organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Formyl­phen­yl)-4-methyl-N-[(4-methyl­phen­yl)sulfon­yl]benzene­sulfon­amide

aDepartment of Chemistry, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 443-760, Republic of Korea
*Correspondence e-mail: sgkim123@kyonggi.ac.kr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 April 2014; accepted 9 May 2014; online 17 May 2014)

In the title compound, C21H19NO5S2, the dihedral angles between the formyl­phenyl ring and the two methyl­phenyl rings are 29.3 (3) and 28.9 (3)°, respectively; the dihedral angle between the methyl­phenyl rings is 48.4 (2)°. The C—N—S—C torsion angles are −74.1 (2) and −105.4 (2)°. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

Several sulfonamide derivatives have been used as chemotherapeutic agents for their anti­bacterial, anti­fungal, anti­tumor and hypoglycemic effects, see: Chohan et al. (2010[Chohan, Z. H., Moulay, H., Youssoufi, M. H., Jarrahpour, A. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 1189-1199.]); El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Seri et al. (2000[Seri, K., Sanai, K., Kurashima, K., Imamura, Y. & Akita, H. (2000). Eur. J. Pharmacol. 389, 253-256.]). Some sulfonamide derivatives have been shown to possess carbonic anhydrases inhibitory properties, see: Suparan et al. (2000[Suparan, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2000). Bioorg. Med. Chem. 9, 703-714.]). Disulfonamides containing two sulfone groups connected to the nitro­gen atom are used for their anti­tumor activity and carbonic anhydrases inhibitory properties, see: Boriack-Sjodin et al. (1998[Boriack-Sjodin, P. A., Zeitlin, S., Chen, H. H., Crenshaw, L., Gross, S., Dantanarayana, A., Delgado, P., May, J. A., Dean, T. & Christianson, D. W. (1998). Protein Sci. 7, 2483-2489.]). For related structures, see: Elgemeie et al. (2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]); Mughal et al. (2012[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012). Acta Cryst. E68, o3013.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19NO5S2

  • Mr = 429.49

  • Monoclinic, P 21 /n

  • a = 15.5505 (6) Å

  • b = 7.8816 (3) Å

  • c = 16.6876 (7) Å

  • β = 103.942 (1)°

  • V = 1985.03 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 199 K

  • 0.22 × 0.14 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 14091 measured reflections

  • 4943 independent reflections

  • 3099 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.173

  • S = 1.12

  • 4943 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.62 3.261 (4) 125
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Sulfonamides, which are already known as sulfa drugs, are an important class of compounds in the field of chemistry, biology and pharmacology. Several sulfonamide derivatives are used as chemotherapeutic agents for their anti­bacterial, anti­fungal, anti­tumor and hypoglycemic (Chohan et al., 2010; El-Sayed et al., 2011; Seri et al., 2000). In addition, some sulfonamide derivatives have been shown to inhibit on carbonic anhydrases (Suparan et al., 2000). Disulfonamides containing two sulfone groups connected to the nitro­gen atom are used for their anti­tumor activity and carbonic anhydrases inhibitory properties (Boriack-Sjodin et al., 1998). In view of these potential applications and in continuation of our work, the structure of the title compound has been carried out and the results are presented here.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry around atoms S1 and N1 are distorted tetra­hedral and planar trigonal, respectively. The average S—O bond length is 1.421 (2) Å, while the S—N and S—C bond lengths are 1.694 (3) and 1.746 (3), respectively. The dihedral angles between the formyl­phenyl ring (C15–20) and the C1–C6 and C8–C13 methyl­phenyl rings are 29.3 (3) and 28.9 (3)o; the dihedral angle between the methyl­phenyl rings is 48.4 (2)o. The sulfonamide torsion angles are -74.1 (2)° for C15—N1—S1—C1 and -105.4 (2)° for C15—N1—S2—C8. In the crystal, Fig 2, weak C—H···O hydrogen bonds link the molecules, forming a three-dimensional network.

Synthesis and crystallization top

A solution of 4 M Na2CO3 in water (35 mL) was added to a solution of 2-amino­benzyl alcohol (5.0 mmol) and p-toluene­sulfonyl chloride (12.0 mmol) in THF (10 mL). After stirring at room temperature for 24 h, the reaction mixture was poured into cold water and extracted with EtOAc. The resultant organic layer was washed with brine and dried over MgSO4. The resulting residue was purified by silica gel chromatography to afford 2-(ditoluensulfonyl­amino)­benzyl alcohol. Next, to solution of 2-(ditoluensulfonyl­amino)­benzyl alcohol in CH2Cl2 (10 mL) was added excess MnO2 (20 mmol). After stirring for at room temperature for 36 h, the reaction mixture was filtered under celite pad and purified by silica gel chromatography to afford the title compounds. Crystals suitable for X-ray analysis were obtained by recryatallization from an n-hexane/CH2Cl2 solution.

Refinement top

All H atoms were positioned geometrically, (C—H = 0.95–0.96 Å) and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for all other H atoms.

Related literature top

Several sulfonamide derivatives have been used as chemotherapeutic agents for their antibacterial, antifungal, antitumor and hypoglycemic effects, see: Chohan et al. (2010); El-Sayed et al. (2011); Seri et al. (2000). Some sulfonamide derivatives have been shown to inhibit on carbonic anhydrases (CA), see: Suparan et al. (2000). Disulfonamides containing two sulfone groups connected to the nitrogen atom are used for their antitumor activity and carbonic anhydrases inhibitory properties, see: Boriack-Sjodin et al. (1998). For related structures, see: Elgemeie et al. (2013); Mughal et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAIN (Bruker, 2007)T; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound. Hydrogen atoms have been omitted for clarity.
N-(2-Formylphenyl)-4-methyl-N-[(4-methylphenyl)sulfonyl]benzenesulfonamide top
Crystal data top
C21H19NO5S2F(000) = 896
Mr = 429.49Dx = 1.437 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5757 reflections
a = 15.5505 (6) Åθ = 2.5–28.3°
b = 7.8816 (3) ŵ = 0.30 mm1
c = 16.6876 (7) ÅT = 199 K
β = 103.942 (1)°Block, colorless
V = 1985.03 (14) Å30.22 × 0.14 × 0.05 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3099 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 28.3°, θmin = 1.6°
phi and ω scansh = 1920
14091 measured reflectionsk = 106
4943 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0595P)2 + 2.1799P]
where P = (Fo2 + 2Fc2)/3
4943 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C21H19NO5S2V = 1985.03 (14) Å3
Mr = 429.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.5505 (6) ŵ = 0.30 mm1
b = 7.8816 (3) ÅT = 199 K
c = 16.6876 (7) Å0.22 × 0.14 × 0.05 mm
β = 103.942 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3099 reflections with I > 2σ(I)
14091 measured reflectionsRint = 0.045
4943 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.12Δρmax = 0.42 e Å3
4943 reflectionsΔρmin = 0.64 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.04365 (17)0.3510 (3)0.23535 (16)0.0354 (6)
S10.02134 (5)0.27690 (10)0.14551 (5)0.0346 (2)
O10.07076 (14)0.1425 (3)0.16970 (14)0.0414 (6)
O20.06558 (15)0.4204 (3)0.10297 (14)0.0427 (6)
S20.07742 (5)0.55504 (11)0.25037 (5)0.0365 (2)
O30.15148 (15)0.5490 (3)0.31970 (15)0.0478 (6)
O40.08692 (16)0.6204 (3)0.17395 (15)0.0483 (6)
C10.05293 (19)0.1916 (4)0.09291 (18)0.0315 (6)
C20.0772 (2)0.0219 (4)0.1048 (2)0.0404 (8)
H20.05020.04890.13780.049*
C30.1409 (2)0.0426 (5)0.0681 (2)0.0440 (8)
H30.15830.15800.07670.053*
C40.1797 (2)0.0591 (5)0.0188 (2)0.0405 (8)
C50.1524 (2)0.2261 (5)0.00523 (19)0.0398 (8)
H50.17730.29520.03000.048*
C60.0891 (2)0.2942 (4)0.04216 (18)0.0374 (7)
H60.07100.40910.03280.045*
C70.2519 (2)0.0112 (6)0.0184 (2)0.0555 (10)
H7A0.28850.09080.02050.083*
H7B0.28890.08200.02970.083*
H7C0.22500.07050.07000.083*
C80.0103 (2)0.6568 (4)0.27908 (19)0.0354 (7)
C90.0739 (2)0.7409 (4)0.2199 (2)0.0431 (8)
H90.06930.74570.16420.052*
C100.1442 (2)0.8180 (5)0.2433 (2)0.0470 (9)
H100.18820.87490.20280.056*
C110.1520 (2)0.8138 (4)0.3245 (2)0.0436 (8)
C120.0872 (2)0.7298 (5)0.3823 (2)0.0484 (9)
H120.09180.72470.43800.058*
C130.0163 (2)0.6537 (5)0.3610 (2)0.0423 (8)
H130.02830.59940.40190.051*
C140.2289 (3)0.8997 (6)0.3480 (3)0.0650 (12)
H14A0.28020.82360.33640.098*
H14B0.24381.00430.31580.098*
H14C0.21280.92730.40700.098*
C150.0831 (2)0.2258 (4)0.29713 (19)0.0337 (7)
C160.0375 (2)0.1710 (4)0.35489 (19)0.0369 (7)
C170.0761 (2)0.0474 (5)0.4111 (2)0.0442 (8)
H170.04630.00970.45130.053*
C180.1572 (2)0.0216 (5)0.4098 (2)0.0494 (9)
H180.18210.10840.44780.059*
C190.2022 (2)0.0359 (5)0.3529 (2)0.0493 (9)
H190.25860.01000.35260.059*
C200.1653 (2)0.1601 (5)0.2965 (2)0.0407 (8)
H200.19620.19990.25760.049*
C210.0503 (2)0.2395 (4)0.3584 (2)0.0414 (8)
H210.08130.30760.31380.050*
O50.08438 (19)0.2136 (4)0.41477 (18)0.0640 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0402 (14)0.0320 (14)0.0352 (14)0.0043 (12)0.0114 (11)0.0042 (11)
S10.0333 (4)0.0341 (4)0.0357 (4)0.0005 (3)0.0072 (3)0.0069 (3)
O10.0383 (12)0.0377 (13)0.0486 (13)0.0074 (10)0.0113 (10)0.0068 (11)
O20.0415 (12)0.0433 (14)0.0422 (13)0.0095 (11)0.0075 (10)0.0120 (11)
S20.0344 (4)0.0342 (4)0.0414 (5)0.0026 (3)0.0103 (3)0.0029 (3)
O30.0388 (13)0.0427 (14)0.0571 (15)0.0027 (11)0.0020 (11)0.0049 (12)
O40.0556 (15)0.0426 (14)0.0538 (15)0.0018 (12)0.0270 (12)0.0103 (12)
C10.0266 (14)0.0334 (16)0.0325 (15)0.0025 (13)0.0034 (12)0.0049 (13)
C20.0460 (19)0.0364 (18)0.0383 (17)0.0005 (15)0.0089 (15)0.0067 (14)
C30.051 (2)0.0367 (19)0.0428 (19)0.0053 (16)0.0086 (16)0.0017 (15)
C40.0357 (16)0.051 (2)0.0325 (16)0.0022 (16)0.0042 (13)0.0082 (15)
C50.0375 (17)0.050 (2)0.0300 (16)0.0093 (16)0.0050 (13)0.0003 (15)
C60.0398 (17)0.0386 (18)0.0321 (16)0.0044 (15)0.0054 (13)0.0042 (14)
C70.048 (2)0.072 (3)0.049 (2)0.000 (2)0.0151 (17)0.013 (2)
C80.0385 (17)0.0307 (16)0.0381 (17)0.0076 (14)0.0113 (13)0.0012 (13)
C90.0480 (19)0.0396 (19)0.0425 (19)0.0022 (16)0.0121 (16)0.0070 (15)
C100.0388 (18)0.0388 (19)0.062 (2)0.0080 (16)0.0084 (17)0.0078 (17)
C110.0380 (18)0.0352 (18)0.061 (2)0.0084 (15)0.0192 (16)0.0015 (16)
C120.052 (2)0.050 (2)0.048 (2)0.0018 (18)0.0218 (17)0.0031 (17)
C130.0465 (19)0.0402 (19)0.0387 (18)0.0026 (16)0.0074 (15)0.0009 (15)
C140.051 (2)0.059 (3)0.094 (3)0.007 (2)0.034 (2)0.000 (2)
C150.0343 (15)0.0332 (17)0.0322 (15)0.0021 (13)0.0052 (12)0.0026 (13)
C160.0391 (17)0.0383 (18)0.0340 (16)0.0036 (14)0.0105 (13)0.0015 (14)
C170.053 (2)0.046 (2)0.0355 (17)0.0029 (17)0.0144 (16)0.0072 (15)
C180.053 (2)0.045 (2)0.046 (2)0.0087 (18)0.0053 (17)0.0113 (17)
C190.0405 (18)0.051 (2)0.055 (2)0.0133 (17)0.0096 (16)0.0113 (18)
C200.0330 (16)0.045 (2)0.0456 (19)0.0006 (15)0.0122 (14)0.0056 (15)
C210.0400 (17)0.0384 (19)0.049 (2)0.0024 (15)0.0170 (16)0.0027 (15)
O50.0688 (18)0.0678 (19)0.0707 (18)0.0055 (15)0.0466 (16)0.0109 (15)
Geometric parameters (Å, º) top
N1—C151.452 (4)C9—C101.387 (5)
N1—S21.691 (3)C9—H90.9500
N1—S11.697 (3)C10—C111.390 (5)
S1—O21.422 (2)C10—H100.9500
S1—O11.423 (2)C11—C121.384 (5)
S1—C11.745 (3)C11—C141.507 (5)
S2—O41.416 (2)C12—C131.375 (5)
S2—O31.423 (2)C12—H120.9500
S2—C81.746 (3)C13—H130.9500
C1—C61.385 (4)C14—H14A0.9800
C1—C21.391 (5)C14—H14B0.9800
C2—C31.380 (5)C14—H14C0.9800
C2—H20.9500C15—C201.381 (4)
C3—C41.387 (5)C15—C161.396 (4)
C3—H30.9500C16—C171.385 (5)
C4—C51.385 (5)C16—C211.483 (5)
C4—C71.512 (5)C17—C181.378 (5)
C5—C61.388 (5)C17—H170.9500
C5—H50.9500C18—C191.384 (5)
C6—H60.9500C18—H180.9500
C7—H7A0.9800C19—C201.382 (5)
C7—H7B0.9800C19—H190.9500
C7—H7C0.9800C20—H200.9500
C8—C91.386 (5)C21—O51.203 (4)
C8—C131.393 (4)C21—H210.9500
C15—N1—S2118.6 (2)C8—C9—C10119.0 (3)
C15—N1—S1116.9 (2)C8—C9—H9120.5
S2—N1—S1123.77 (16)C10—C9—H9120.5
O2—S1—O1120.28 (14)C9—C10—C11121.5 (3)
O2—S1—N1106.30 (14)C9—C10—H10119.2
O1—S1—N1104.66 (13)C11—C10—H10119.2
O2—S1—C1110.77 (14)C12—C11—C10118.2 (3)
O1—S1—C1108.91 (15)C12—C11—C14121.6 (4)
N1—S1—C1104.58 (13)C10—C11—C14120.2 (4)
O4—S2—O3120.32 (16)C13—C12—C11121.5 (3)
O4—S2—N1107.97 (15)C13—C12—H12119.3
O3—S2—N1104.50 (14)C11—C12—H12119.3
O4—S2—C8109.75 (15)C12—C13—C8119.6 (3)
O3—S2—C8108.96 (15)C12—C13—H13120.2
N1—S2—C8104.02 (14)C8—C13—H13120.2
C6—C1—C2120.8 (3)C11—C14—H14A109.5
C6—C1—S1119.9 (3)C11—C14—H14B109.5
C2—C1—S1119.3 (2)H14A—C14—H14B109.5
C3—C2—C1119.4 (3)C11—C14—H14C109.5
C3—C2—H2120.3H14A—C14—H14C109.5
C1—C2—H2120.3H14B—C14—H14C109.5
C2—C3—C4120.7 (3)C20—C15—C16120.9 (3)
C2—C3—H3119.6C20—C15—N1118.9 (3)
C4—C3—H3119.6C16—C15—N1120.2 (3)
C5—C4—C3119.1 (3)C17—C16—C15118.4 (3)
C5—C4—C7120.7 (3)C17—C16—C21118.9 (3)
C3—C4—C7120.2 (3)C15—C16—C21122.7 (3)
C4—C5—C6121.2 (3)C18—C17—C16121.0 (3)
C4—C5—H5119.4C18—C17—H17119.5
C6—C5—H5119.4C16—C17—H17119.5
C1—C6—C5118.8 (3)C17—C18—C19119.9 (3)
C1—C6—H6120.6C17—C18—H18120.1
C5—C6—H6120.6C19—C18—H18120.1
C4—C7—H7A109.5C20—C19—C18120.2 (3)
C4—C7—H7B109.5C20—C19—H19119.9
H7A—C7—H7B109.5C18—C19—H19119.9
C4—C7—H7C109.5C15—C20—C19119.6 (3)
H7A—C7—H7C109.5C15—C20—H20120.2
H7B—C7—H7C109.5C19—C20—H20120.2
C9—C8—C13120.1 (3)O5—C21—C16123.5 (3)
C9—C8—S2119.7 (2)O5—C21—H21118.2
C13—C8—S2120.2 (3)C16—C21—H21118.2
C15—N1—S1—O2168.6 (2)O4—S2—C8—C13160.5 (3)
S2—N1—S1—O221.4 (2)O3—S2—C8—C1326.8 (3)
C15—N1—S1—O140.3 (2)N1—S2—C8—C1384.2 (3)
S2—N1—S1—O1149.72 (18)C13—C8—C9—C101.5 (5)
C15—N1—S1—C174.1 (2)S2—C8—C9—C10178.6 (3)
S2—N1—S1—C195.8 (2)C8—C9—C10—C110.5 (5)
C15—N1—S2—O4138.1 (2)C9—C10—C11—C120.1 (5)
S1—N1—S2—O431.7 (2)C9—C10—C11—C14179.6 (4)
C15—N1—S2—O38.9 (3)C10—C11—C12—C130.7 (5)
S1—N1—S2—O3160.91 (18)C14—C11—C12—C13179.0 (4)
C15—N1—S2—C8105.4 (2)C11—C12—C13—C81.7 (6)
S1—N1—S2—C884.9 (2)C9—C8—C13—C122.1 (5)
O2—S1—C1—C626.1 (3)S2—C8—C13—C12178.0 (3)
O1—S1—C1—C6160.6 (2)S2—N1—C15—C2080.4 (3)
N1—S1—C1—C688.0 (3)S1—N1—C15—C2090.1 (3)
O2—S1—C1—C2155.9 (2)S2—N1—C15—C16100.8 (3)
O1—S1—C1—C221.5 (3)S1—N1—C15—C1688.7 (3)
N1—S1—C1—C289.9 (3)C20—C15—C16—C170.7 (5)
C6—C1—C2—C32.7 (5)N1—C15—C16—C17178.0 (3)
S1—C1—C2—C3175.2 (3)C20—C15—C16—C21179.2 (3)
C1—C2—C3—C41.0 (5)N1—C15—C16—C212.0 (5)
C2—C3—C4—C51.4 (5)C15—C16—C17—C180.8 (5)
C2—C3—C4—C7177.6 (3)C21—C16—C17—C18179.3 (3)
C3—C4—C5—C62.1 (5)C16—C17—C18—C191.7 (6)
C7—C4—C5—C6177.0 (3)C17—C18—C19—C201.2 (6)
C2—C1—C6—C52.0 (5)C16—C15—C20—C191.2 (5)
S1—C1—C6—C5175.9 (2)N1—C15—C20—C19177.5 (3)
C4—C5—C6—C10.4 (5)C18—C19—C20—C150.3 (6)
O4—S2—C8—C919.4 (3)C17—C16—C21—O511.7 (5)
O3—S2—C8—C9153.1 (3)C15—C16—C21—O5168.3 (4)
N1—S2—C8—C995.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.623.261 (4)125
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.623.261 (4)125.3
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by Kyonggi University Research Grant 2013.

References

First citationBoriack-Sjodin, P. A., Zeitlin, S., Chen, H. H., Crenshaw, L., Gross, S., Dantanarayana, A., Delgado, P., May, J. A., Dean, T. & Christianson, D. W. (1998). Protein Sci. 7, 2483–2489.  Web of Science CAS PubMed Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Moulay, H., Youssoufi, M. H., Jarrahpour, A. & Hadda, T. B. (2010). Eur. J. Med. Chem. 45, 1189–1199.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90–92.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012). Acta Cryst. E68, o3013.  CSD CrossRef IUCr Journals Google Scholar
First citationSeri, K., Sanai, K., Kurashima, K., Imamura, Y. & Akita, H. (2000). Eur. J. Pharmacol. 389, 253–256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuparan, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2000). Bioorg. Med. Chem. 9, 703–714.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds