organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-(4-chloro­anilino)acetate

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Spectrochimie Applique et Environnement, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
*Correspondence e-mail: m.khouili@usms.ma

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 August 2014; accepted 10 August 2014; online 16 August 2014)

The title compound, C10H12ClNO2, is close to planar (r.m.s. deviation for the 14 non-H atoms = 0.053 Å). In the crystal, inversion dimers linked by pairs of N—H⋯Oc (c = carbox­yl) hydrogen bonds generate R22(10) loops.

1. Related literature

For the biological activity of sydnone derivatives, see: Satheesha Rai et al. (2008[Satheesha Rai, N., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Patel & Patel (2012[Patel, Y. M. & Patel, K. C. (2012). J. Saudi Chem. Soc. doi:10.1016/j.jscs.2012.02.005.]). For an overview of sydnone derivatives, see: Asundaria et al. (2010[Asundaria, S. T., Patel, N. S. & Patel, K. C. (2010). Org. Commun. 3, 30-38.]); Ding et al. (2013[Ding, M. F., Cheng, K. F., Chen, Y. N. & Lin, S. T. (2013). Univer. J. Chem. 1, 113-120.]); Fadda & Elattar (2012[Fadda, A. A. & Elattar, K. M. (2012). Am. J. Org. Chem. 2, 542-57.]). For a related structure, see: Zhang et al. (2010[Zhang, Y., Qu, Y. & Zhao, B. (2010). Acta Cryst. E66, o2143.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H12ClNO2

  • Mr = 213.66

  • Triclinic, [P \overline 1]

  • a = 5.373 (5) Å

  • b = 7.575 (7) Å

  • c = 14.127 (12) Å

  • α = 75.83 (4)°

  • β = 87.73 (3)°

  • γ = 72.99 (3)°

  • V = 532.7 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.29 mm

2.2. Data collection

  • Bruker X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.693, Tmax = 0.747

  • 3672 measured reflections

  • 2361 independent reflections

  • 1718 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 1.03

  • 2361 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.82 2.37 3.172 (3) 165
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was synthesized as a precursor for the preparation of biological sydnone derivatives (Satheesha Rai et al., 2008; Patel & Patel, 2012, Asundaria et al., 2010; Ding et al., 2013; Fadda & Elattar, 2012). In the title molecule (Fig. 1), there are two planar subunits viz. the chlorophenyl amine (C1-C6N1Cl1) and ethyl acetate (C7C8O2O1C9C10) groups. The chlorophenyl amino ring is inclined at angles of 2.01 (9)° to the ethyl acetate groups. The substituted amino substituent is in an extended conformation with an N—C—C—O torsion angle of 179.8 (2)°. In the crystal structure, pairs of molecules are connected by intermolecular N—H···O hydrogen bonds to form centrosymmetric dimers (Fig. 2). Bond lengths and angles (Table 2) are compatible with those found in a related compound (Zhang et al., 2010).

Related literature top

For the biological activity of sydnone derivatives, see: Satheesha Rai et al. (2008); Patel & Patel (2012). For an overview of sydnone derivatives, see: Asundaria et al. (2010); Ding et al. (2013); Fadda & Elattar (2012). For a related structure, see: Zhang et al. (2010).

Experimental top

A solution of corresponding 4-chloroaniline (2.22 g, 0.0174 mol), anhydrous sodium acetate (2.14 g, 0.0261 mol, 1.5 equiv), and ethyl chloroacetate (2.13 g, 0.0174 mol) was heated under reflux for 18 h. Then cold water (70 ml) was added with stirring and cooling in ice bath. The reaction mixture was neutralized with NaHCO3 and then extracted with dichloromethane (3× 25 ml). The dichloromethane extracts were dried over anhydrous Na2SO4 and concentrated. The crude product was purified by column chromatography on silica gel using hexane/ethyl acetate (9/1) as eluent. Yellow blocks were isolated when the solvent was allowed to evaporate

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C–H = 0.93–0.97 Å; N—H = 0.86 Å, and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq for aromatic, ethylene C—H, N–H and Uiso(H) = 1.5 Ueq for methyl. One outlier (0 0 1) was omitted in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing hydrogen-bonded (dashed lines) dimers.
Ethyl 2-(4-chloroanilino)acetate top
Crystal data top
C10H12ClNO2Z = 2
Mr = 213.66F(000) = 224
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 5.373 (5) ÅCell parameters from 2361 reflections
b = 7.575 (7) Åθ = 2.9–27.5°
c = 14.127 (12) ŵ = 0.33 mm1
α = 75.83 (4)°T = 296 K
β = 87.73 (3)°Block, yellow
γ = 72.99 (3)°0.40 × 0.36 × 0.29 mm
V = 532.7 (9) Å3
Data collection top
Bruker X8 APEX CCD
diffractometer
2361 independent reflections
Radiation source: fine-focus sealed tube1718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.693, Tmax = 0.747k = 97
3672 measured reflectionsl = 1810
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.1405P]
where P = (Fo2 + 2Fc2)/3
2361 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H12ClNO2γ = 72.99 (3)°
Mr = 213.66V = 532.7 (9) Å3
Triclinic, P1Z = 2
a = 5.373 (5) ÅMo Kα radiation
b = 7.575 (7) ŵ = 0.33 mm1
c = 14.127 (12) ÅT = 296 K
α = 75.83 (4)°0.40 × 0.36 × 0.29 mm
β = 87.73 (3)°
Data collection top
Bruker X8 APEX CCD
diffractometer
2361 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1718 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.018
3672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
2361 reflectionsΔρmin = 0.25 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2530 (4)0.5821 (3)0.17905 (14)0.0493 (5)
C20.1089 (4)0.5877 (3)0.26135 (14)0.0493 (5)
H20.06330.66340.25640.059*
C30.2208 (3)0.4803 (3)0.35168 (14)0.0460 (4)
H30.12340.48450.40740.055*
C40.4789 (3)0.3659 (2)0.35964 (13)0.0408 (4)
C50.6209 (3)0.3653 (3)0.27463 (14)0.0466 (4)
H50.79390.29120.27880.056*
C60.5104 (4)0.4718 (3)0.18512 (14)0.0511 (5)
H60.60730.47000.12920.061*
C70.4644 (3)0.2344 (3)0.53739 (13)0.0434 (4)
H7A0.32040.18540.53000.052*
H7B0.39450.35630.55360.052*
C80.6487 (3)0.0983 (2)0.61773 (13)0.0421 (4)
C90.6934 (4)0.0457 (3)0.78700 (13)0.0494 (5)
H9A0.84560.00680.79620.059*
H9B0.75100.17350.77700.059*
C100.5267 (5)0.0410 (4)0.87449 (15)0.0683 (6)
H10A0.62540.12590.93140.102*
H10B0.37720.08020.86460.102*
H10C0.47080.08610.88360.102*
N10.5998 (3)0.2584 (3)0.44760 (12)0.0593 (5)
H10.74220.18140.44530.071*
O10.5353 (2)0.08512 (18)0.70336 (9)0.0470 (3)
O20.8685 (3)0.0108 (2)0.60581 (10)0.0620 (4)
Cl10.11032 (12)0.71314 (11)0.06510 (4)0.0837 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (10)0.0478 (10)0.0434 (10)0.0104 (8)0.0067 (8)0.0011 (8)
C20.0367 (9)0.0459 (10)0.0546 (11)0.0012 (8)0.0042 (8)0.0048 (8)
C30.0408 (9)0.0471 (10)0.0415 (10)0.0031 (8)0.0042 (7)0.0071 (8)
C40.0377 (9)0.0375 (9)0.0417 (9)0.0052 (7)0.0013 (7)0.0062 (7)
C50.0359 (9)0.0472 (10)0.0480 (10)0.0025 (8)0.0044 (7)0.0079 (8)
C60.0487 (10)0.0553 (11)0.0429 (10)0.0120 (9)0.0060 (8)0.0048 (8)
C70.0422 (9)0.0403 (9)0.0413 (9)0.0030 (7)0.0006 (7)0.0093 (7)
C80.0443 (10)0.0376 (9)0.0398 (9)0.0044 (8)0.0018 (7)0.0101 (7)
C90.0471 (10)0.0517 (11)0.0402 (10)0.0044 (8)0.0025 (8)0.0058 (8)
C100.0728 (15)0.0781 (15)0.0406 (11)0.0065 (12)0.0067 (10)0.0096 (10)
N10.0437 (9)0.0669 (11)0.0412 (9)0.0132 (8)0.0029 (7)0.0013 (8)
O10.0440 (7)0.0480 (7)0.0375 (7)0.0006 (5)0.0023 (5)0.0068 (5)
O20.0479 (8)0.0668 (9)0.0468 (8)0.0120 (7)0.0062 (6)0.0042 (7)
Cl10.0720 (4)0.1006 (5)0.0500 (4)0.0037 (3)0.0123 (3)0.0101 (3)
Geometric parameters (Å, º) top
C1—C21.373 (3)C7—C81.500 (3)
C1—C61.384 (3)C7—H7A0.9700
C1—Cl11.742 (2)C7—H7B0.9700
C2—C31.385 (3)C8—O21.202 (2)
C2—H20.9300C8—O11.328 (2)
C3—C41.396 (3)C9—O11.453 (2)
C3—H30.9300C9—C101.499 (3)
C4—N11.374 (2)C9—H9A0.9700
C4—C51.397 (3)C9—H9B0.9700
C5—C61.372 (3)C10—H10A0.9600
C5—H50.9300C10—H10B0.9600
C6—H60.9300C10—H10C0.9600
C7—N11.436 (3)N1—H10.8201
C2—C1—C6120.88 (18)C8—C7—H7B109.8
C2—C1—Cl1119.85 (16)H7A—C7—H7B108.2
C6—C1—Cl1119.27 (16)O2—C8—O1124.56 (17)
C1—C2—C3119.83 (18)O2—C8—C7124.41 (17)
C1—C2—H2120.1O1—C8—C7111.03 (16)
C3—C2—H2120.1O1—C9—C10107.18 (17)
C2—C3—C4120.43 (17)O1—C9—H9A110.3
C2—C3—H3119.8C10—C9—H9A110.3
C4—C3—H3119.8O1—C9—H9B110.3
N1—C4—C3122.69 (17)C10—C9—H9B110.3
N1—C4—C5119.02 (17)H9A—C9—H9B108.5
C3—C4—C5118.27 (16)C9—C10—H10A109.5
C6—C5—C4121.34 (17)C9—C10—H10B109.5
C6—C5—H5119.3H10A—C10—H10B109.5
C4—C5—H5119.3C9—C10—H10C109.5
C5—C6—C1119.24 (18)H10A—C10—H10C109.5
C5—C6—H6120.4H10B—C10—H10C109.5
C1—C6—H6120.4C4—N1—C7123.16 (16)
N1—C7—C8109.52 (16)C4—N1—H1116.6
N1—C7—H7A109.8C7—N1—H1117.7
C8—C7—H7A109.8C8—O1—C9116.23 (15)
N1—C7—H7B109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.822.373.172 (3)165
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.822.373.172 (3)165
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, for financial support.

References

First citationAsundaria, S. T., Patel, N. S. & Patel, K. C. (2010). Org. Commun. 3, 30–38.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. F., Cheng, K. F., Chen, Y. N. & Lin, S. T. (2013). Univer. J. Chem. 1, 113–120.  CAS Google Scholar
First citationFadda, A. A. & Elattar, K. M. (2012). Am. J. Org. Chem. 2, 542–57.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, Y. M. & Patel, K. C. (2012). J. Saudi Chem. Soc. doi:10.1016/j.jscs.2012.02.005.  Google Scholar
First citationSatheesha Rai, N., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Qu, Y. & Zhao, B. (2010). Acta Cryst. E66, o2143.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds