C15178.4 (3)Se1—Se2—C56—C5588.7 (2)
C12—C11—C16—Se1179.7 (2)N2—C2—C61—C66136.3 (3)
N1—C11—C16—Se10.5 (4)C81—C2—C61—C6617.4 (4)
Se2—Se1—C16—C1589.8 (2)C71—C2—C61—C66105.8 (3)
Se2—Se1—C16—C1192.3 (2)N2—C2—C61—C6248.3 (4)
N1—C1—C21—C26137.2 (3)C81—C2—C61—C62167.2 (3)
C31—C1—C21—C2613.4 (4)C71—C2—C61—C6269.7 (3)
C41—C1—C21—C26108.1 (3)C66—C61—C62—C632.2 (5)
N1—C1—C21—C2242.9 (4)C2—C61—C62—C63177.9 (3)
C31—C1—C21—C22166.7 (3)C61—C62—C63—C640.3 (5)
C41—C1—C21—C2271.8 (4)C62—C63—C64—C651.3 (5)
C26—C21—C22—C231.3 (5)C63—C64—C65—C661.1 (5)
C1—C21—C22—C23178.8 (3)C62—C61—C66—C652.4 (5)
C21—C22—C23—C241.2 (5)C2—C61—C66—C65177.9 (3)
C22—C23—C24—C250.0 (5)C64—C65—C66—C610.8 (5)
C23—C24—C25—C261.1 (5)N2—C2—C71—C72178.6 (3)
C24—C25—C26—C211.0 (5)C61—C2—C71—C7265.5 (3)
C22—C21—C26—C250.2 (5)C81—C2—C71—C7256.0 (4)
C1—C21—C26—C25179.9 (3)N2—C2—C71—C764.4 (4)
N1—C1—C31—C32162.2 (3)C61—C2—C71—C76108.6 (3)
C21—C1—C31—C3274.7 (4)C81—C2—C71—C76129.9 (3)
C41—C1—C31—C3247.2 (4)C76—C71—C72—C731.8 (5)
N1—C1—C31—C3618.5 (4)C2—C71—C72—C73176.3 (3)
C21—C1—C31—C36104.5 (3)C71—C72—C73—C740.4 (5)
C41—C1—C31—C36133.5 (3)C72—C73—C74—C750.9 (5)
C36—C31—C32—C332.2 (5)C73—C74—C75—C760.8 (5)
C1—C31—C32—C33177.1 (3)C72—C71—C76—C751.9 (5)
C31—C32—C33—C340.2 (5)C2—C71—C76—C75176.2 (3)
C32—C33—C34—C352.3 (5)C74—C75—C76—C710.6 (5)
C33—C34—C35—C362.9 (5)N2—C2—C81—C86118.3 (3)
C34—C35—C36—C310.9 (5)C61—C2—C81—C86125.7 (3)
C32—C31—C36—C351.6 (5)C71—C2—C81—C868.4 (4)
C1—C31—C36—C35177.7 (3)N2—C2—C81—C8260.1 (3)
N1—C1—C41—C4648.0 (4)C61—C2—C81—C8255.9 (4)
C31—C1—C41—C4670.8 (3)C71—C2—C81—C82173.2 (3)
C21—C1—C41—C46165.7 (3)C86—C81—C82—C835.2 (5)
N1—C1—C41—C42132.7 (3)C2—C81—C82—C83176.2 (3)
C31—C1—C41—C42108.6 (3)C81—C82—C83—C843.8 (5)
C21—C1—C41—C4215.0 (4)C82—C83—C84—C850.1 (5)
C46—C41—C42—C431.6 (5)C83—C84—C85—C862.4 (5)
C1—C41—C42—C43179.1 (3)C82—C81—C86—C852.9 (5)
C41—C42—C43—C441.2 (5)C2—C81—C86—C85178.6 (3)
C42—C43—C44—C452.4 (5)C84—C85—C86—C810.8 (5)
C43—C44—C45—C460.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Se10.88 (1)2.62 (3)3.106 (3)115 (19)
N2—H2···Se20.89 (2)2.64 (2)3.140 (2)117 (2)
C35—H35A···Se1i0.952.923.777 (3)150
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Se10.883 (10)2.617 (31)3.106 (3)115 (19)
N2—H2···Se20.893 (24)2.637 (20)3.140 (2)116.6 (17)
C35—H35A···Se1i0.952.923.777 (3)150
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continued support of our work.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJones, P. G. & Ramírez de Arellano, M. C. (1996). J. Chem. Soc. Dalton Trans. pp. 2713–2717.  CSD CrossRef Web of Science Google Scholar
First citationMeyers, E. A., Zingaro, R. A. & Dereu, N. L. M. (1995). Z. Kristallogr. 210, 305–305.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTommasi, G., Bruni, P., Greci, L., Sgarabotto, P., Righi, L. & Petrucci, R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2123–2128.  Web of Science CrossRef Google Scholar
First citationWarin, V., Guelzim, A., Baert, F., Galet, V., Houssin, R. & Lesieur, D. (1993). Acta Cryst. C49, 2005–2007.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWojtowicz, H., Chojnacka, M., Miochowski, J., Paulus, J., Syper, L., Hudecova, D., Uher, M., Piasecki, E. & Rybka, M. (2003). II Farmaco, 58, 1235–1242.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o537-o538
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds