supplementary materials


xu5783 scheme

Acta Cryst. (2014). E70, o573    [ doi:10.1107/S1600536814008241 ]

1,10-Phenanthroline-5,6-dione ethanol monosolvate

J.-W. Dai, Z.-Y. Li and O. Sato

CCDC reference: 996896

Abstract top

In the title compound, C12H6N2O2·C2H5OH, the mol­ecule of the 1,10-phenanthroline-5,6-dione is approximately planar, with a maximum deviation of 0.051 (1) Å. In the crystal, mol­ecules are linked by O-H...N and weak C-H...O hydrogen bonds, forming supra­molecular chains propagating along [110]. [pi]-[pi] stacking inter­actions are observed between the pyridine rings of neighbouring chains, the centroid-centroid separations being 3.6226 (11) and 3.7543 (11) Å.

Introduction top

Experimental top

Synthesis and crystallization top

The title compound was prepared according to literature method (Paw & Eisenberg, 1997). An ice-cold mixture of concentrated H2SO4 (40 mL) and HNO3 (20 mL) was added to 4 g of 1,10-phenanthroline (0.02 mol) and 4 g of KBr (0.03 mol). The mixture was heated at 90 oC for 3 h. The hot yellow solution was poured over 200 mL of ice and neutralized carefully with sodium hydroxide until neutral to slightly acidic pH. Extraction with CH2Cl2 (4*100 mL) followed by drying with Na2SO4 and removal of solvent gave 2.8 g (yield = 67%) of 1,10-phenanthroline-5,6-dione. This product was purified further by crystallization from ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Carbon-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. The hy­droxy H atom was located in a difference Fourier map, and was refined with distance restraints of O—H = 0.84±0.01, Uiso(H) = 1.2Ueq(O).

Results and discussion top

1,10-Phenanthroline-5,6-dione has been known for many years (Smith & Cagle, 1947), and its chelating ability as either a di­imine or a catecholate was important in coordination chemistry (Ma et al., 2010, Goss & Abruna, 1985, Murphy et al., 2011), analytical chemistry (Wu et al., 1996, Pinczewska et al., 2012) and biophysical chemistry (Poteet & MacDonnell, 2013, Wu et al., 2002, Poteet et al., 2013). Moreover, it can become as the bridging ligand, which has shown very inter­esting function in multinuclear complexes (Paw et al., 1998, Paw & Eisenberg, 1997, Calderazzo et al., 1999).

According to the structural analysis, the bond lengths and angles of the title compound are generally within normal ranges. The asymmetric unit of the title compound consists of one 1,10-phenanthroline-5,6-dione molecule and one ethanol molecule. Between molecules, O—H···N and C—H···O hydrogen bonds can be found that further form one-dimensional chain. The weak π···π stacking inter­actions between adjacent chains are also observed [centroid– centroid separations being 3.6226 (11) and 3.7543 (11) Å].

Related literature top

For background to and applications of 1,10-phenanthroline-5,6-dione, see: Smith & Cagle (1947); Ma et al. (2010); Goss & Abruna (1985); Murphy et al. (2011); Wu et al. (1996); Pinczewska et al. (2012); Poteet & MacDonnell (2013); Wu et al. (2002); Poteet et al. 2013); Paw et al. (1998). For the synthesis, see: Paw & Eisenberg (1997). For a related structure, see: Calderazzo et al. (1999).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Intermolecular O—H···N and C—H···O hydrogen bonds are shown as green dashed lines, and π-π stacking interactions between molecules are shown as blue dashed lines.
1,10-Phenanthroline-5,6-dione ethanol monosolvate top
Crystal data top
C12H6N2O2·C2H6OZ = 2
Mr = 256.26F(000) = 268
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3064 (15) ÅCell parameters from 2355 reflections
b = 9.1055 (18) Åθ = 3.1–30.2°
c = 9.7291 (19) ŵ = 0.10 mm1
α = 96.47 (3)°T = 123 K
β = 101.68 (3)°Block, yellow
γ = 109.83 (3)°0.20 × 0.20 × 0.20 mm
V = 584.6 (2) Å3
Data collection top
Rigaku Saturn724+
diffractometer
2074 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.020
Confocal monochromatorθmax = 26.0°, θmin = 3.1°
Detector resolution: 28.5714 pixels mm-1h = 99
ω scansk = 1111
5059 measured reflectionsl = 1111
2252 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.118P]
where P = (Fo2 + 2Fc2)/3
2252 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C12H6N2O2·C2H6Oγ = 109.83 (3)°
Mr = 256.26V = 584.6 (2) Å3
Triclinic, P1Z = 2
a = 7.3064 (15) ÅMo Kα radiation
b = 9.1055 (18) ŵ = 0.10 mm1
c = 9.7291 (19) ÅT = 123 K
α = 96.47 (3)°0.20 × 0.20 × 0.20 mm
β = 101.68 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
2074 reflections with I > 2σ(I)
5059 measured reflectionsRint = 0.020
2252 independent reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114Δρmax = 0.24 e Å3
S = 1.06Δρmin = 0.17 e Å3
2252 reflectionsAbsolute structure: ?
185 parametersAbsolute structure parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.66468 (17)0.96363 (14)0.27101 (12)0.0211 (3)
C110.69855 (17)0.93910 (13)0.52865 (12)0.0196 (3)
C50.50156 (18)0.80403 (14)0.22423 (12)0.0237 (3)
C70.54977 (17)0.78514 (14)0.49173 (12)0.0211 (3)
C60.43997 (17)0.70995 (13)0.34035 (13)0.0239 (3)
C120.75757 (16)1.02974 (13)0.41609 (12)0.0200 (3)
C80.50365 (18)0.70329 (14)0.60099 (13)0.0250 (3)
H80.40420.59870.57940.030*
C90.60544 (18)0.77748 (15)0.74108 (13)0.0270 (3)
H90.57870.72480.81790.032*
C30.72616 (18)1.05260 (15)0.16952 (13)0.0252 (3)
H30.66511.01080.07040.030*
C10.95979 (18)1.25750 (14)0.36088 (14)0.0262 (3)
H11.06321.36030.39190.031*
C100.74812 (18)0.93131 (15)0.76688 (13)0.0261 (3)
H100.81660.98180.86360.031*
C20.87625 (19)1.20164 (15)0.21448 (14)0.0272 (3)
H20.92131.26440.14750.033*
O10.41332 (14)0.74720 (11)0.09901 (9)0.0331 (3)
O20.30275 (14)0.58111 (10)0.30567 (10)0.0333 (3)
N20.79532 (15)1.01274 (12)0.66490 (10)0.0237 (2)
N10.90359 (15)1.17542 (12)0.46054 (11)0.0233 (2)
C150.8686 (2)0.65765 (16)0.07549 (14)0.0336 (3)
H15A0.83250.75030.06210.050*
H15B0.83720.58850.01770.050*
H15C1.01300.69340.12110.050*
C140.7508 (2)0.56671 (15)0.16901 (14)0.0312 (3)
O30.76490 (13)0.66129 (10)0.30034 (9)0.0291 (2)
H14A0.598 (3)0.5214 (19)0.1167 (17)0.042 (4)*
H14B0.797 (3)0.479 (2)0.1910 (18)0.048 (5)*
H3O0.8864 (17)0.719 (2)0.3431 (19)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0190 (6)0.0245 (6)0.0236 (6)0.0108 (5)0.0073 (4)0.0073 (5)
C110.0173 (5)0.0214 (6)0.0226 (6)0.0091 (4)0.0069 (4)0.0051 (4)
C50.0215 (6)0.0259 (6)0.0238 (6)0.0102 (5)0.0044 (5)0.0036 (5)
C70.0188 (6)0.0219 (6)0.0252 (6)0.0091 (5)0.0077 (4)0.0064 (4)
C60.0205 (6)0.0222 (6)0.0291 (6)0.0078 (5)0.0068 (5)0.0043 (5)
C120.0168 (5)0.0216 (6)0.0238 (6)0.0086 (4)0.0070 (4)0.0053 (4)
C80.0217 (6)0.0231 (6)0.0330 (7)0.0085 (5)0.0107 (5)0.0100 (5)
C90.0266 (6)0.0333 (7)0.0277 (6)0.0138 (5)0.0118 (5)0.0145 (5)
C30.0242 (6)0.0326 (7)0.0240 (6)0.0143 (5)0.0085 (5)0.0095 (5)
C10.0215 (6)0.0234 (6)0.0355 (7)0.0065 (5)0.0113 (5)0.0107 (5)
C100.0260 (6)0.0332 (7)0.0215 (6)0.0124 (5)0.0077 (5)0.0069 (5)
C20.0268 (6)0.0324 (7)0.0318 (7)0.0150 (5)0.0157 (5)0.0163 (5)
O10.0338 (5)0.0333 (5)0.0238 (5)0.0072 (4)0.0005 (4)0.0019 (4)
O20.0290 (5)0.0249 (5)0.0346 (5)0.0012 (4)0.0051 (4)0.0027 (4)
N20.0234 (5)0.0257 (5)0.0222 (5)0.0088 (4)0.0070 (4)0.0044 (4)
N10.0200 (5)0.0223 (5)0.0276 (5)0.0068 (4)0.0076 (4)0.0060 (4)
C150.0321 (7)0.0332 (7)0.0282 (7)0.0040 (5)0.0083 (5)0.0019 (5)
C140.0388 (8)0.0250 (6)0.0296 (7)0.0104 (5)0.0116 (6)0.0043 (5)
O30.0255 (5)0.0329 (5)0.0261 (5)0.0092 (4)0.0059 (4)0.0007 (4)
Geometric parameters (Å, º) top
C4—C31.3950 (17)C3—C21.3776 (19)
C4—C121.3995 (17)C3—H30.9500
C4—C51.4818 (18)C1—N11.3355 (16)
C11—N21.3436 (16)C1—C21.3907 (18)
C11—C71.4037 (17)C1—H10.9500
C11—C121.4899 (16)C10—N21.3357 (16)
C5—O11.2171 (15)C10—H100.9500
C5—C61.5411 (17)C2—H20.9500
C7—C81.3972 (17)C15—C141.5026 (18)
C7—C61.4843 (18)C15—H15A0.9800
C6—O21.2128 (16)C15—H15B0.9800
C12—N11.3448 (16)C15—H15C0.9800
C8—C91.3813 (18)C14—O31.4225 (15)
C8—H80.9500C14—H14A1.040 (18)
C9—C101.3914 (19)C14—H14B0.995 (18)
C9—H90.9500O3—H3O0.850 (10)
C3—C4—C12118.58 (11)C4—C3—H3120.3
C3—C4—C5119.93 (11)N1—C1—C2124.01 (11)
C12—C4—C5121.48 (11)N1—C1—H1118.0
N2—C11—C7122.79 (11)C2—C1—H1118.0
N2—C11—C12116.36 (10)N2—C10—C9124.42 (12)
C7—C11—C12120.85 (11)N2—C10—H10117.8
O1—C5—C4122.47 (12)C9—C10—H10117.8
O1—C5—C6119.54 (11)C3—C2—C1117.99 (11)
C4—C5—C6117.97 (10)C3—C2—H2121.0
C8—C7—C11118.69 (11)C1—C2—H2121.0
C8—C7—C6119.96 (11)C10—N2—C11117.08 (11)
C11—C7—C6121.35 (11)C1—N1—C12117.77 (11)
O2—C6—C7122.90 (12)C14—C15—H15A109.5
O2—C6—C5119.48 (11)C14—C15—H15B109.5
C7—C6—C5117.60 (10)H15A—C15—H15B109.5
N1—C12—C4122.28 (11)C14—C15—H15C109.5
N1—C12—C11117.04 (10)H15A—C15—H15C109.5
C4—C12—C11120.68 (11)H15B—C15—H15C109.5
C9—C8—C7118.69 (11)O3—C14—C15114.19 (11)
C9—C8—H8120.7O3—C14—H14A104.6 (9)
C7—C8—H8120.7C15—C14—H14A109.3 (9)
C8—C9—C10118.31 (11)O3—C14—H14B108.5 (10)
C8—C9—H9120.8C15—C14—H14B109.8 (10)
C10—C9—H9120.8H14A—C14—H14B110.5 (14)
C2—C3—C4119.37 (12)C14—O3—H3O111.5 (14)
C2—C3—H3120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N1i0.85 (1)2.08 (1)2.8258 (19)146 (2)
C1—H1···O2ii0.952.533.3381 (19)143
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N1i0.850 (10)2.080 (14)2.8258 (19)146.2 (18)
C1—H1···O2ii0.952.533.3381 (19)143.1
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
Acknowledgements top

The authors would like to thank the China Scholarship Council (CSC).

references
References top

Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Goss, C. A. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263–4267.

Ma, Q., Zhu, M. L., Yuan, C. X., Feng, S. S., Lu, L. P. & Wang, Q. M. (2010). Cryst. Growth Des. 10, 1706–1714.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Murphy, D. M., McNamara, K., Richardson, P., Sanchez-Romaguera, V., Winpenny, R. E. P. & Yellowlees, L. J. (2011). Inorg. Chim. Acta, 374, 435–441.

Paw, W., Connick, W. B. & Eisenberg, R. (1998). Inorg. Chem. 37, 3919–3926.

Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293.

Pinczewska, A., Sosna, M., Bloodworth, S., Kilburn, J. D. & Bartlett, P. N. (2012). J. Am. Chem. Soc. 134, 18022–18033.

Poteet, S. A. & MacDonnell, F. M. (2013). Dalton Trans. 42, 13305–13307.

Poteet, S. A., Majewski, M. B., Breitbach, Z. S., Griffith, C. A., Singh, S., Armstrong, D. W., Wolf, M. O. & MacDonnell, F. M. (2013). J. Am. Chem. Soc. 135, 2419–2422.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smith, G. F. & Cagle, F. W. (1947). J. Org. Chem. 12, 781–784.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Wu, J. Z., Li, H., Zhang, J. G. & Xu, J. H. (2002). Inorg. Chem. Commun. 5, 71–75.

Wu, Q., Maskus, M., Pariente, F., Tobalina, F., Fernandez, V. M., Lorenzo, E. & Abruna, H. D. (1996). Anal. Chem. 68, 3688–3696.