organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1026-o1027

Crystal structure of (E)-2-cyano-3-(12-methyl-12H-benzo[b]pheno­thia­zin-11-yl)acrylic acid

aInternational Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University. 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and bDepartment of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
*Correspondence e-mail: mwata@i2cner.kyushu-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 July 2014; accepted 12 August 2014; online 20 August 2014)

In the title compound, C21H14N2O2S, a donor–acceptor type of benzo[b]pheno­thia­zine (bpz) derivative, the thia­zine ring adopts a boat conformation and the bond-angle sum at the N atom is 360.0°. The dihedral angle between the benzene ring and the naphthelene ring system fused to the thia­zine ring is 32.76 (5)°. In the crystal, carb­oxy­lic-acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) loops. Aromatic ππ stacking [shortest centroid–centroid separaton = 3.5242 (13)Å] consolidates the structure and very weak C—H⋯O and C—H⋯N inter­actions also occur.

1. Related literature

For related structures, see: Bell et al. (1968[Bell, J. D., Blount, J. F., Briscoe, O. V. & Freeman, H. C. (1968). Chem. Commun. pp. 1656-1657.]), van de Waal & Feil (1977[Waal, B. W. van de & Feil, D. (1977). Acta Cryst. B33, 314-315.]), Sun et al. (2004[Sun, D., Rosokha, S. V. & Kochi, J. K. (2004). J. Am. Chem. Soc. 126, 1388-1401.]); Harrison et al. (2007[Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3322.]). For applications of the title compound in dye-sensitized solar cells, see: Watanabe et al. (2014[Watanabe, M., Hagiwara, H., Iribe, A., Ogata, Y., Shiomi, K., Staykov, A., Ida, S., Tanaka, K. & Ishihara, T. (2014). J. Mater. Chem. A, 2, 12952-12961.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H14N2O2S

  • Mr = 358.40

  • Triclinic, [P \overline 1]

  • a = 6.7915 (17) Å

  • b = 9.196 (3) Å

  • c = 13.941 (3) Å

  • α = 95.831 (13)°

  • β = 101.214 (10)°

  • γ = 90.850 (15)°

  • V = 849.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 123 K

  • 0.40 × 0.40 × 0.15 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID CCD diffractometer

  • 14164 measured reflections

  • 3877 independent reflections

  • 3663 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.06

  • 3877 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H14⋯O1i 1.063 (18) 1.524 (18) 2.5856 (13) 176.8 (16)
C19—H10⋯N2ii 0.958 (16) 2.699 (16) 3.5991 (18) 156.8 (13)
C19—H11⋯O1iii 0.957 (17) 2.623 (17) 3.5518 (17) 163.7 (13)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari .]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]) and POV-RAY (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Williamstown, Victoria, Australia. http://www.povray.org/ .]).

Supporting information


Structural commentary top

Pheno­thia­zine, C12H9NS showed stable redox properties. This crystal struture have been reported for the neutral state (Bell et al., 1968, and van de Wall & Feli, 1977), and for the C12H9NS+ radical cation state (Sun et al., 2004), and pheno­thia­zine-picric acid (1/1) (Harrison et al., 2007).

As part of our studies for understanding the donor-acceptor inter­action type dye molecule for dye-sensitized solar cell (Watanabe et al., 2014), we now report the title compound. In the title compound, C21H14N2O2S, consists a 12-methyl-12H-benzo[b]pheno­thia­zine as a donor moiety, which has a (E)-2-cyano­but-2-enoic acid moiety as acceptor at C-11 position of 12-methyl-12H-benzo[b]pheno­thia­zine.

Dark-red crystals were obtained from 0.013 g of title compound in tetra­hydro­furan (10 ml) solution by slow diffusion.

The C21H14N2O2S of 12-methyl-12H-benzo[b]pheno­thia­zine moiety takes pyramidal structure, in which benzene and naphthalene had 147.2°, while the olefin bond at the cyano­acrylic moiety existed 123.8° from the naphthalene plane (Figure 1). The title compounds showed an inter­molecular hydrogen bonding at O1—H14 - O2' (1.520 Å) in the two molecule structure of carb­oxy­lic acid moiety (Figure 2). Furthermore, title compound have π-π stacking orientation along with a axis, where the two-naphthalene moieties oriented the parallel structures, which has a transannular distance at 3.273 Å (Figure 3).

Crystallization top

The chloro­form solution (10 ml) of title compound (0.013 g) was standing under ambient condition until the desired single crystal was produced.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All the hydrogen atoms of the compound are fixed geometrically (C—H = 0.95 - 1.01 Å) and allowed to ride on their parent atoms. Structure was refined with unique reflections and with a cut-off sigma = 2.00.

Related literature top

For related structures, see: Bell et al. (1968), van de Waal & Feil (1977), Sun et al. (2004); Harrison et al. (2007). For applications of the title compound in dye-sensitized solar cells, see: Watanabe et al. (2014).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and POV-RAY (Persistence of Vision Team, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of C21H14N2O2S with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding O1—H14—O2' (1.520 Å) in the two molecule structure of carboxylic acid moiety.
[Figure 3] Fig. 3. Packing diagram of C21H14N2O2S.
(E)-2-Cyano-3-(12-methyl-12H-benzo[b]phenothiazin-11-yl)acrylic acid top
Crystal data top
C21H14N2O2SF(000) = 372
Mr = 358.40Dx = 1.402 Mg m3
Triclinic, P1Melting point: 351 K
a = 6.7915 (17) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.196 (3) ÅCell parameters from 14164 reflections
c = 13.941 (3) Åθ = 3.0–27.5°
α = 95.831 (13)°µ = 0.21 mm1
β = 101.214 (10)°T = 123 K
γ = 90.850 (15)°Block, dark red
V = 849.1 (4) Å30.40 × 0.40 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
Rint = 0.020
ω/2θ scansθmax = 27.5°, θmin = 3.0°
14164 measured reflectionsh = 88
3877 independent reflectionsk = 1111
3663 reflections with I > 2σ(I)l = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.2744P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3877 reflectionsΔρmax = 0.29 e Å3
290 parametersΔρmin = 0.40 e Å3
Crystal data top
C21H14N2O2Sγ = 90.850 (15)°
Mr = 358.40V = 849.1 (4) Å3
Triclinic, P1Z = 2
a = 6.7915 (17) ÅMo Kα radiation
b = 9.196 (3) ŵ = 0.21 mm1
c = 13.941 (3) ÅT = 123 K
α = 95.831 (13)°0.40 × 0.40 × 0.15 mm
β = 101.214 (10)°
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
3663 reflections with I > 2σ(I)
14164 measured reflectionsRint = 0.020
3877 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
3877 reflectionsΔρmin = 0.40 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H20.953 (3)0.333 (2)0.4654 (13)0.041 (5)*
H30.968 (3)0.526 (2)0.3462 (15)0.056 (6)*
C10.71497 (19)0.23569 (15)0.38906 (10)0.0297 (3)
H100.213 (2)0.0357 (18)0.3396 (12)0.029 (4)*
C20.8586 (2)0.34194 (17)0.40418 (12)0.0371 (3)
C30.8644 (2)0.45592 (16)0.33152 (13)0.0402 (3)
C40.7256 (2)0.46500 (15)0.24404 (12)0.0353 (3)
C50.12589 (17)0.17296 (15)0.11405 (9)0.0274 (3)
H50.290 (2)0.2245 (18)0.0436 (12)0.033 (4)*
H60.163 (2)0.0447 (18)0.1546 (12)0.031 (4)*
H90.238 (2)0.3227 (18)0.1163 (12)0.031 (4)*
C60.22142 (17)0.24648 (13)0.06076 (9)0.0223 (2)
C70.34176 (15)0.06021 (12)0.17662 (8)0.0173 (2)
S10.39308 (5)0.37579 (3)0.12102 (2)0.02878 (11)
O10.65112 (12)0.36226 (9)0.47776 (6)0.02296 (18)
H70.075 (3)0.1979 (19)0.1817 (13)0.038 (4)*
H10.714 (2)0.1535 (19)0.4397 (12)0.029 (4)*
H80.124 (3)0.386 (2)0.0451 (13)0.040 (4)*
C80.24793 (16)0.00669 (13)0.00306 (8)0.0202 (2)
H40.725 (3)0.541 (2)0.1909 (13)0.041 (5)*
C90.26789 (15)0.10113 (12)0.07897 (8)0.0181 (2)
O20.35247 (13)0.41863 (10)0.39083 (6)0.0275 (2)
H140.353 (3)0.507 (2)0.4467 (13)0.041*
N10.42827 (14)0.13630 (10)0.28349 (7)0.0208 (2)
C100.38246 (15)0.08478 (12)0.19057 (8)0.0177 (2)
H130.246 (2)0.2398 (16)0.2575 (11)0.023 (3)*
C110.35977 (16)0.17829 (12)0.25662 (8)0.0186 (2)
C120.50856 (16)0.34153 (12)0.40510 (8)0.0185 (2)
N20.86564 (16)0.10083 (13)0.34623 (9)0.0336 (3)
H110.312 (2)0.1618 (18)0.3995 (12)0.031 (4)*
H120.420 (3)0.003 (2)0.4129 (13)0.041 (5)*
C130.30285 (16)0.15078 (13)0.01314 (8)0.0219 (2)
C140.36473 (16)0.18954 (12)0.10592 (8)0.0201 (2)
C150.17442 (17)0.03230 (15)0.09906 (8)0.0250 (2)
C160.15205 (18)0.28132 (14)0.03332 (9)0.0266 (3)
C170.57900 (18)0.36047 (13)0.22895 (10)0.0262 (2)
C180.57427 (17)0.24412 (12)0.30077 (9)0.0231 (2)
C190.33548 (19)0.08052 (14)0.36491 (9)0.0248 (2)
C200.51890 (16)0.21732 (12)0.32950 (8)0.0186 (2)
C210.70959 (17)0.14883 (13)0.33855 (8)0.0222 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0244 (6)0.0300 (6)0.0354 (7)0.0032 (5)0.0037 (5)0.0107 (5)
C20.0239 (6)0.0388 (7)0.0513 (8)0.0065 (5)0.0052 (6)0.0218 (6)
C30.0290 (6)0.0339 (7)0.0655 (10)0.0136 (5)0.0183 (6)0.0231 (7)
C40.0344 (7)0.0229 (6)0.0559 (9)0.0083 (5)0.0227 (6)0.0106 (6)
C50.0187 (5)0.0433 (7)0.0200 (5)0.0067 (5)0.0017 (4)0.0078 (5)
C60.0189 (5)0.0240 (6)0.0231 (5)0.0022 (4)0.0023 (4)0.0017 (4)
C70.0140 (4)0.0198 (5)0.0168 (5)0.0007 (4)0.0021 (4)0.0026 (4)
S10.03269 (18)0.01645 (16)0.03660 (19)0.00299 (11)0.00977 (13)0.00517 (11)
O10.0245 (4)0.0230 (4)0.0180 (4)0.0017 (3)0.0007 (3)0.0045 (3)
C80.0143 (4)0.0278 (6)0.0176 (5)0.0054 (4)0.0043 (4)0.0026 (4)
C90.0130 (4)0.0223 (5)0.0177 (5)0.0028 (4)0.0019 (4)0.0009 (4)
O20.0262 (4)0.0258 (4)0.0262 (4)0.0094 (3)0.0004 (3)0.0080 (3)
N10.0208 (4)0.0211 (5)0.0207 (4)0.0053 (4)0.0046 (4)0.0015 (3)
C100.0137 (4)0.0198 (5)0.0186 (5)0.0008 (4)0.0034 (4)0.0020 (4)
C110.0195 (5)0.0178 (5)0.0179 (5)0.0024 (4)0.0034 (4)0.0003 (4)
C120.0197 (5)0.0177 (5)0.0170 (5)0.0013 (4)0.0028 (4)0.0012 (4)
N20.0236 (5)0.0391 (6)0.0338 (6)0.0074 (4)0.0017 (4)0.0098 (5)
C130.0183 (5)0.0251 (6)0.0210 (5)0.0056 (4)0.0065 (4)0.0083 (4)
C140.0174 (5)0.0178 (5)0.0247 (5)0.0024 (4)0.0065 (4)0.0042 (4)
C150.0176 (5)0.0392 (7)0.0171 (5)0.0080 (4)0.0042 (4)0.0018 (5)
C160.0204 (5)0.0320 (6)0.0276 (6)0.0026 (4)0.0024 (4)0.0089 (5)
C170.0241 (5)0.0197 (5)0.0381 (6)0.0017 (4)0.0131 (5)0.0055 (5)
C180.0191 (5)0.0209 (5)0.0312 (6)0.0027 (4)0.0077 (4)0.0066 (4)
C190.0270 (6)0.0275 (6)0.0218 (5)0.0055 (5)0.0086 (4)0.0035 (4)
C200.0197 (5)0.0177 (5)0.0176 (5)0.0020 (4)0.0034 (4)0.0026 (4)
C210.0218 (5)0.0226 (5)0.0195 (5)0.0005 (4)0.0018 (4)0.0064 (4)
Geometric parameters (Å, º) top
C1—C21.3933 (18)C8—C151.4185 (16)
C1—C181.3982 (18)C8—C91.4192 (15)
C1—H10.982 (17)O2—C121.2786 (14)
C2—C31.388 (2)O2—H141.063 (18)
C2—H20.959 (18)N1—C101.4042 (14)
C3—C41.383 (2)N1—C181.4174 (14)
C3—H30.97 (2)N1—C191.4553 (14)
C4—C171.3956 (17)C10—C141.4301 (15)
C4—H40.963 (19)C11—C201.3478 (15)
C5—C151.366 (2)C11—H130.964 (15)
C5—C161.4072 (19)C12—C201.4855 (15)
C5—H70.990 (17)N2—C211.1440 (16)
C6—C161.3764 (17)C13—C141.3650 (17)
C6—C91.4145 (16)C13—H50.978 (17)
C6—H90.978 (17)C15—H60.985 (17)
C7—C101.3908 (16)C16—H81.006 (18)
C7—C91.4458 (15)C17—C181.3942 (18)
C7—C111.4611 (15)C19—H100.958 (16)
S1—C141.7556 (13)C19—H110.957 (17)
S1—C171.7581 (14)C19—H121.013 (19)
O1—C121.2544 (14)C20—C211.4376 (15)
C8—C131.4101 (17)
C2—C1—C18120.09 (13)C20—C11—C7128.50 (10)
C2—C1—H1120.2 (9)C20—C11—H13114.1 (9)
C18—C1—H1119.7 (9)C7—C11—H13117.3 (9)
C3—C2—C1120.34 (14)O1—C12—O2125.12 (10)
C3—C2—H2121.5 (11)O1—C12—C20118.13 (10)
C1—C2—H2118.2 (11)O2—C12—C20116.75 (9)
C4—C3—C2119.87 (12)C14—C13—C8121.34 (10)
C4—C3—H3123.7 (12)C14—C13—H5120.0 (10)
C2—C3—H3116.5 (12)C8—C13—H5118.6 (10)
C3—C4—C17120.17 (14)C13—C14—C10121.42 (10)
C3—C4—H4123.1 (11)C13—C14—S1118.47 (8)
C17—C4—H4116.8 (11)C10—C14—S1119.66 (9)
C15—C5—C16119.59 (11)C5—C15—C8120.96 (11)
C15—C5—H7119.6 (10)C5—C15—H6121.2 (9)
C16—C5—H7120.8 (10)C8—C15—H6117.8 (9)
C16—C6—C9121.02 (11)C6—C16—C5120.73 (12)
C16—C6—H9119.9 (9)C6—C16—H8119.9 (10)
C9—C6—H9119.1 (9)C5—C16—H8119.4 (10)
C10—C7—C9120.36 (9)C18—C17—C4120.36 (13)
C10—C7—C11123.92 (10)C18—C17—S1118.84 (9)
C9—C7—C11115.66 (10)C4—C17—S1120.77 (11)
C14—S1—C1799.34 (6)C17—C18—C1119.14 (11)
C13—C8—C15121.48 (10)C17—C18—N1119.89 (11)
C13—C8—C9118.85 (10)C1—C18—N1120.97 (11)
C15—C8—C9119.67 (11)N1—C19—H10109.2 (9)
C6—C9—C8117.97 (10)N1—C19—H11107.3 (10)
C6—C9—C7122.69 (10)H10—C19—H11111.2 (14)
C8—C9—C7119.29 (10)N1—C19—H12114.0 (10)
C12—O2—H14113.7 (10)H10—C19—H12106.4 (14)
C10—N1—C18119.48 (9)H11—C19—H12108.7 (14)
C10—N1—C19122.62 (9)C11—C20—C21123.98 (10)
C18—N1—C19117.88 (9)C11—C20—C12120.73 (10)
C7—C10—N1123.61 (9)C21—C20—C12115.25 (9)
C7—C10—C14118.54 (10)N2—C21—C20176.72 (13)
N1—C10—C14117.73 (10)
C18—C1—C2—C30.6 (2)C7—C10—C14—S1174.34 (8)
C1—C2—C3—C40.7 (2)N1—C10—C14—S11.83 (13)
C2—C3—C4—C170.4 (2)C17—S1—C14—C13152.24 (9)
C16—C6—C9—C82.30 (16)C17—S1—C14—C1035.38 (10)
C16—C6—C9—C7179.77 (10)C16—C5—C15—C80.99 (17)
C13—C8—C9—C6176.94 (9)C13—C8—C15—C5178.54 (10)
C15—C8—C9—C62.82 (15)C9—C8—C15—C51.22 (16)
C13—C8—C9—C70.62 (15)C9—C6—C16—C50.12 (18)
C15—C8—C9—C7179.61 (9)C15—C5—C16—C61.56 (18)
C10—C7—C9—C6179.09 (9)C3—C4—C17—C181.62 (19)
C11—C7—C9—C61.88 (15)C3—C4—C17—S1176.53 (10)
C10—C7—C9—C83.47 (15)C14—S1—C17—C1836.16 (10)
C11—C7—C9—C8179.32 (9)C14—S1—C17—C4145.67 (10)
C9—C7—C10—N1171.10 (9)C4—C17—C18—C11.66 (17)
C11—C7—C10—N15.86 (16)S1—C17—C18—C1176.53 (9)
C9—C7—C10—C144.83 (15)C4—C17—C18—N1178.19 (11)
C11—C7—C10—C14178.20 (9)S1—C17—C18—N13.63 (15)
C18—N1—C10—C7142.33 (11)C2—C1—C18—C170.53 (18)
C19—N1—C10—C735.94 (16)C2—C1—C18—N1179.31 (11)
C18—N1—C10—C1441.71 (14)C10—N1—C18—C1741.32 (15)
C19—N1—C10—C14140.02 (11)C19—N1—C18—C17140.33 (11)
C10—C7—C11—C2053.51 (17)C10—N1—C18—C1138.52 (11)
C9—C7—C11—C20129.39 (12)C19—N1—C18—C139.83 (16)
C15—C8—C13—C14176.93 (10)C7—C11—C20—C212.65 (19)
C9—C8—C13—C143.31 (16)C7—C11—C20—C12179.85 (10)
C8—C13—C14—C101.94 (16)O1—C12—C20—C11171.53 (10)
C8—C13—C14—S1170.30 (8)O2—C12—C20—C117.97 (16)
C7—C10—C14—C132.19 (15)O1—C12—C20—C2110.77 (15)
N1—C10—C14—C13173.98 (10)O2—C12—C20—C21169.73 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H14···O1i1.063 (18)1.524 (18)2.5856 (13)176.8 (16)
C19—H10···N2ii0.958 (16)2.699 (16)3.5991 (18)156.8 (13)
C19—H11···O1iii0.957 (17)2.623 (17)3.5518 (17)163.7 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H14···O1i1.063 (18)1.524 (18)2.5856 (13)176.8 (16)
C19—H10···N2ii0.958 (16)2.699 (16)3.5991 (18)156.8 (13)
C19—H11···O1iii0.957 (17)2.623 (17)3.5518 (17)163.7 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Science Research (YB 26810107) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and was performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices (IMCE, Kyushu University)". MW thanks the World Premier Inter­national Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Japan.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBell, J. D., Blount, J. F., Briscoe, O. V. & Freeman, H. C. (1968). Chem. Commun. pp. 1656–1657.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3322.  CSD CrossRef IUCr Journals Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Williamstown, Victoria, Australia. http://www.povray.org/Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Rosokha, S. V. & Kochi, J. K. (2004). J. Am. Chem. Soc. 126, 1388–1401.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWaal, B. W. van de & Feil, D. (1977). Acta Cryst. B33, 314–315.  Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar
First citationWatanabe, M., Hagiwara, H., Iribe, A., Ogata, Y., Shiomi, K., Staykov, A., Ida, S., Tanaka, K. & Ishihara, T. (2014). J. Mater. Chem. A, 2, 12952–12961.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1026-o1027
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds