metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido­(N,N-di­ethyl-4-{[(quinolin-2-yl)methyl­­idene]amino-κ2N,N′}aniline)mercury(II)

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and bDepartment of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 800 013, India
*Correspondence e-mail: sahid@iitp.ac.in

(Received 6 April 2014; accepted 28 April 2014; online 3 May 2014)

In the mononuclear title complex, [HgCl2(C20H21N3)], synthesized from the quinoline-derived Schiff base N1,N1-diethyl-N4-(quinolin-2-yl­methyl­idene)benzene-1,4-di­amine (QMBD), the coordination geometry around the Hg2+ atom is distorted tetra­hedral, comprising two Cl atoms [Hg—Cl = 2.3654 (19) and 2.4394 (18) Å] and two N-atom donors from the QMBD ligand, viz. one imine and quinoline [Hg—N = 2.334 (5) and 2.340 (5) Å, respectively]. In the crystal, weak C—H⋯Cl hydrogen bonds and weak ππ aromatic ring stacking inter­actions [minimum ring-centroid separation = 3.680 (4) Å] give an overall three-dimensional network.

Related literature

For applications of quinolyl imine and related structures, see: Mandal et al. (2012[Mandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980-2983.]); Motswainyana et al. (2013[Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197-202.]); Das et al. (2013[Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604-6614.]); Song et al. (2011[Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029-3035.]); Jursic et al. (2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]); Marjani et al. (2009[Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633-1637.]); Faizi & Sen (2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C20H21N3)]

  • Mr = 574.89

  • Monoclinic, P 21 /n

  • a = 8.8522 (19) Å

  • b = 9.474 (2) Å

  • c = 23.512 (5) Å

  • β = 97.446 (4)°

  • V = 1955.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.15 mm−1

  • T = 100 K

  • 0.26 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.226, Tmax = 0.417

  • 9875 measured reflections

  • 3438 independent reflections

  • 2979 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.089

  • S = 1.17

  • 3438 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.91 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl2i 0.93 2.82 3.703 (7) 159
C15—H15⋯Cl1ii 0.93 2.82 3.715 (7) 162
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: DIAMOND.

Supporting information


Comment top

Mercury is one of the most prevalent toxic metals in the environment and gains access to the body orally or dermally, causing cell dysfunction that consequently leads to health problems (Mandal et al., 2012). Quinolyl derivatives of Schiff bases are important building blocks for many important compounds widely used in biological applications such as antioxidative, anticancer, fluorescent probe agents in industry, in coordination chemistry and in catalysis (Motswainyana et al., 2013; Das et al., 2013; Song et al., 2011; Jursic et al., 2002). The synthesis of a complex of mercury(II) using the quinoline aldehyde derivative of the Schiff base N1,N1-diethyl-N4- (quinolin-2-ylmethylene-1,4-diamine (QMBD) has not previously been reported. The title HgII complex with QMBD, [Hg(C20H21N3)Cl2] has now been synthesized and the structure is reported herein.

In the title mononuclear complex (Figs. 1, 2) the HgCl2N2 coordination geometry is distorted tetrahedral, comprising two Cl-atoms [Hg1—Cl1 and Hg1—Cl2 = 2.3654 (19) and 2.4394 (18) Å respectively] and two N-atom donors from the QMBD ligand, one imine [Hg1–N2 = 2.334 (5) Å] and the other quinoline [Hg1—N1 = 2.340 (5) Å]. The observed Hg—Cl and Hg—N bond lengths and bond angles are considered normal for this type of HgII complex, e.g. (Marjani et al., 2009; Faizi & Sen, 2014). In the crystal, weak C12—H···Cl2i [3.703 (7) Å] and C15—H···Cl1ii [3.715 (7) Å hydrogen bonds (Table 1) and ππ aromatic ring stacking interactions [minimum ring centroid separation between the quinoline ring moiety defined by atoms N1–C9 = 3.680 (4) Å] give an overall three-dimensional framework structure (Figs. 3, 4).

Related literature top

For applications of quinolyl imine and related structures, see: Mandal et al. (2012); Motswainyana et al. (2013); Das et al. (2013); Song et al. (2011); Jursic et al. (2002); Marjani et al. (2009); Faizi & Sen (2014).

Experimental top

The iminoquinolyl compound N1,N1-diethyl-N4-(quinolin-2-ylmethylidene)benzene-1,4-diamine (QMBD) was prepared by reacting 2-quinolinecarboxaldehyde with a substituted aniline and was obtained in very good yields. This compound was characterized by FT—IR, NMR and ESI-Mass spectroscopy. A mixture of QMBD (0.10 g, 0.33 mmol), mercury(II) chloride (0.09 g, 0.33 mmol) and ethanol (5 ml) were stirred vigorously for 1 h, after which the precipitate was filtered off and redissolved in dimethylformamide. Crystals of the title complex suitable for X-ray analysis was obtained within 3 days by slow evaporation of the DMF solvent.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.90–0.93 Å (aromatic), 0.97 Å (methylene) or 0.96 Å (methyl) and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) (methyl). A large residual electron density peak (1.78 eÅ-3) located 1.47 from C19 of one of the ethyl goups suggested minor methyl group orientational disorder but this was not modelled.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenburg & Putz, 2006).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the title complex with non-H atoms drawn as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A further view of the title complex.
[Figure 3] Fig. 3. The one-dimensional weak interactive chain structure in the title complex extending along the approximate c-cell direction, with associations shown as dashed lines.
[Figure 4] Fig. 4. The structure viewed along the a-cell direction.
Dichlorido(N,N-diethyl-4-{[(quinolin-2-yl)methylidene]amino-κ2N,N'}aniline)mercury(II) top
Crystal data top
[HgCl2(C20H21N3)]F(000) = 1104
Mr = 574.89Dx = 1.953 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 999 reflections
a = 8.8522 (19) Åθ = 2.1–28.2°
b = 9.474 (2) ŵ = 8.15 mm1
c = 23.512 (5) ÅT = 100 K
β = 97.446 (4)°Block, yellow
V = 1955.2 (7) Å30.26 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3438 independent reflections
Radiation source: fine-focus sealed tube2979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 107
Tmin = 0.226, Tmax = 0.417k = 1111
9875 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0308P)2 + 10.3789P]
where P = (Fo2 + 2Fc2)/3
3438 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 1.91 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[HgCl2(C20H21N3)]V = 1955.2 (7) Å3
Mr = 574.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8522 (19) ŵ = 8.15 mm1
b = 9.474 (2) ÅT = 100 K
c = 23.512 (5) Å0.26 × 0.18 × 0.13 mm
β = 97.446 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3438 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2979 reflections with I > 2σ(I)
Tmin = 0.226, Tmax = 0.417Rint = 0.034
9875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0308P)2 + 10.3789P]
where P = (Fo2 + 2Fc2)/3
3438 reflectionsΔρmax = 1.91 e Å3
233 parametersΔρmin = 1.07 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8207 (7)0.4421 (7)1.0240 (3)0.0184 (10)
C20.6971 (8)0.5234 (7)0.9970 (3)0.0225 (15)
H20.65640.50350.95940.027*
C30.6374 (8)0.6313 (7)1.0260 (3)0.0253 (16)
H30.55750.68531.00780.030*
C40.6962 (8)0.6602 (7)1.0826 (3)0.0221 (15)
H40.65400.73261.10210.027*
C50.8150 (9)0.5836 (7)1.1100 (3)0.0268 (16)
H50.85210.60411.14790.032*
C60.8819 (8)0.4740 (7)1.0813 (3)0.0218 (15)
C71.0050 (8)0.3942 (6)1.1069 (3)0.0211 (14)
H71.04510.41071.14480.025*
C81.0667 (7)0.2912 (7)1.0759 (3)0.0198 (14)
H81.15090.23981.09210.024*
C90.9991 (8)0.2638 (6)1.0179 (3)0.0171 (14)
C101.0694 (7)0.1553 (7)0.9856 (3)0.0184 (10)
C111.0772 (7)0.0274 (6)0.9004 (3)0.0169 (13)
C121.2176 (8)0.0386 (6)0.9159 (3)0.0198 (14)
H121.27240.01790.95140.024*
C131.2770 (8)0.1323 (7)0.8809 (3)0.0230 (15)
H131.37100.17320.89330.028*
C141.2006 (8)0.1695 (7)0.8265 (3)0.0201 (14)
C151.0599 (7)0.1020 (6)0.8098 (3)0.0167 (13)
H151.00550.12270.77420.020*
C161.0010 (8)0.0056 (7)0.8452 (3)0.0190 (14)
H160.90910.03880.83250.023*
C171.4009 (8)0.3421 (7)0.8108 (3)0.0236 (15)
H17A1.39810.43060.78990.028*
H17B1.40310.36450.85120.028*
C181.5448 (9)0.2657 (7)0.8027 (4)0.0333 (19)
H18A1.63100.32330.81650.050*
H18B1.54980.17860.82370.050*
H18C1.54570.24620.76270.050*
C191.1893 (9)0.2913 (7)0.7336 (3)0.0261 (16)
H19A1.26760.32010.71070.031*
H19B1.14400.20490.71710.031*
C201.0669 (8)0.4057 (7)0.7300 (3)0.0262 (16)
H20A1.02500.41970.69070.039*
H20B0.98740.37700.75170.039*
H20C1.11120.49230.74540.039*
N10.8788 (6)0.3370 (5)0.9937 (2)0.0136 (11)
N21.0102 (6)0.1260 (5)0.9339 (2)0.0158 (11)
N31.2599 (6)0.2626 (5)0.7915 (2)0.0193 (12)
Cl10.7217 (2)0.37547 (19)0.82157 (8)0.0343 (5)
Cl20.61076 (19)0.05105 (18)0.93193 (7)0.0275 (4)
Hg10.77787 (3)0.23825 (3)0.905699 (10)0.01999 (11)
H10C1.155 (5)0.115 (8)1.004 (3)0.04 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.013 (2)0.019 (2)0.026 (3)0.0041 (18)0.014 (2)0.0005 (19)
C20.020 (4)0.024 (4)0.022 (4)0.006 (3)0.002 (3)0.001 (3)
C30.022 (4)0.016 (3)0.039 (4)0.007 (3)0.008 (3)0.007 (3)
C40.019 (4)0.024 (4)0.025 (4)0.006 (3)0.010 (3)0.002 (3)
C50.034 (4)0.025 (4)0.020 (4)0.011 (3)0.000 (3)0.004 (3)
C60.028 (4)0.013 (3)0.025 (4)0.006 (3)0.003 (3)0.000 (3)
C70.021 (4)0.018 (3)0.024 (4)0.011 (3)0.005 (3)0.001 (3)
C80.017 (3)0.028 (4)0.012 (3)0.003 (3)0.006 (3)0.002 (3)
C90.019 (4)0.019 (3)0.013 (3)0.010 (3)0.001 (3)0.001 (2)
C100.013 (2)0.019 (2)0.026 (3)0.0041 (18)0.014 (2)0.0005 (19)
C110.021 (4)0.007 (3)0.021 (3)0.001 (3)0.002 (3)0.001 (2)
C120.024 (4)0.013 (3)0.022 (3)0.007 (3)0.001 (3)0.000 (3)
C130.018 (4)0.014 (3)0.036 (4)0.003 (3)0.002 (3)0.004 (3)
C140.021 (4)0.022 (4)0.017 (3)0.005 (3)0.001 (3)0.001 (3)
C150.019 (3)0.013 (3)0.016 (3)0.003 (3)0.005 (3)0.002 (2)
C160.020 (3)0.014 (3)0.022 (4)0.005 (3)0.001 (3)0.005 (3)
C170.022 (4)0.015 (3)0.033 (4)0.004 (3)0.003 (3)0.003 (3)
C180.022 (4)0.024 (4)0.054 (5)0.006 (3)0.006 (4)0.008 (3)
C190.038 (4)0.015 (3)0.027 (4)0.003 (3)0.013 (3)0.001 (3)
C200.031 (4)0.028 (4)0.016 (3)0.004 (3)0.008 (3)0.004 (3)
N10.014 (3)0.013 (3)0.014 (3)0.008 (2)0.002 (2)0.001 (2)
N20.013 (3)0.016 (3)0.018 (3)0.002 (2)0.002 (2)0.002 (2)
N30.018 (3)0.017 (3)0.025 (3)0.002 (2)0.010 (2)0.000 (2)
Cl10.0427 (12)0.0243 (9)0.0308 (10)0.0061 (8)0.0144 (8)0.0075 (7)
Cl20.0202 (9)0.0320 (9)0.0285 (9)0.0071 (7)0.0035 (7)0.0050 (7)
Hg10.01749 (17)0.02169 (16)0.02002 (16)0.00000 (10)0.00049 (11)0.00019 (10)
Geometric parameters (Å, º) top
Hg1—Cl12.3654 (19)C14—C151.410 (9)
Hg1—Cl22.4394 (18)C15—C161.383 (9)
Hg1—N12.340 (5)C17—C181.499 (10)
Hg1—N22.334 (5)C19—C201.527 (10)
N1—C11.363 (8)C2—H20.9300
N1—C91.335 (8)C3—H30.9300
N2—C101.290 (8)C4—H40.9300
N2—C111.402 (8)C5—H50.9300
N3—C141.358 (8)C7—H70.9300
N3—C171.478 (9)C8—H80.9300
N3—C191.448 (9)C10—H10C0.91 (6)
C1—C21.419 (10)C12—H120.9300
C1—C61.418 (10)C13—H130.9300
C2—C31.372 (10)C15—H150.9300
C3—C41.392 (10)C16—H160.9300
C4—C51.368 (10)C17—H17A0.9700
C5—C61.410 (10)C17—H17B0.9700
C6—C71.397 (10)C18—H18A0.9600
C7—C81.373 (9)C18—H18B0.9600
C8—C91.440 (10)C18—H18C0.9600
C9—C101.464 (9)C19—H19A0.9700
C11—C121.397 (9)C19—H19B0.9700
C11—C161.418 (10)C20—H20A0.9600
C12—C131.362 (9)C20—H20B0.9600
C13—C141.412 (10)C20—H20C0.9600
Cl1—Hg1—Cl2122.85 (6)C3—C2—H2120.00
Cl1—Hg1—N1122.31 (12)C2—C3—H3120.00
Cl1—Hg1—N2124.75 (13)C4—C3—H3120.00
Cl2—Hg1—N1103.99 (13)C3—C4—H4119.00
Cl2—Hg1—N297.92 (13)C5—C4—H4120.00
N1—Hg1—N273.11 (17)C4—C5—H5120.00
Hg1—N1—C1128.9 (4)C6—C5—H5120.00
Hg1—N1—C9111.2 (4)C6—C7—H7120.00
C1—N1—C9119.4 (5)C8—C7—H7120.00
Hg1—N2—C10113.9 (4)C7—C8—H8121.00
Hg1—N2—C11124.4 (4)C9—C8—H8120.00
C10—N2—C11121.5 (5)N2—C10—H10C125 (4)
C14—N3—C17121.5 (5)C9—C10—H10C116 (5)
C14—N3—C19122.6 (6)C11—C12—H12119.00
C17—N3—C19115.9 (5)C13—C12—H12119.00
N1—C1—C2118.9 (6)C12—C13—H13119.00
N1—C1—C6121.9 (6)C14—C13—H13119.00
C2—C1—C6119.1 (6)C14—C15—H15119.00
C1—C2—C3120.4 (6)C16—C15—H15119.00
C2—C3—C4120.1 (6)C11—C16—H16119.00
C3—C4—C5121.0 (6)C15—C16—H16119.00
C4—C5—C6120.7 (6)N3—C17—H17A109.00
C1—C6—C5118.6 (6)N3—C17—H17B109.00
C1—C6—C7118.3 (6)C18—C17—H17A109.00
C5—C6—C7123.0 (6)C18—C17—H17B109.00
C6—C7—C8119.9 (6)H17A—C17—H17B108.00
C7—C8—C9119.1 (6)C17—C18—H18A110.00
N1—C9—C8121.4 (6)C17—C18—H18B109.00
N1—C9—C10120.9 (6)C17—C18—H18C109.00
C8—C9—C10117.7 (6)H18A—C18—H18B109.00
N2—C10—C9119.5 (6)H18A—C18—H18C109.00
N2—C11—C12125.4 (6)H18B—C18—H18C109.00
N2—C11—C16118.4 (6)N3—C19—H19A109.00
C12—C11—C16116.2 (6)N3—C19—H19B109.00
C11—C12—C13122.3 (6)C20—C19—H19A109.00
C12—C13—C14122.2 (7)C20—C19—H19B109.00
N3—C14—C13122.3 (6)H19A—C19—H19B108.00
N3—C14—C15121.5 (6)C19—C20—H20A110.00
C13—C14—C15116.2 (6)C19—C20—H20B109.00
C14—C15—C16121.4 (6)C19—C20—H20C109.00
C11—C16—C15121.7 (6)H20A—C20—H20B109.00
N3—C17—C18114.4 (6)H20A—C20—H20C109.00
N3—C19—C20113.7 (6)H20B—C20—H20C109.00
C1—C2—H2120.00
C6—C1—C2—C30 (1)N2—C11—C16—C15179.8 (6)
N1—C1—C2—C3179.0 (6)C12—C11—N2—C106 (1)
C2—C1—C6—C52 (1)C12—C11—N2—Hg1178.5 (5)
C2—C1—C6—C7179.1 (6)C16—C11—N2—C10176.3 (6)
N1—C1—C6—C5179.6 (6)C16—C11—N2—Hg11.1 (8)
N1—C1—C6—C70 (1)C11—C12—C13—C140 (1)
C2—C1—N1—C9177.2 (6)C12—C13—C14—C151 (1)
C2—C1—N1—Hg112.2 (9)C12—C13—C14—N3179.8 (6)
C6—C1—N1—C91.7 (9)C13—C14—C15—C160 (1)
C6—C1—N1—Hg1169.0 (5)N3—C14—C15—C16179.0 (6)
C1—C2—C3—C41 (1)C13—C14—N3—C177 (1)
C2—C3—C4—C51 (1)C13—C14—N3—C19174.1 (6)
C3—C4—C5—C61 (1)C15—C14—N3—C17174.9 (6)
C4—C5—C6—C12 (1)C15—C14—N3—C195 (1)
C4—C5—C6—C7178.9 (7)C14—C15—C16—C112 (1)
C1—C6—C7—C82 (1)C18—C17—N3—C1486.3 (8)
C5—C6—C7—C8178.5 (7)C18—C17—N3—C1994.3 (7)
C6—C7—C8—C92 (1)C20—C19—N3—C1486.4 (8)
C7—C8—C9—C10178.8 (6)C20—C19—N3—C1793.1 (7)
C7—C8—C9—N10 (1)C1—N1—Hg1—N2178.5 (6)
C8—C9—C10—N2178.7 (6)C1—N1—Hg1—Cl157.6 (5)
N1—C9—C10—N23 (1)C1—N1—Hg1—Cl287.3 (5)
C8—C9—N1—C11.5 (9)C9—N1—Hg1—N210.3 (4)
C8—C9—N1—Hg1170.7 (5)C9—N1—Hg1—Cl1131.1 (4)
C10—C9—N1—C1176.8 (6)C9—N1—Hg1—Cl283.9 (4)
C10—C9—N1—Hg111.1 (7)C10—N2—Hg1—N19.2 (4)
C9—C10—N2—C11177.2 (6)C10—N2—Hg1—Cl1127.2 (4)
C9—C10—N2—Hg17.1 (8)C10—N2—Hg1—Cl293.0 (4)
C16—C11—C12—C132 (1)C11—N2—Hg1—N1175.2 (5)
N2—C11—C12—C13179.2 (6)C11—N2—Hg1—Cl157.2 (5)
C12—C11—C16—C152 (1)C11—N2—Hg1—Cl282.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl2i0.932.823.703 (7)159
C15—H15···Cl1ii0.932.823.715 (7)162
Symmetry codes: (i) x+2, y, z+2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl2i0.932.823.703 (7)159
C15—H15···Cl1ii0.932.823.715 (7)162
Symmetry codes: (i) x+2, y, z+2; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Project of the Department of Science and Technology of India for research grant No. SR/FT/CS-093/2009.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173.  CSD CrossRef IUCr Journals Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationMandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980–2983.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMarjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds