organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o955-o956

Crystal structure of (Z)-1-(3,4-di­chloro­phenyl)-3-methyl-4-[(naphthalen-1-yl­amino)(p-tolyl)methyl­idene]-1H-pyrazol-5(4H)-one

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 July 2014; accepted 24 July 2014; online 1 August 2014)

The title Schiff base compound, C28H21Cl2N3O, was synthesized by the condensation of 1-(3,4-di­chloro­phen­yl)-3-methyl-4-(4-methyl­benzo­yl)-1H-pyrazol-5(4H)-one with 1-aminona­phthalene. The p-tolyl ring is normal to the pyrazole ring, with a dihedral angle of 88.02 (14)°, and inclined to the naphthalene ring system by 78.60 (12)°. The pyrazole ring is inclined to the naphthalene ring system and the di­chloro-substituted benzene ring by 63.30 (12) and 11.03 (13)°, respectively. The amino group and carbonyl oxygen atom are involved in an intra­molecular N—H⋯O hydrogen bond enclosing an S(6) ring motif. There is also a short C—H⋯O contact involving the carbonyl O atom and the adjacent benzene ring. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming a three-dimensional structure.

1. Related literature

For the preparation and biological activity of pyrazolo­nes and their metal complexes, see: Chiba et al. (1998[Chiba, P., Holzer, W., Landau, M., Bechmann, G., Lorenz, K., Plagens, B., Hitzler, M., Richter, E. & Ecker, G. (1998). J. Med. Chem. 41, 4001-4011.]); Xu et al. (2000[Xu, J. & Raymond, K. N. (2000). Angew. Chem. Int. Ed. E39, 2745-2747.]); Casas et al. (2007[Casas, J. S., Garcia-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561-1589.]); Wang et al. (2007[Wang, X. H., Jia, D. Z., Liang, Y. J., Yan, S. L., Ding, Y., Chen, L., Shi, M. Z., Zeng, M. S., Liu, G. F. & Fu, L. W. (2007). Cancer Lett. 249, 256-270.]). For Schiff bases and their diverse biological activity and exceptional chelating ability, see: Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7490.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]); Jadeja et al. (2012a[Jadeja, R. N., Parihar, S., Vyas, K. & Gupta, V. K. (2012a). J. Mol. Struct. 1013, 86-94.],b[Jadeja, R. N., Vyas, K. M., Gupta, V. K., Joshi, R. G. & Ratna Prabha, C. (2012b). Polyhedron, 31, 767-778.]). For related structures, see: Sharma et al. (2012[Sharma, N., Vyas, K. M., Jadeja, R. N., Kant, R. & Gupta, V. K. (2012). Acta Cryst. E68, o3036.]); Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095-o1096.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H21Cl2N3O

  • Mr = 486.38

  • Monoclinic, P 21 /n

  • a = 11.4621 (8) Å

  • b = 16.9351 (11) Å

  • c = 12.2704 (9) Å

  • β = 97.478 (6)°

  • V = 2361.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.850, Tmax = 1.000

  • 10634 measured reflections

  • 4621 independent reflections

  • 2763 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.137

  • S = 1.03

  • 4621 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3, Cg5 are the centroids of rings N1/N2/C3–C5, C14–C19 and C24–C29, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O5 0.86 1.98 2.702 (3) 141
C7—H7⋯O5 0.93 2.32 2.937 (4) 124
C8—H8⋯Cg3i 0.93 2.71 3.639 (3) 176
C15—H15⋯Cg1ii 0.93 2.97 3.825 (3) 154
C23—H23⋯Cg5iii 0.93 2.77 3.679 (3) 165
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) -x, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Synthesis and crystallization top

1-(3,4-Di­chloro­phenyl)-3-methyl-4-(4-methyl­benzoyl)-1H-pyrazol-5(4H)-one (0.360 g, 1 mmol) was dissolved in a minimum amount of absolute ethanol. To this solution, a solution of 1-amino­naphthalene (0.143 g, 1 mmol) in 10 ml absolute ethanol was added dropwise. The reaction mixture was refluxed for 8 h. After completion of the reaction, it was allowed to cool and then filtered. The filtrate was kept for slow evaporation giving block-like yellow crystals of the title compound in 2–3 days (yield 0.325, 67%). 1H NMR (400 MHz,CDCl3, TMS): δ 1.61 (s, 3H), 2.48 (s, 3H), 6.87 (d, 1H), 7.09–7.20 (m, 5H), 7.47 (d, 1H), 7.55–7.59 (m, 1H), 7.62–7.68 (m, 2H), 7.85 (d, 1H), 8.05–8.08 (dd, 1H), 8.22 (d, 1H), 8.33 (d, 1H), 13.12 (s, 1H). Elemental analysis calculated for C28H21Cl2N3O: C 69.14, H 4.35, N 8.64; found: C 69.18, H 4.41, 8.65.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were fixed geometrically and allowed to ride on their parent atoms: N—H = 0.86 Å, C—H =0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Related literature top

For the preparation and biological activity of pyrazolones and their metal complexes, see: Chiba et al. (1998); Xu et al. (2000); Casas et al. (2007); Wang et al. (2007). For Schiff bases and their diverse biological activity and exceptional chelating ability, see: Karthikeyan et al. (2006); Sinha et al. (2008); Jadeja et al. (2012a,b). For related structures, see: Sharma et al. (2012); Abdel-Aziz et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis.
(Z)-1-(3,4-Dichlorophenyl)-3-methyl-4-[(naphthalen-1-ylamino)(p-tolyl)methylidene]-1H-pyrazol-5(4H)-one top
Crystal data top
C28H21Cl2N3OF(000) = 1008
Mr = 486.38Dx = 1.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2540 reflections
a = 11.4621 (8) Åθ = 3.8–27.7°
b = 16.9351 (11) ŵ = 0.30 mm1
c = 12.2704 (9) ÅT = 293 K
β = 97.478 (6)°Block, yellow
V = 2361.6 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
4621 independent reflections
Radiation source: fine-focus sealed tube2763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 1412
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2011
Tmin = 0.850, Tmax = 1.000l = 1513
10634 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.2032P]
where P = (Fo2 + 2Fc2)/3
4621 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C28H21Cl2N3OV = 2361.6 (3) Å3
Mr = 486.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4621 (8) ŵ = 0.30 mm1
b = 16.9351 (11) ÅT = 293 K
c = 12.2704 (9) Å0.30 × 0.20 × 0.20 mm
β = 97.478 (6)°
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
4621 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2763 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 1.000Rint = 0.035
10634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
4621 reflectionsΔρmin = 0.25 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64906 (18)0.03805 (13)0.04467 (18)0.0434 (6)
N20.65554 (18)0.04357 (14)0.06786 (19)0.0482 (6)
C30.7247 (2)0.07400 (17)0.0027 (2)0.0432 (7)
C40.7673 (2)0.01509 (16)0.0659 (2)0.0397 (6)
C50.7151 (2)0.05828 (17)0.0369 (2)0.0417 (7)
O50.72721 (16)0.12583 (11)0.07388 (16)0.0528 (5)
C60.5933 (2)0.08712 (16)0.1152 (2)0.0412 (7)
C70.5903 (2)0.16869 (17)0.1037 (2)0.0519 (8)
H70.62160.19260.04580.062*
C80.5406 (2)0.21407 (18)0.1789 (2)0.0545 (8)
H80.54000.26870.17180.065*
C90.4921 (2)0.17990 (18)0.2641 (2)0.0462 (7)
Cl90.43371 (7)0.23935 (5)0.35807 (7)0.0669 (3)
C100.4940 (2)0.09823 (17)0.2742 (2)0.0439 (7)
Cl100.43480 (7)0.05190 (5)0.37990 (7)0.0672 (3)
C110.5437 (2)0.05215 (17)0.2003 (2)0.0433 (7)
H110.54410.00250.20750.052*
C120.8483 (2)0.01823 (17)0.1416 (2)0.0418 (6)
N130.8763 (2)0.04812 (14)0.18956 (18)0.0537 (6)
H130.84560.09050.16730.064*
C140.9510 (3)0.05849 (17)0.2735 (2)0.0489 (7)
C151.0692 (3)0.04650 (19)0.2527 (3)0.0606 (8)
H151.10230.02940.18350.073*
C161.1413 (3)0.0596 (2)0.3341 (3)0.0667 (9)
H161.22190.05100.31900.080*
C171.0946 (3)0.0847 (2)0.4346 (3)0.0672 (10)
H171.14340.09220.48870.081*
C180.9730 (3)0.09982 (17)0.4592 (2)0.0548 (8)
C190.8994 (2)0.08688 (16)0.3767 (2)0.0482 (7)
C200.7781 (3)0.10392 (19)0.4008 (3)0.0616 (9)
H200.72890.09670.34700.074*
C210.7329 (3)0.1306 (2)0.5011 (3)0.0781 (11)
H210.65280.14140.51540.094*
C220.8034 (4)0.1422 (2)0.5832 (3)0.0845 (11)
H220.77070.16030.65200.101*
C230.9198 (4)0.1272 (2)0.5626 (3)0.0750 (10)
H230.96650.13520.61820.090*
C240.9034 (2)0.09451 (16)0.1668 (2)0.0397 (6)
C251.0094 (2)0.11772 (19)0.1107 (2)0.0543 (8)
H251.05090.08360.06040.065*
C261.0547 (3)0.1916 (2)0.1288 (3)0.0583 (8)
H261.12650.20640.08980.070*
C270.9968 (3)0.24353 (18)0.2022 (3)0.0570 (8)
C280.8905 (3)0.21983 (19)0.2581 (3)0.0634 (9)
H280.84870.25420.30790.076*
C290.8449 (2)0.14606 (18)0.2416 (2)0.0523 (8)
H290.77380.13100.28150.063*
C301.0454 (3)0.3243 (2)0.2191 (4)0.0959 (13)
H30A1.12980.32260.20570.144*
H30B1.02110.34100.29330.144*
H30C1.01650.36080.16920.144*
C310.7482 (3)0.16071 (17)0.0094 (3)0.0609 (8)
H31A0.70770.18340.06560.091*
H31B0.83120.16960.02680.091*
H31C0.72060.18480.06010.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0540 (13)0.0289 (13)0.0494 (14)0.0057 (11)0.0149 (11)0.0070 (11)
N20.0589 (14)0.0312 (13)0.0564 (15)0.0011 (12)0.0142 (12)0.0053 (12)
C30.0488 (15)0.0346 (16)0.0461 (16)0.0037 (14)0.0059 (13)0.0011 (13)
C40.0467 (14)0.0298 (15)0.0433 (15)0.0018 (13)0.0087 (12)0.0038 (13)
C50.0458 (15)0.0370 (17)0.0431 (16)0.0012 (14)0.0094 (12)0.0032 (14)
O50.0707 (12)0.0339 (11)0.0579 (13)0.0069 (10)0.0237 (10)0.0112 (10)
C60.0440 (14)0.0346 (16)0.0461 (16)0.0079 (13)0.0102 (12)0.0039 (13)
C70.0650 (18)0.0315 (16)0.0640 (19)0.0078 (15)0.0269 (15)0.0102 (15)
C80.0636 (18)0.0302 (16)0.074 (2)0.0087 (15)0.0252 (16)0.0090 (15)
C90.0473 (15)0.0417 (18)0.0510 (17)0.0027 (14)0.0117 (13)0.0034 (14)
Cl90.0817 (5)0.0506 (5)0.0738 (6)0.0022 (4)0.0307 (4)0.0125 (4)
C100.0454 (15)0.0421 (17)0.0448 (16)0.0018 (14)0.0078 (12)0.0076 (14)
Cl100.0858 (6)0.0564 (6)0.0659 (5)0.0014 (5)0.0339 (4)0.0135 (4)
C110.0482 (14)0.0316 (16)0.0509 (17)0.0035 (13)0.0089 (13)0.0079 (13)
C120.0508 (15)0.0354 (16)0.0383 (15)0.0001 (14)0.0023 (12)0.0024 (13)
N130.0771 (16)0.0327 (14)0.0571 (15)0.0004 (13)0.0310 (13)0.0000 (12)
C140.0653 (18)0.0353 (17)0.0491 (18)0.0056 (15)0.0181 (14)0.0042 (14)
C150.0592 (19)0.054 (2)0.068 (2)0.0017 (17)0.0068 (16)0.0021 (17)
C160.0575 (19)0.055 (2)0.090 (3)0.0042 (17)0.0204 (19)0.005 (2)
C170.077 (2)0.053 (2)0.080 (3)0.0107 (18)0.042 (2)0.009 (2)
C180.083 (2)0.0346 (17)0.0509 (19)0.0100 (16)0.0230 (17)0.0052 (15)
C190.0623 (18)0.0332 (16)0.0510 (18)0.0070 (14)0.0149 (14)0.0057 (14)
C200.063 (2)0.053 (2)0.069 (2)0.0078 (17)0.0115 (17)0.0049 (18)
C210.079 (2)0.070 (3)0.080 (3)0.004 (2)0.009 (2)0.005 (2)
C220.115 (3)0.064 (3)0.071 (3)0.003 (2)0.001 (2)0.008 (2)
C230.121 (3)0.056 (2)0.052 (2)0.008 (2)0.026 (2)0.0032 (18)
C240.0468 (15)0.0332 (15)0.0403 (15)0.0027 (13)0.0106 (12)0.0022 (13)
C250.0587 (17)0.0477 (19)0.0533 (18)0.0043 (16)0.0047 (14)0.0079 (16)
C260.0609 (18)0.049 (2)0.065 (2)0.0150 (17)0.0069 (15)0.0080 (17)
C270.071 (2)0.0380 (18)0.068 (2)0.0078 (17)0.0304 (17)0.0028 (16)
C280.071 (2)0.048 (2)0.072 (2)0.0026 (17)0.0125 (17)0.0232 (18)
C290.0501 (16)0.0466 (19)0.0591 (19)0.0009 (15)0.0034 (14)0.0142 (16)
C300.120 (3)0.048 (2)0.126 (3)0.023 (2)0.039 (3)0.010 (2)
C310.082 (2)0.0364 (18)0.069 (2)0.0046 (16)0.0275 (17)0.0054 (16)
Geometric parameters (Å, º) top
N1—C51.375 (3)C17—C181.411 (4)
N1—N21.411 (3)C17—H170.9300
N1—C61.412 (3)C18—C231.413 (4)
N2—C31.303 (3)C18—C191.416 (4)
C3—C41.431 (3)C19—C201.414 (4)
C3—C311.493 (4)C20—C211.350 (4)
C4—C121.397 (3)C20—H200.9300
C4—C51.443 (4)C21—C221.385 (5)
C5—O51.245 (3)C21—H210.9300
C6—C111.385 (3)C22—C231.350 (5)
C6—C71.389 (4)C22—H220.9300
C7—C81.379 (4)C23—H230.9300
C7—H70.9300C24—C251.374 (4)
C8—C91.374 (4)C24—C291.376 (3)
C8—H80.9300C25—C261.384 (4)
C9—C101.389 (4)C25—H250.9300
C9—Cl91.729 (3)C26—C271.367 (4)
C10—C111.374 (3)C26—H260.9300
C10—Cl101.729 (3)C27—C281.378 (4)
C11—H110.9300C27—C301.501 (4)
C12—N131.327 (3)C28—C291.379 (4)
C12—C241.488 (4)C28—H280.9300
N13—C141.432 (3)C29—H290.9300
N13—H130.8600C30—H30A0.9600
C14—C151.362 (4)C30—H30B0.9600
C14—C191.410 (4)C30—H30C0.9600
C15—C161.394 (4)C31—H31A0.9600
C15—H150.9300C31—H31B0.9600
C16—C171.348 (4)C31—H31C0.9600
C16—H160.9300
C5—N1—N2111.8 (2)C17—C18—C23123.4 (3)
C5—N1—C6129.5 (2)C17—C18—C19118.9 (3)
N2—N1—C6118.0 (2)C23—C18—C19117.7 (3)
C3—N2—N1106.5 (2)C14—C19—C20122.9 (3)
N2—C3—C4111.5 (2)C14—C19—C18118.4 (3)
N2—C3—C31118.3 (2)C20—C19—C18118.7 (3)
C4—C3—C31130.2 (2)C21—C20—C19120.6 (3)
C12—C4—C3132.2 (3)C21—C20—H20119.7
C12—C4—C5121.9 (2)C19—C20—H20119.7
C3—C4—C5105.8 (2)C20—C21—C22121.3 (3)
O5—C5—N1126.3 (2)C20—C21—H21119.3
O5—C5—C4129.2 (2)C22—C21—H21119.3
N1—C5—C4104.5 (2)C23—C22—C21119.6 (4)
C11—C6—C7119.7 (2)C23—C22—H22120.2
C11—C6—N1118.3 (2)C21—C22—H22120.2
C7—C6—N1122.0 (2)C22—C23—C18122.0 (3)
C8—C7—C6119.6 (3)C22—C23—H23119.0
C8—C7—H7120.2C18—C23—H23119.0
C6—C7—H7120.2C25—C24—C29118.4 (3)
C9—C8—C7121.2 (3)C25—C24—C12121.0 (2)
C9—C8—H8119.4C29—C24—C12120.5 (2)
C7—C8—H8119.4C24—C25—C26120.3 (3)
C8—C9—C10118.9 (3)C24—C25—H25119.9
C8—C9—Cl9119.5 (2)C26—C25—H25119.9
C10—C9—Cl9121.6 (2)C27—C26—C25121.8 (3)
C11—C10—C9120.7 (2)C27—C26—H26119.1
C11—C10—Cl10118.3 (2)C25—C26—H26119.1
C9—C10—Cl10121.0 (2)C26—C27—C28117.6 (3)
C10—C11—C6120.0 (3)C26—C27—C30121.3 (3)
C10—C11—H11120.0C28—C27—C30121.1 (3)
C6—C11—H11120.0C27—C28—C29121.2 (3)
N13—C12—C4118.9 (2)C27—C28—H28119.4
N13—C12—C24120.6 (2)C29—C28—H28119.4
C4—C12—C24120.5 (2)C24—C29—C28120.8 (3)
C12—N13—C14128.6 (2)C24—C29—H29119.6
C12—N13—H13115.7C28—C29—H29119.6
C14—N13—H13115.7C27—C30—H30A109.5
C15—C14—C19120.6 (3)C27—C30—H30B109.5
C15—C14—N13121.4 (3)H30A—C30—H30B109.5
C19—C14—N13117.9 (2)C27—C30—H30C109.5
C14—C15—C16120.7 (3)H30A—C30—H30C109.5
C14—C15—H15119.7H30B—C30—H30C109.5
C16—C15—H15119.7C3—C31—H31A109.5
C17—C16—C15120.3 (3)C3—C31—H31B109.5
C17—C16—H16119.9H31A—C31—H31B109.5
C15—C16—H16119.9C3—C31—H31C109.5
C16—C17—C18121.1 (3)H31A—C31—H31C109.5
C16—C17—H17119.5H31B—C31—H31C109.5
C18—C17—H17119.5
C5—N1—N2—C30.4 (3)C24—C12—N13—C144.8 (4)
C6—N1—N2—C3170.9 (2)C12—N13—C14—C1568.8 (4)
N1—N2—C3—C40.1 (3)C12—N13—C14—C19115.5 (3)
N1—N2—C3—C31179.9 (2)C19—C14—C15—C162.1 (5)
N2—C3—C4—C12174.9 (3)N13—C14—C15—C16177.7 (3)
C31—C3—C4—C124.9 (5)C14—C15—C16—C170.3 (5)
N2—C3—C4—C50.5 (3)C15—C16—C17—C181.3 (5)
C31—C3—C4—C5179.7 (3)C16—C17—C18—C23179.1 (3)
N2—N1—C5—O5179.2 (3)C16—C17—C18—C191.1 (5)
C6—N1—C5—O59.3 (4)C15—C14—C19—C20176.9 (3)
N2—N1—C5—C40.6 (3)N13—C14—C19—C201.2 (4)
C6—N1—C5—C4169.3 (2)C15—C14—C19—C182.2 (4)
C12—C4—C5—O53.2 (5)N13—C14—C19—C18178.0 (2)
C3—C4—C5—O5179.2 (3)C17—C18—C19—C140.7 (4)
C12—C4—C5—N1175.3 (2)C23—C18—C19—C14179.1 (3)
C3—C4—C5—N10.7 (3)C17—C18—C19—C20178.5 (3)
C5—N1—C6—C11172.1 (2)C23—C18—C19—C201.7 (4)
N2—N1—C6—C112.7 (3)C14—C19—C20—C21179.6 (3)
C5—N1—C6—C75.8 (4)C18—C19—C20—C211.2 (5)
N2—N1—C6—C7175.2 (2)C19—C20—C21—C220.1 (5)
C11—C6—C7—C81.6 (4)C20—C21—C22—C230.5 (6)
N1—C6—C7—C8176.2 (2)C21—C22—C23—C180.0 (6)
C6—C7—C8—C91.1 (4)C17—C18—C23—C22179.1 (3)
C7—C8—C9—C100.3 (4)C19—C18—C23—C221.1 (5)
C7—C8—C9—Cl9178.6 (2)N13—C12—C24—C2586.4 (3)
C8—C9—C10—C110.1 (4)C4—C12—C24—C2592.9 (3)
Cl9—C9—C10—C11178.18 (19)N13—C12—C24—C2998.4 (3)
C8—C9—C10—Cl10179.7 (2)C4—C12—C24—C2982.4 (3)
Cl9—C9—C10—Cl101.5 (3)C29—C24—C25—C260.7 (4)
C9—C10—C11—C60.4 (4)C12—C24—C25—C26174.6 (3)
Cl10—C10—C11—C6179.25 (19)C24—C25—C26—C270.2 (5)
C7—C6—C11—C101.3 (4)C25—C26—C27—C280.3 (4)
N1—C6—C11—C10176.6 (2)C25—C26—C27—C30178.5 (3)
C3—C4—C12—N13176.0 (3)C26—C27—C28—C290.8 (5)
C5—C4—C12—N131.2 (4)C30—C27—C28—C29179.1 (3)
C3—C4—C12—C243.2 (4)C25—C24—C29—C281.3 (4)
C5—C4—C12—C24178.0 (2)C12—C24—C29—C28174.1 (3)
C4—C12—N13—C14176.0 (2)C27—C28—C29—C241.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3, Cg5 are the centroids of rings N1/N2/C3–C5, C14–C19 and C24–C29, respectively.
D—H···AD—HH···AD···AD—H···A
N13—H13···O50.861.982.702 (3)141
C7—H7···O50.932.322.937 (4)124
C8—H8···Cg3i0.932.713.639 (3)176
C15—H15···Cg1ii0.932.973.825 (3)154
C23—H23···Cg5iii0.932.773.679 (3)165
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3, Cg5 are the centroids of rings N1/N2/C3–C5, C14–C19 and C24–C29, respectively.
D—H···AD—HH···AD···AD—H···A
N13—H13···O50.861.9792.702 (3)141
C7—H7···O50.932.3152.937 (4)124
C8—H8···Cg3i0.932.7113.639 (3)175.9
C15—H15···Cg1ii0.932.9653.825 (3)154.4
C23—H23···Cg5iii0.932.7733.679 (3)165.1
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y, z; (iii) x, y, z+1.
 

Acknowledgements

RK acknowledges the Department of Science and Technology for funding the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationAbdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095–o1096.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561–1589.  Web of Science CrossRef CAS Google Scholar
First citationChiba, P., Holzer, W., Landau, M., Bechmann, G., Lorenz, K., Plagens, B., Hitzler, M., Richter, E. & Ecker, G. (1998). J. Med. Chem. 41, 4001–4011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJadeja, R. N., Parihar, S., Vyas, K. & Gupta, V. K. (2012a). J. Mol. Struct. 1013, 86–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationJadeja, R. N., Vyas, K. M., Gupta, V. K., Joshi, R. G. & Ratna Prabha, C. (2012b). Polyhedron, 31, 767–778.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7490.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSharma, N., Vyas, K. M., Jadeja, R. N., Kant, R. & Gupta, V. K. (2012). Acta Cryst. E68, o3036.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. H., Jia, D. Z., Liang, Y. J., Yan, S. L., Ding, Y., Chen, L., Shi, M. Z., Zeng, M. S., Liu, G. F. & Fu, L. W. (2007). Cancer Lett. 249, 256–270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, J. & Raymond, K. N. (2000). Angew. Chem. Int. Ed. E39, 2745–2747.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o955-o956
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds