organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-ethyl­spiro­[imid­az­olidine-4,1′-indane]-2,5-dione

aDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, School of Engineering and Technology, Jain University, Bangalore 562 112, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: benakaprasad@gmail.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 22 July 2014; accepted 24 July 2014; online 1 August 2014)

In the title compound, C13H14N2O2, the C5 ring has an envelope conformation with the C atom adjacent to the quaternary C being the flap. The five atoms comprising the imidazolidine-2,4-dione ring are almost planar (r.m.s. deviation = 0.004 Å). The dihedral angle between the five-membered rings is 89.66 (10)°. In the crystal, inversion-related mol­ecules are connected via {⋯HNCO}2 synthons. These are linked into a helical supra­molecular chain along [010] by C—H⋯O inter­actions.

1. Related literature

For background to the synthesis and biological activity of hydantoin derivatives, see: Manjunath et al. (2011[Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Deepa Naveen, M. V., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2011). J. Struct. Chem. 52, 959-993.], 2012[Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2012). J. Chem. Crystallogr. 42, 505-507.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H14N2O2

  • Mr = 230.26

  • Monoclinic, P 21 /n

  • a = 13.7183 (10) Å

  • b = 6.2040 (5) Å

  • c = 15.1944 (11) Å

  • β = 112.865 (3)°

  • V = 1191.56 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.21 mm

2.2. Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.867

  • 6730 measured reflections

  • 1953 independent reflections

  • 1742 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.07

  • 1953 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H4⋯O7i 0.86 2.05 2.886 (2) 163
C11—H7⋯O7ii 0.93 2.58 3.501 (2) 173
C17—H10⋯O6iii 0.97 2.56 3.392 (2) 143
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The chemistry and properties of hydantoins and their derivatives have been investigated for more than 140 years. The hydantoin moiety which is present in various biologically active compounds is of immense pharmaceutical importance. There has been considerable interest in the synthesis and characterization of hydantoin derivatives as an important class of heterocyclic compounds. Hydantoin derivatives that display interesting activities against a broad range of biological targets have been identified. Activity of hydantoin derivatives depends on the nature of substitution of hydantoin rings. As a part of our ongoing research on hydantoins (Manjunath et al., 2012), the synthesis, characterization and the structural work was undertaken on the title compound and herein we report its crystal structure.

The hydantoin ring in the structure is planar within experimental limits with a maximum deviation of 0.0036 (19) Å for C2 atom from the least squares plane of the hydantoin ring. The N—C bong lengths of N1—C2 = 1.394 (2) Å, N1—C5 = 1.367 (2) Å and N3—C2 = 1.337 (2) Å are comparable with the values reported earlier (Manjunath et al., 2011; Manjunath et al., 2012). The shortened bond length values can be attributed to the π-conjugation in the hydantoin ring.

The study of torsion angles, asymmetric parameters and least squares plane reveals that the five membered ring of the bicyclo octane moiety adopts envelope conformation with C4 atom deviating by 0.1121 (17) Å from the least-squares plane (Cremer & Pople, 1975). This is confirmed by the puckering amplitude Q = 0.2163 (19) Å. The hydantoin ring is in a equatorial position with the five membered ring which is evident by the dihedral angle value of 89.66 (10)°. The structure of the molecule is stabilized by the intermolecular hydrogen bonds of the type N—H···O and C—H···O (Table 1).

Related literature top

For background to the synthesis and biological activity of hydantoin derivatives, see: Manjunath et al. (2011, 2012). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

To a solution of 2, 3-dihydrospiro-[imidazoline-4–1-indene]-2,5-dione (1.0 eq) in N,N-dimethylformamide was added anhydrous K2CO3 (3.0 eq) followed by stirring for 10 min. 1-Bromoethane (1–1.1eq) was then added. The reaction mixture was stirred at room temperature for 8 h and the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. Finally, the organic layer was washed with water and then dried over anhydrous sodium sulfate. The solvent was evaporated. The crude product was purified by column chromatography using chloroform:methanol (9:1) as an eluent. Single crystals were obtained from slow evaporation of its ethylacetate solution.

Refinement top

The C-bound hydrogen atom were fixed geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was included in the model with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound.
1-Ethylspiro[imidazolidine-4,1'-indane]-2,5-dione top
Crystal data top
C13H14N2O2Z = 4
Mr = 230.26F(000) = 488
Monoclinic, P21/nDx = 1.284 Mg m3
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 13.7183 (10) ŵ = 0.72 mm1
b = 6.2040 (5) ÅT = 296 K
c = 15.1944 (11) ÅBlock, colourless
β = 112.865 (3)°0.23 × 0.22 × 0.21 mm
V = 1191.56 (16) Å3
Data collection top
Bruker X8 Proteum
diffractometer
1742 reflections with I > 2σ(I)
Detector resolution: 10.7 pixels mm-1Rint = 0.027
ϕ and ω scansθmax = 64.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1515
Tmin = 0.867, Tmax = 0.867k = 37
6730 measured reflectionsl = 1617
1953 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.277P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1953 reflectionsΔρmax = 0.23 e Å3
156 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0109 (13)
Crystal data top
C13H14N2O2V = 1191.56 (16) Å3
Mr = 230.26Z = 4
Monoclinic, P21/nCu Kα radiation
a = 13.7183 (10) ŵ = 0.72 mm1
b = 6.2040 (5) ÅT = 296 K
c = 15.1944 (11) Å0.23 × 0.22 × 0.21 mm
β = 112.865 (3)°
Data collection top
Bruker X8 Proteum
diffractometer
1953 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1742 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.867Rint = 0.027
6730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
1953 reflectionsΔρmin = 0.21 e Å3
156 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.76182 (10)0.0363 (2)0.94368 (9)0.0601 (5)
O70.55113 (10)0.2685 (2)1.07873 (8)0.0578 (4)
N10.66453 (10)0.0760 (2)1.02847 (9)0.0424 (4)
N30.57906 (12)0.3540 (2)0.94258 (10)0.0519 (5)
C20.59249 (12)0.2404 (3)1.02119 (11)0.0434 (5)
C40.64286 (12)0.2741 (2)0.89160 (11)0.0409 (5)
C50.69854 (12)0.0850 (2)0.95511 (11)0.0414 (5)
C80.70154 (13)0.0797 (3)1.10674 (12)0.0510 (5)
C90.79910 (18)0.0056 (4)1.18691 (15)0.0760 (8)
C100.57793 (11)0.2115 (2)0.78900 (10)0.0383 (4)
C110.50778 (13)0.0411 (3)0.75563 (14)0.0545 (6)
C120.45848 (16)0.0121 (4)0.65796 (16)0.0713 (7)
C130.47830 (15)0.1510 (4)0.59623 (14)0.0741 (8)
C140.54676 (14)0.3205 (4)0.62923 (13)0.0649 (7)
C150.59759 (11)0.3507 (3)0.72680 (11)0.0447 (5)
C160.67693 (15)0.5191 (3)0.77928 (14)0.0586 (6)
C170.72378 (15)0.4361 (3)0.88099 (13)0.0569 (6)
H10.854200.018101.163800.1140*
H20.444500.129300.530700.0890*
H30.784600.126301.212600.1140*
H40.537200.462900.923900.0620*
H50.559000.414000.586700.0780*
H60.411600.101900.633800.0860*
H70.494200.051100.797800.0650*
H80.730900.533200.753200.0700*
H90.643100.657900.776000.0700*
H100.735600.554300.925800.0680*
H110.790800.365100.893500.0680*
H120.646200.103501.130400.0610*
H130.715800.216001.082800.0610*
H140.821300.113701.236000.1140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0622 (8)0.0624 (8)0.0613 (8)0.0248 (6)0.0301 (6)0.0006 (6)
O70.0702 (8)0.0651 (8)0.0502 (7)0.0260 (6)0.0366 (6)0.0125 (6)
N10.0483 (7)0.0410 (7)0.0397 (7)0.0137 (5)0.0190 (6)0.0071 (5)
N30.0724 (9)0.0482 (8)0.0425 (8)0.0301 (7)0.0305 (7)0.0115 (6)
C20.0505 (9)0.0436 (8)0.0382 (8)0.0131 (7)0.0195 (7)0.0021 (7)
C40.0489 (8)0.0398 (8)0.0373 (8)0.0060 (6)0.0205 (7)0.0005 (6)
C50.0428 (8)0.0411 (8)0.0400 (8)0.0059 (7)0.0159 (6)0.0035 (6)
C80.0549 (9)0.0473 (9)0.0523 (10)0.0120 (7)0.0225 (8)0.0144 (8)
C90.0771 (13)0.0799 (15)0.0547 (12)0.0073 (11)0.0079 (10)0.0142 (10)
C100.0360 (7)0.0432 (8)0.0382 (8)0.0043 (6)0.0171 (6)0.0003 (6)
C110.0482 (9)0.0568 (10)0.0589 (11)0.0082 (8)0.0211 (8)0.0026 (8)
C120.0516 (10)0.0831 (14)0.0681 (14)0.0145 (10)0.0112 (10)0.0207 (11)
C130.0497 (10)0.1212 (19)0.0424 (10)0.0016 (12)0.0080 (8)0.0116 (11)
C140.0503 (10)0.1028 (16)0.0408 (10)0.0043 (10)0.0167 (8)0.0148 (10)
C150.0367 (8)0.0571 (10)0.0420 (9)0.0049 (7)0.0171 (7)0.0084 (7)
C160.0587 (10)0.0530 (10)0.0633 (12)0.0060 (8)0.0230 (9)0.0116 (9)
C170.0621 (10)0.0521 (10)0.0516 (10)0.0131 (8)0.0167 (8)0.0065 (8)
Geometric parameters (Å, º) top
O6—C51.211 (2)C14—C151.384 (2)
O7—C21.226 (2)C15—C161.496 (3)
N1—C21.394 (2)C16—C171.515 (3)
N1—C51.367 (2)C8—H120.9700
N1—C81.462 (2)C8—H130.9700
N3—C21.337 (2)C9—H10.9600
N3—C41.462 (2)C9—H30.9600
N3—H40.8600C9—H140.9600
C4—C51.523 (2)C11—H70.9300
C4—C101.515 (2)C12—H60.9300
C4—C171.552 (3)C13—H20.9300
C8—C91.490 (3)C14—H50.9300
C10—C111.386 (2)C16—H80.9700
C10—C151.382 (2)C16—H90.9700
C11—C121.383 (3)C17—H100.9700
C12—C131.376 (3)C17—H110.9700
C13—C141.369 (3)
O6···C17i3.392 (2)C17···H2x3.0300
O6···C14ii3.343 (3)H1···C53.0900
O7···N3iii2.886 (2)H1···C13x3.0900
O6···H112.6800H1···C14x3.0600
O6···H132.6700H2···C13viii3.0700
O6···H5ii2.6900H2···C17ix3.0300
O6···H10i2.5600H2···H11ix2.3200
O7···H122.6200H3···H14iv2.4900
O7···H14iv2.7700H4···O7iii2.0500
O7···H4iii2.0500H4···C2iii2.9000
O7···H7v2.5800H5···O6vi2.6900
N3···O7iii2.886 (2)H7···C53.0100
C14···O6vi3.343 (3)H7···O7v2.5800
C17···O6vii3.392 (2)H8···C15vi2.9900
C2···H4iii2.9000H9···C11vii2.9600
C5···H13.0900H10···O6vii2.5600
C5···H73.0100H11···O62.6800
C11···H9i2.9600H11···H2x2.3200
C13···H2viii3.0700H12···O72.6200
C13···H1ix3.0900H13···O62.6700
C14···H1ix3.0600H14···O7xi2.7700
C15···H8ii2.9900H14···H3xi2.4900
C2—N1—C5111.19 (12)C4—C17—C16106.81 (15)
C2—N1—C8124.02 (14)N1—C8—H12109.00
C5—N1—C8124.75 (14)N1—C8—H13109.00
C2—N3—C4113.05 (14)C9—C8—H12109.00
C2—N3—H4123.00C9—C8—H13109.00
C4—N3—H4123.00H12—C8—H13108.00
N1—C2—N3107.70 (14)C8—C9—H1109.00
O7—C2—N1123.90 (15)C8—C9—H3109.00
O7—C2—N3128.41 (17)C8—C9—H14109.00
N3—C4—C17115.79 (12)H1—C9—H3110.00
C5—C4—C10113.84 (11)H1—C9—H14109.00
C5—C4—C17111.22 (14)H3—C9—H14109.00
C10—C4—C17102.56 (13)C10—C11—H7121.00
N3—C4—C5100.46 (12)C12—C11—H7121.00
N3—C4—C10113.47 (14)C11—C12—H6120.00
O6—C5—N1125.62 (14)C13—C12—H6120.00
N1—C5—C4107.59 (13)C12—C13—H2119.00
O6—C5—C4126.79 (15)C14—C13—H2119.00
N1—C8—C9112.28 (16)C13—C14—H5121.00
C4—C10—C15110.52 (13)C15—C14—H5120.00
C4—C10—C11128.23 (14)C15—C16—H8111.00
C11—C10—C15121.24 (15)C15—C16—H9111.00
C10—C11—C12118.18 (18)C17—C16—H8111.00
C11—C12—C13120.4 (2)C17—C16—H9111.00
C12—C13—C14121.37 (19)H8—C16—H9109.00
C13—C14—C15119.00 (19)C4—C17—H10110.00
C10—C15—C16111.52 (14)C4—C17—H11110.00
C10—C15—C14119.80 (17)C16—C17—H10110.00
C14—C15—C16128.68 (17)C16—C17—H11110.00
C15—C16—C17103.82 (15)H10—C17—H11109.00
C5—N1—C2—O7179.31 (16)N3—C4—C10—C15112.36 (15)
C5—N1—C2—N30.70 (19)C5—C4—C10—C1145.9 (2)
C8—N1—C2—O71.6 (3)C5—C4—C10—C15133.54 (15)
C8—N1—C2—N3178.45 (15)C17—C4—C10—C11166.16 (17)
C2—N1—C5—O6179.35 (16)C17—C4—C10—C1513.28 (17)
C2—N1—C5—C40.48 (17)N3—C4—C17—C16103.10 (17)
C8—N1—C5—O61.6 (3)C5—C4—C17—C16143.07 (15)
C8—N1—C5—C4178.21 (14)C10—C4—C17—C1621.02 (17)
C2—N1—C8—C990.8 (2)C4—C10—C11—C12178.69 (18)
C5—N1—C8—C986.6 (2)C15—C10—C11—C120.7 (3)
C4—N3—C2—O7179.36 (17)C4—C10—C15—C14179.40 (16)
C4—N3—C2—N10.64 (19)C4—C10—C15—C160.3 (2)
C2—N3—C4—C50.34 (17)C11—C10—C15—C140.1 (3)
C2—N3—C4—C10122.24 (15)C11—C10—C15—C16179.18 (16)
C2—N3—C4—C17119.53 (16)C10—C11—C12—C130.7 (3)
N3—C4—C5—O6179.74 (16)C11—C12—C13—C140.0 (4)
N3—C4—C5—N10.09 (16)C12—C13—C14—C150.6 (3)
C10—C4—C5—O658.6 (2)C13—C14—C15—C100.6 (3)
C10—C4—C5—N1121.54 (15)C13—C14—C15—C16178.3 (2)
C17—C4—C5—O656.6 (2)C10—C15—C16—C1713.2 (2)
C17—C4—C5—N1123.20 (14)C14—C15—C16—C17165.8 (2)
N3—C4—C10—C1168.2 (2)C15—C16—C17—C421.00 (19)
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x+3/2, y+1/2, z+5/2; (v) x+1, y, z+2; (vi) x+3/2, y+1/2, z+3/2; (vii) x, y+1, z; (viii) x+1, y, z+1; (ix) x1/2, y+1/2, z1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+3/2, y1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4···O7iii0.862.052.886 (2)163
C11—H7···O7v0.932.583.501 (2)173
C17—H10···O6vii0.972.563.392 (2)143
Symmetry codes: (iii) x+1, y+1, z+2; (v) x+1, y, z+2; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H4···O7i0.862.052.886 (2)163
C11—H7···O7ii0.932.583.501 (2)173
C17—H10···O6iii0.972.563.392 (2)143
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x, y+1, z.
 

Acknowledgements

The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationManjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Deepa Naveen, M. V., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2011). J. Struct. Chem. 52, 959–993.  CrossRef CAS Google Scholar
First citationManjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2012). J. Chem. Crystallogr. 42, 505–507.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds