organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-3-Bromo-5-chloro-2-hy­dr­oxy­benzyl­­idene]furan-2-carbohydrazide

aDepartment of Chemistry, Madras Medical College, Chennai 600 003, India, and bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 005, India
*Correspondence e-mail: rajagopal18@yahoo.com

(Received 7 May 2014; accepted 12 May 2014; online 17 May 2014)

In the title compound, C12H8BrClN2O3, the furan ring makes a dihedral angle of 17.2 (2)° with the six-membered ring. An intra­molecular O–H⋯N hydrogen bond stabilizes the mol­ecular conformation. In the crystal, N–H⋯O hydrogen bonds connect the mol­ecules into chains running along the c-axis direction. The crystal packing is additionally stabilized by C—H⋯O inter­actions into a three-dimensional supramolecular architecture.

Related literature

Heterocyclic carbohydrazides form stable metal chelates which find applications in mol­ecular sensing, see: Bakir & Brown (2002[Bakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129-136.]). For the biological activity of hydrazones derived from isoniazid (systematic name: isonicotinohydrazide), see: Rollas & Kucukguzel (2007[Rollas, S. & Kucukguzel, S. G. (2007). Molecules, 12, 1910-1939.]). For related structures, see: Prabhu et al. (2011[Prabhu, M., Parthipan, K., Ramu, A., Chakkaravarthi, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2716.]); Bikas et al. (2010[Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.]); Prasanna et al. (2013[Prasanna, M. K., Sithambaresan, M., Pradeepkumar, K. & Kurup, M. R. P. (2013). Acta Cryst. E69, o881.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8BrClN2O3

  • Mr = 343.56

  • Monoclinic, P 21 /c

  • a = 16.7237 (9) Å

  • b = 7.7455 (4) Å

  • c = 10.1868 (5) Å

  • β = 93.557 (2)°

  • V = 1316.99 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker AAPEXII CCD Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.324, Tmax = 0.435

  • 13728 measured reflections

  • 2996 independent reflections

  • 2029 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.02

  • 2996 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.14 2.953 (2) 157
C3—H3⋯O1ii 0.93 2.44 3.324 (3) 159
C6—H6⋯O2i 0.93 2.50 3.263 (3) 139
O3—H3A⋯N2 0.82 1.84 2.564 (3) 146
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic carbohydrazides are compounds with a wide spectrum of biological and analytical applications. They form stable metal chelates which find applications in molecular sensing (Bakir & Brown, 2002). A number of hydrazones derived from isoniazid were reported to be active antitubercular agents and were found to be less toxic than isoniazid (Rollas & Kucukguzel, 2007). Against this background, and in order to obtain detailed information on the molecular conformation in the solid state, an X-ray study of the title compound was carried out.

The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The molecule exists in a E configuration with respect to the C6=N2 bond, with the C7—C6—N2—N1 torsion angle of 179.1 (2)°. The bond lengths and angles in the carbohydrazide group of the title compound can be compared with the related structures (Prabhu et al., 2011; Bikas et al., 2010). The furan ring makes a dihedral angle of 17.2 (2)° with the six-membered ring. The N2—N1—C5—O2 torsion angle of -0.1 (4)° indicates the cis configuration of the O2 atom with respect to the hydrazine nitrogen atom N2. The bond distances C6N2 [1.275 (3) Å] and C5O2 [1.224 (3) Å] are very close to the formal double CN and CO bond lengths (Prasanna, et al., 2013) confirming that the carbohydrazide exists in solid state as an amido tautomer. An intramolecular O–H···N hydrogen bond stabilized the molecular conformation. Intermolecular N–H···O hydrogen bonds connect the molecules to chains running along the c axis. The crystal packing is further stabilized by C–H···O hydrogen bonds.

Related literature top

Heterocyclic carbohydrazides form stable metal chelates which find

applications in molecular sensing, see: Bakir & Brown (2002). For the biological activity of hydrazones derived from isoniazid (systematic name: isonicotinohydrazide), see: Rollas & Kucukguzel (2007). For related structures, see: Prabhu et al. (2011); Bikas et al. (2010); Prasanna et al. (2013).

Experimental top

N'-[(E)-(3-bromo-5-chloro-2-hydroxyphenyl)methylidene]furan-2-carbohydrazide, ligand was synthesized by Schiff-base condensation furan-2-carbohydrazide and 3-bromo-5-chlorosalicylaldehyde as shown in Scheme-1. 3-bromo-5-chloro salicylaldehyde (3.0 mmol) in methanol (0.75 g) was stirred in a round bottom flask followed by drop wise addition of methanolic solution of furan-2-carbohydrazide (3.0 mmol). The reaction mixture was stirred for 3 h. The resulting white solid was removed by filtration and washed with cold ethanol and dried in vacuum over anhydrous CaCl2·M.p:180°C, yield: 80%. Single crystals suitable for the X-ray diffraction are obtained by slow evaporation of a solution of the title compound in DMF at room temperature.

Refinement top

The H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93 Å, O—H = 0.82 Å) and refined as riding on their carriers with Uiso(H)= 1.2Ueq(C,N,O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal structure showing the R22(10) motif and also the formation of bifurcated R12(6) ring motif. For the sake of clarity, the H atoms not involved in the motif have been omitted.
N'-[(E)-3-Bromo-5-chloro-2-hydroxybenzylidene]furan-2-carbohydrazide top
Crystal data top
C12H8BrClN2O3F(000) = 680
Mr = 343.56Dx = 1.733 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4049 reflections
a = 16.7237 (9) Åθ = 2.8–24.5°
b = 7.7455 (4) ŵ = 3.33 mm1
c = 10.1868 (5) ÅT = 293 K
β = 93.557 (2)°Block, yellow
V = 1316.99 (12) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker AAPEXII CCD Diffractometer2996 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scanθmax = 27.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2121
Tmin = 0.324, Tmax = 0.435k = 108
13728 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.5776P]
where P = (Fo2 + 2Fc2)/3
2996 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H8BrClN2O3V = 1316.99 (12) Å3
Mr = 343.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.7237 (9) ŵ = 3.33 mm1
b = 7.7455 (4) ÅT = 293 K
c = 10.1868 (5) Å0.35 × 0.30 × 0.25 mm
β = 93.557 (2)°
Data collection top
Bruker AAPEXII CCD Diffractometer2996 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2029 reflections with I > 2σ(I)
Tmin = 0.324, Tmax = 0.435Rint = 0.032
13728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2996 reflectionsΔρmin = 0.34 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30900 (18)0.0948 (4)0.5312 (4)0.0704 (9)
H10.27560.05620.59470.084*
C20.28824 (18)0.1059 (4)0.4065 (3)0.0678 (8)
H20.23890.07610.36570.081*
C30.35486 (17)0.1718 (4)0.3450 (2)0.0558 (7)
H30.35790.19540.25600.067*
C40.41272 (14)0.1937 (3)0.4394 (2)0.0386 (5)
C50.49358 (14)0.2608 (3)0.4308 (2)0.0388 (5)
C60.66294 (15)0.3109 (3)0.6435 (2)0.0410 (6)
H60.64610.25740.71870.049*
C70.74492 (14)0.3741 (3)0.6395 (2)0.0377 (5)
C80.76987 (14)0.4658 (3)0.5306 (2)0.0383 (5)
C90.84795 (15)0.5274 (3)0.5343 (2)0.0467 (6)
C100.90118 (15)0.4977 (3)0.6409 (3)0.0516 (7)
H100.95310.54100.64210.062*
C110.87656 (16)0.4041 (3)0.7446 (2)0.0484 (6)
C120.79961 (15)0.3424 (3)0.7459 (2)0.0458 (6)
H120.78390.27960.81780.055*
N10.53833 (11)0.2682 (3)0.54589 (17)0.0418 (5)
H1A0.51940.23540.61840.050*
N20.61464 (12)0.3296 (2)0.54270 (18)0.0410 (5)
O10.38640 (12)0.1475 (3)0.55681 (17)0.0626 (5)
O20.51905 (11)0.3068 (3)0.32640 (15)0.0575 (5)
O30.72099 (10)0.4955 (2)0.42286 (14)0.0485 (4)
H3A0.67690.45280.43300.073*
Cl10.94376 (5)0.36440 (11)0.87885 (8)0.0748 (2)
Br10.881917 (19)0.65331 (5)0.38959 (3)0.07798 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (18)0.075 (2)0.090 (2)0.0171 (16)0.0222 (16)0.0091 (18)
C20.0467 (18)0.069 (2)0.086 (2)0.0055 (15)0.0126 (16)0.0198 (17)
C30.0533 (17)0.081 (2)0.0322 (12)0.0000 (15)0.0055 (11)0.0015 (12)
C40.0414 (14)0.0433 (14)0.0314 (11)0.0011 (11)0.0038 (10)0.0031 (10)
C50.0415 (14)0.0453 (14)0.0299 (11)0.0020 (11)0.0034 (10)0.0031 (10)
C60.0397 (14)0.0484 (15)0.0350 (12)0.0023 (11)0.0024 (10)0.0026 (10)
C70.0378 (13)0.0383 (13)0.0367 (12)0.0038 (10)0.0010 (9)0.0033 (10)
C80.0379 (13)0.0399 (14)0.0369 (11)0.0030 (11)0.0006 (10)0.0007 (10)
C90.0444 (15)0.0466 (15)0.0493 (13)0.0000 (12)0.0038 (11)0.0031 (11)
C100.0383 (15)0.0494 (16)0.0663 (17)0.0004 (12)0.0044 (12)0.0011 (13)
C110.0464 (15)0.0478 (15)0.0487 (14)0.0079 (12)0.0145 (11)0.0041 (12)
C120.0480 (15)0.0473 (15)0.0411 (13)0.0043 (12)0.0045 (11)0.0035 (11)
N10.0348 (11)0.0605 (13)0.0302 (9)0.0051 (10)0.0035 (8)0.0000 (9)
N20.0353 (11)0.0491 (12)0.0385 (10)0.0011 (9)0.0028 (8)0.0032 (9)
O10.0529 (12)0.0929 (15)0.0428 (10)0.0065 (11)0.0091 (8)0.0075 (9)
O20.0502 (11)0.0906 (14)0.0323 (9)0.0104 (10)0.0073 (8)0.0032 (9)
O30.0406 (10)0.0673 (12)0.0368 (8)0.0025 (8)0.0027 (7)0.0072 (8)
Cl10.0626 (5)0.0837 (6)0.0734 (5)0.0051 (4)0.0337 (4)0.0057 (4)
Br10.0531 (2)0.1004 (3)0.0810 (2)0.01171 (17)0.00947 (15)0.03418 (18)
Geometric parameters (Å, º) top
C1—C21.299 (4)C7—C121.396 (3)
C1—O11.367 (4)C7—C81.403 (3)
C1—H10.9300C8—O31.347 (3)
C2—C31.407 (4)C8—C91.388 (3)
C2—H20.9300C9—C101.380 (3)
C3—C41.332 (3)C9—Br11.885 (2)
C3—H30.9300C10—C111.366 (4)
C4—O11.348 (3)C10—H100.9300
C4—C51.456 (3)C11—C121.373 (4)
C5—O21.224 (3)C11—Cl11.743 (2)
C5—N11.352 (3)C12—H120.9300
C6—N21.275 (3)N1—N21.364 (3)
C6—C71.459 (3)N1—H1A0.8600
C6—H60.9300O3—H3A0.8200
C2—C1—O1111.1 (3)O3—C8—C9119.1 (2)
C2—C1—H1124.5O3—C8—C7122.4 (2)
O1—C1—H1124.5C9—C8—C7118.5 (2)
C1—C2—C3106.7 (3)C10—C9—C8121.6 (2)
C1—C2—H2126.6C10—C9—Br1119.4 (2)
C3—C2—H2126.6C8—C9—Br1119.00 (18)
C4—C3—C2106.6 (2)C11—C10—C9119.1 (2)
C4—C3—H3126.7C11—C10—H10120.5
C2—C3—H3126.7C9—C10—H10120.5
C3—C4—O1110.1 (2)C10—C11—C12121.3 (2)
C3—C4—C5129.7 (2)C10—C11—Cl1119.3 (2)
O1—C4—C5120.2 (2)C12—C11—Cl1119.3 (2)
O2—C5—N1122.5 (2)C11—C12—C7120.0 (2)
O2—C5—C4122.0 (2)C11—C12—H12120.0
N1—C5—C4115.4 (2)C7—C12—H12120.0
N2—C6—C7119.3 (2)C5—N1—N2117.55 (19)
N2—C6—H6120.4C5—N1—H1A121.2
C7—C6—H6120.4N2—N1—H1A121.2
C12—C7—C8119.4 (2)C6—N2—N1119.2 (2)
C12—C7—C6119.4 (2)C4—O1—C1105.5 (2)
C8—C7—C6121.2 (2)C8—O3—H3A109.5
O1—C1—C2—C30.8 (4)C7—C8—C9—Br1179.23 (17)
C1—C2—C3—C40.9 (4)C8—C9—C10—C110.7 (4)
C2—C3—C4—O10.7 (3)Br1—C9—C10—C11179.00 (19)
C2—C3—C4—C5178.9 (3)C9—C10—C11—C121.5 (4)
C3—C4—C5—O20.6 (4)C9—C10—C11—Cl1179.38 (19)
O1—C4—C5—O2178.7 (2)C10—C11—C12—C70.4 (4)
C3—C4—C5—N1179.5 (3)Cl1—C11—C12—C7179.61 (18)
O1—C4—C5—N11.4 (3)C8—C7—C12—C111.4 (4)
N2—C6—C7—C12175.3 (2)C6—C7—C12—C11178.7 (2)
N2—C6—C7—C84.6 (3)O2—C5—N1—N20.1 (4)
C12—C7—C8—O3177.6 (2)C4—C5—N1—N2179.77 (19)
C6—C7—C8—O32.3 (3)C7—C6—N2—N1179.1 (2)
C12—C7—C8—C92.1 (3)C5—N1—N2—C6167.9 (2)
C6—C7—C8—C9178.0 (2)C3—C4—O1—C10.2 (3)
O3—C8—C9—C10178.6 (2)C5—C4—O1—C1178.6 (2)
C7—C8—C9—C101.1 (4)C2—C1—O1—C40.4 (4)
O3—C8—C9—Br11.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.142.953 (2)157
C3—H3···O1ii0.932.443.324 (3)159
C6—H6···O2i0.932.503.263 (3)139
O3—H3A···N20.821.842.564 (3)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.142.953 (2)156.6
C3—H3···O1ii0.932.443.324 (3)159.3
C6—H6···O2i0.932.503.263 (3)139.4
O3—H3A···N20.821.842.564 (3)146.3
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationBakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129–136.  Web of Science CrossRef CAS Google Scholar
First citationBikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrabhu, M., Parthipan, K., Ramu, A., Chakkaravarthi, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrasanna, M. K., Sithambaresan, M., Pradeepkumar, K. & Kurup, M. R. P. (2013). Acta Cryst. E69, o881.  CSD CrossRef IUCr Journals Google Scholar
First citationRollas, S. & Kucukguzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds