organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-methyl-3-[2,2,2-tri­fluoro-1-(1-methyl-1H-indol-3-yl)-1-phenyl­eth­yl]-1H-indole

aSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 541004, People's Republic of China
*Correspondence e-mail: zyl8289@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 September 2014; accepted 5 October 2014; online 11 October 2014)

The title compound, C26H21F3N2, was prepared by the palladium-catalysed reaction of (2,2,2-tri­fluoro­eth­yl)benzene with 1-methyl-1H-indole. The dihedral angle between the planes of the indole-ring systems is 52.13 (6)° and the N-methyl groups point away from each other. Three short intra­molecular C—H⋯F contacts are observed.

1. Related literature

For a related structure, see: Zhou et al. (2011[Zhou, Y.-L., Zeng, M.-H., Liu, X.-C., Liang, H. & Kurmoo, M. (2011). Chem. Eur. J. 17, 14084-14093.]). For background to the effect of tri­fluoro­methyl groups, see: Purser et al. (2008[Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320-330.]). For further synthetic details regarding tri­fluoro­methyl groups, see: Shang et al. (2014[Shang, M., Sun, S.-Z., Wang, H.-L., Laforteza, B. N., Dai, H.-X. & Yu, J.-Q. (2014). Angew. Chem. Int. Ed. 53, 10439-10442.]); Miura et al. (2013[Miura, M., Feng, C.-G., Ma, S. & Yu, J.-Q. (2013). Org. Lett. 15, 5258-5261.]). For background to indole derivatives and their various biological activities, see: Lo et al. (2007[Lo, K. K., Sze, K.-S., Tsang, K. H.-K. & Zhu, N.-Y. (2007). Organometallics, 26, 3440-3447.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H21F3N2

  • Mr = 418.45

  • Monoclinic, P 21 /c

  • a = 10.0033 (3) Å

  • b = 12.9427 (3) Å

  • c = 16.2699 (7) Å

  • β = 102.571 (4)°

  • V = 2055.96 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 298 K

  • 0.40 × 0.40 × 0.30 mm

2.2. Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.736, Tmax = 0.792

  • 19108 measured reflections

  • 3404 independent reflections

  • 2777 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.153

  • S = 1.13

  • 3404 reflections

  • 282 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F1 0.93 2.32 2.969 (3) 126
C16—H16⋯F3 0.93 2.51 3.029 (2) 116
C26—H26⋯F2 0.93 2.42 2.989 (2) 120

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Introduction top

The incorporation of tri­fluoro­methyl groups in active organic compounds may enhance the chemical, physical, and biological properties because the addition of tri­fluoro­methyl group can improve the metabolic stability and lipophilicity of various relevant cmopouns (Purser et al., 2008). To date, a number of methods have been developed to install this functional group onto organic compounds, including palladium catalyzed (Shang et al., 2014) and palladium mediated (Miura et al., 2013) cross coupling reactions of aryl halides. In this context, we have tried to develop similar compounds containing tri­fluoro­methyl group. However, the unexpected title compound was obtained in one-step synthesis of reaction of a (2,2,2-tri­fluoro­ethyl) benzene with 1-methyl-1H-indole in such a condition of palladium-catalyzed. The important physiological activities of indole and its derivatives certainly have been also the subject of many studies (Lo et al. 2007).

The molecular structure of the title compound with atom numbering is shown is Fig. 1. All bond lengths and angles may be considered normal (Zhou et al., 2011). All C substituents atoms adopt equatorial orientations. The dihedral angle for neighbouring indole ring and phenyl ring are 2.83 (2) and 0.4° respectively, which evidences the coplanarity between these groups.

In the crystal array three intra­molecular inter­actions C3—H3···F1 (2.969 Å), C16—H16···F3 (3.029 Å) and C26—H26···F2 (2.989 Å) of type hydrogen bonds are observed, and in the crystal packing inter­molecular contacts of non-classical hydrogen bonds are observed growing along the a, b and c axes, resulting in a complex supra­molecular array (Fig. 2).

Experimental top

Synthesis and crystallization top

(2,2,2-tri­fluoro­ethyl) benzene (160 mg, 1.0 mmol) and PdCl2 (10mg) were added to a stirred solution of 1-methyl-1H-indole (393 mg, 3 mmol) in DMF (20 mL). After being refluxed at 373 K for 10 h, the mixture was dissolved in CH2Cl2, washed with saturated sodium bicarbonate solution (10 mL) and the organic layer was separated, dried over magnesium sulfate. Colourless blocks were prepared by slow evaporation of a solution of the title compound (24 mg) in CH2Cl2 (15 ml) and CH3OH (5 ml) at room temperature (yield 10%).

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) and C—H = 0.95–0.99 °.

Related literature top

For a related structure, see: Zhou et al. (2011). For background to the effect of trifluoromethyl groups, see: Purser et al. (2008). For further synthetic details regarding trifluoromethyl groups, see: Shang et al. (2014); Miura et al. (2013). For background to indole derivatives and their various biological activities, see: Lo et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
Plot of the title compound with the atom-numbering scheme. Displacement ellipsoids are represented at 40% probability levels.

A crystal packing view of the title compound, showing the intramolecular C—H···F hydrogen bonds as dashed lines.
1-Methyl-3-[2,2,2-trifluoro-1-(1-methyl-1H-indol-3-yl)-1-phenylethyl]-1H-indole top
Crystal data top
C26H21F3N2F(000) = 872
Mr = 418.45Dx = 1.352 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 10.0033 (3) ÅCell parameters from 7360 reflections
b = 12.9427 (3) Åθ = 4.4–72.2°
c = 16.2699 (7) ŵ = 0.82 mm1
β = 102.571 (4)°T = 298 K
V = 2055.96 (12) Å3Block, colourless
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART
diffractometer
3404 independent reflections
Radiation source: fine-focus sealed tube2777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0356 pixels mm-1θmax = 64.0°, θmin = 4.4°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1515
Tmin = 0.736, Tmax = 0.792l = 1814
19108 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3404 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.23 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
C26H21F3N2V = 2055.96 (12) Å3
Mr = 418.45Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.0033 (3) ŵ = 0.82 mm1
b = 12.9427 (3) ÅT = 298 K
c = 16.2699 (7) Å0.40 × 0.40 × 0.30 mm
β = 102.571 (4)°
Data collection top
Bruker SMART
diffractometer
3404 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2777 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.792Rint = 0.031
19108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.13Δρmax = 0.23 e Å3
3404 reflectionsΔρmin = 0.25 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8971 (2)0.93480 (14)0.14490 (13)0.0485 (5)
C20.90591 (17)0.81813 (12)0.27157 (12)0.0416 (4)
C31.0436 (2)0.79615 (15)0.27931 (16)0.0585 (6)
H31.08660.81320.23590.070*
C41.1181 (2)0.74862 (17)0.35173 (18)0.0725 (6)
H41.21060.73470.35630.087*
C51.0571 (3)0.72209 (18)0.41642 (17)0.0746 (7)
H51.10740.69080.46480.090*
C60.9224 (3)0.7424 (2)0.40857 (16)0.0842 (8)
H60.87960.72430.45180.101*
C70.8474 (2)0.78956 (18)0.33715 (14)0.0653 (6)
H70.75480.80240.33330.078*
C80.81404 (17)0.86376 (12)0.19119 (11)0.0391 (4)
C90.75931 (17)0.77574 (12)0.13113 (11)0.0396 (4)
C100.80448 (18)0.67582 (13)0.14276 (13)0.0439 (5)
H100.86790.65250.18960.053*
C110.7736 (3)0.50593 (14)0.06680 (18)0.0735 (7)
H11A0.83410.48120.11700.110*
H11B0.81620.49750.01980.110*
H11C0.68970.46730.05710.110*
C120.65732 (18)0.67488 (14)0.01879 (13)0.0470 (5)
C130.5755 (2)0.64716 (18)0.05864 (14)0.0593 (6)
H130.57340.57940.07800.071*
C140.4989 (2)0.7221 (2)0.10526 (15)0.0660 (6)
H140.44390.70530.15730.079*
C150.5014 (2)0.82402 (19)0.07616 (14)0.0629 (6)
H150.44700.87370.10880.075*
C160.5830 (2)0.85165 (16)0.00007 (13)0.0526 (5)
H160.58450.91980.01810.063*
C170.66373 (17)0.77767 (13)0.04998 (12)0.0429 (4)
C180.69956 (17)0.92828 (12)0.21498 (12)0.0395 (4)
C190.56319 (18)0.91173 (13)0.18853 (13)0.0448 (5)
H190.52460.86020.15090.054*
C200.3410 (2)0.98931 (19)0.20577 (18)0.0737 (7)
H20A0.30870.98380.25700.111*
H20B0.30230.93470.16810.111*
H20C0.31401.05480.17970.111*
C210.71382 (19)1.01305 (12)0.27379 (11)0.0400 (4)
C220.57992 (19)1.04430 (13)0.27690 (12)0.0432 (5)
C230.5550 (2)1.12422 (14)0.32890 (13)0.0545 (5)
H230.46611.14460.32960.065*
C240.6655 (2)1.17181 (15)0.37903 (14)0.0597 (6)
H240.65141.22530.41440.072*
C250.7983 (2)1.14148 (15)0.37790 (13)0.0588 (6)
H250.87161.17500.41270.071*
C260.8237 (2)1.06329 (14)0.32659 (13)0.0495 (5)
H260.91331.04380.32690.059*
F10.98159 (12)0.88259 (9)0.10610 (8)0.0695 (4)
F20.97670 (12)1.00240 (8)0.19548 (8)0.0601 (4)
F30.81633 (14)0.99051 (9)0.08467 (8)0.0687 (4)
N10.74426 (16)0.61530 (11)0.07676 (11)0.0496 (4)
N20.48958 (16)0.98118 (12)0.22466 (11)0.0487 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (11)0.0426 (10)0.0555 (13)0.0087 (8)0.0209 (10)0.0075 (9)
C20.0391 (9)0.0345 (8)0.0515 (11)0.0010 (7)0.0105 (8)0.0099 (8)
C30.0424 (11)0.0514 (11)0.0826 (16)0.0015 (9)0.0154 (11)0.0027 (11)
C40.0506 (12)0.0616 (12)0.0940 (16)0.0091 (9)0.0089 (11)0.0052 (12)
C50.0772 (14)0.0613 (12)0.0745 (15)0.0202 (11)0.0074 (12)0.0103 (11)
C60.109 (2)0.0920 (18)0.0557 (15)0.0494 (16)0.0258 (14)0.0135 (14)
C70.0639 (13)0.0758 (14)0.0626 (14)0.0301 (11)0.0278 (12)0.0159 (12)
C80.0380 (9)0.0352 (8)0.0462 (11)0.0019 (7)0.0138 (8)0.0044 (8)
C90.0373 (9)0.0374 (8)0.0466 (11)0.0033 (7)0.0148 (8)0.0046 (8)
C100.0398 (9)0.0407 (9)0.0527 (11)0.0009 (7)0.0130 (8)0.0053 (8)
C110.0742 (16)0.0415 (11)0.104 (2)0.0002 (10)0.0176 (15)0.0232 (12)
C120.0421 (10)0.0492 (10)0.0544 (12)0.0077 (8)0.0207 (9)0.0114 (9)
C130.0516 (12)0.0693 (13)0.0602 (14)0.0142 (10)0.0193 (11)0.0225 (12)
C140.0522 (13)0.0952 (17)0.0506 (13)0.0138 (12)0.0114 (10)0.0152 (13)
C150.0555 (13)0.0796 (15)0.0523 (13)0.0036 (11)0.0088 (11)0.0079 (12)
C160.0546 (12)0.0522 (11)0.0520 (12)0.0021 (9)0.0139 (10)0.0031 (9)
C170.0397 (9)0.0451 (9)0.0471 (11)0.0053 (7)0.0160 (8)0.0024 (8)
C180.0379 (9)0.0339 (8)0.0479 (11)0.0002 (7)0.0122 (8)0.0003 (7)
C190.0439 (11)0.0394 (9)0.0536 (12)0.0021 (7)0.0158 (9)0.0043 (8)
C200.0411 (12)0.0856 (16)0.0958 (18)0.0071 (10)0.0178 (12)0.0080 (14)
C210.0449 (10)0.0336 (8)0.0438 (11)0.0030 (7)0.0149 (8)0.0024 (8)
C220.0486 (11)0.0378 (9)0.0458 (11)0.0077 (8)0.0158 (9)0.0063 (8)
C230.0634 (13)0.0467 (10)0.0577 (13)0.0172 (9)0.0229 (11)0.0046 (10)
C240.0797 (15)0.0457 (11)0.0567 (13)0.0118 (10)0.0215 (12)0.0083 (10)
C250.0703 (14)0.0513 (11)0.0533 (13)0.0043 (10)0.0100 (11)0.0078 (10)
C260.0502 (11)0.0474 (10)0.0521 (12)0.0005 (8)0.0136 (10)0.0043 (9)
F10.0729 (9)0.0667 (7)0.0836 (9)0.0156 (6)0.0494 (8)0.0168 (7)
F20.0601 (8)0.0503 (6)0.0739 (8)0.0207 (5)0.0237 (6)0.0113 (6)
F30.0744 (9)0.0618 (7)0.0694 (9)0.0140 (6)0.0146 (7)0.0183 (6)
N10.0489 (9)0.0375 (8)0.0639 (11)0.0034 (7)0.0161 (8)0.0134 (8)
N20.0383 (9)0.0505 (9)0.0599 (11)0.0047 (7)0.0162 (8)0.0011 (8)
Geometric parameters (Å, º) top
C1—F31.337 (2)C12—C171.420 (2)
C1—F21.338 (2)C13—C141.360 (3)
C1—F11.342 (2)C13—H130.9300
C1—C81.541 (2)C14—C151.400 (3)
C2—C71.375 (3)C14—H140.9300
C2—C31.385 (3)C15—C161.374 (3)
C2—C81.543 (3)C15—H150.9300
C3—C41.393 (3)C16—C171.395 (3)
C3—H30.9300C16—H160.9300
C4—C51.370 (4)C18—C191.355 (2)
C4—H40.9300C18—C211.442 (2)
C5—C61.351 (4)C19—N21.373 (2)
C5—H50.9300C19—H190.9300
C6—C71.381 (3)C20—N21.454 (3)
C6—H60.9300C20—H20A0.9600
C7—H70.9300C20—H20B0.9600
C8—C91.523 (2)C20—H20C0.9600
C8—C181.533 (2)C21—C261.400 (3)
C9—C101.369 (2)C21—C221.410 (3)
C9—C171.452 (3)C22—N21.368 (3)
C10—N11.359 (2)C22—C231.393 (3)
C10—H100.9300C23—C241.369 (3)
C11—N11.462 (2)C23—H230.9300
C11—H11A0.9600C24—C251.390 (3)
C11—H11B0.9600C24—H240.9300
C11—H11C0.9600C25—C261.370 (3)
C12—N11.372 (3)C25—H250.9300
C12—C131.392 (3)C26—H260.9300
F3—C1—F2106.37 (15)C13—C14—C15121.1 (2)
F3—C1—F1105.59 (15)C13—C14—H14119.4
F2—C1—F1105.51 (15)C15—C14—H14119.4
F3—C1—C8112.05 (15)C16—C15—C14120.9 (2)
F2—C1—C8113.65 (16)C16—C15—H15119.6
F1—C1—C8113.03 (14)C14—C15—H15119.6
C7—C2—C3117.21 (19)C15—C16—C17120.2 (2)
C7—C2—C8119.02 (16)C15—C16—H16119.9
C3—C2—C8123.56 (17)C17—C16—H16119.9
C2—C3—C4120.4 (2)C16—C17—C12117.33 (18)
C2—C3—H3119.8C16—C17—C9136.51 (17)
C4—C3—H3119.8C12—C17—C9106.16 (16)
C5—C4—C3121.0 (2)C19—C18—C21106.15 (15)
C5—C4—H4119.5C19—C18—C8126.10 (15)
C3—C4—H4119.5C21—C18—C8127.61 (15)
C6—C5—C4118.7 (2)C18—C19—N2110.93 (16)
C6—C5—H5120.6C18—C19—H19124.5
C4—C5—H5120.6N2—C19—H19124.5
C5—C6—C7120.9 (2)N2—C20—H20A109.5
C5—C6—H6119.6N2—C20—H20B109.5
C7—C6—H6119.6H20A—C20—H20B109.5
C2—C7—C6121.8 (2)N2—C20—H20C109.5
C2—C7—H7119.1H20A—C20—H20C109.5
C6—C7—H7119.1H20B—C20—H20C109.5
C9—C8—C18112.66 (14)C26—C21—C22118.04 (16)
C9—C8—C1106.82 (14)C26—C21—C18135.37 (16)
C18—C8—C1108.08 (13)C22—C21—C18106.52 (16)
C9—C8—C2108.79 (13)N2—C22—C23129.75 (18)
C18—C8—C2109.53 (14)N2—C22—C21108.09 (15)
C1—C8—C2110.94 (15)C23—C22—C21122.12 (19)
C10—C9—C17105.90 (15)C24—C23—C22117.91 (19)
C10—C9—C8123.78 (17)C24—C23—H23121.0
C17—C9—C8130.10 (15)C22—C23—H23121.0
N1—C10—C9111.03 (17)C23—C24—C25121.02 (18)
N1—C10—H10124.5C23—C24—H24119.5
C9—C10—H10124.5C25—C24—H24119.5
N1—C11—H11A109.5C26—C25—C24121.4 (2)
N1—C11—H11B109.5C26—C25—H25119.3
H11A—C11—H11B109.5C24—C25—H25119.3
N1—C11—H11C109.5C25—C26—C21119.47 (19)
H11A—C11—H11C109.5C25—C26—H26120.3
H11B—C11—H11C109.5C21—C26—H26120.3
N1—C12—C13129.57 (18)C10—N1—C12108.95 (15)
N1—C12—C17107.95 (16)C10—N1—C11125.48 (18)
C13—C12—C17122.5 (2)C12—N1—C11125.48 (18)
C14—C13—C12118.0 (2)C22—N2—C19108.28 (16)
C14—C13—H13121.0C22—N2—C20126.47 (16)
C12—C13—H13121.0C19—N2—C20125.14 (18)
C7—C2—C3—C41.0 (3)C13—C12—C17—C9179.68 (16)
C8—C2—C3—C4175.69 (17)C10—C9—C17—C16179.4 (2)
C2—C3—C4—C50.4 (3)C8—C9—C17—C164.6 (3)
C3—C4—C5—C60.4 (4)C10—C9—C17—C120.87 (18)
C4—C5—C6—C70.5 (4)C8—C9—C17—C12175.62 (16)
C3—C2—C7—C61.0 (3)C9—C8—C18—C190.9 (2)
C8—C2—C7—C6175.9 (2)C1—C8—C18—C19118.7 (2)
C5—C6—C7—C20.2 (4)C2—C8—C18—C19120.32 (19)
F3—C1—C8—C973.56 (17)C9—C8—C18—C21176.09 (16)
F2—C1—C8—C9165.82 (15)C1—C8—C18—C2166.1 (2)
F1—C1—C8—C945.6 (2)C2—C8—C18—C2154.9 (2)
F3—C1—C8—C1847.91 (19)C21—C18—C19—N21.4 (2)
F2—C1—C8—C1872.7 (2)C8—C18—C19—N2177.41 (16)
F1—C1—C8—C18167.07 (16)C19—C18—C21—C26175.2 (2)
F3—C1—C8—C2168.01 (13)C8—C18—C21—C260.7 (3)
F2—C1—C8—C247.39 (19)C19—C18—C21—C221.6 (2)
F1—C1—C8—C272.83 (19)C8—C18—C21—C22177.52 (16)
C7—C2—C8—C989.0 (2)C26—C21—C22—N2176.26 (15)
C3—C2—C8—C985.5 (2)C18—C21—C22—N21.21 (19)
C7—C2—C8—C1834.5 (2)C26—C21—C22—C231.5 (3)
C3—C2—C8—C18150.95 (16)C18—C21—C22—C23178.98 (16)
C7—C2—C8—C1153.72 (18)N2—C22—C23—C24176.23 (19)
C3—C2—C8—C131.7 (2)C21—C22—C23—C241.0 (3)
C18—C8—C9—C10131.40 (17)C22—C23—C24—C250.1 (3)
C1—C8—C9—C10110.07 (19)C23—C24—C25—C260.2 (3)
C2—C8—C9—C109.8 (2)C24—C25—C26—C210.3 (3)
C18—C8—C9—C1754.7 (2)C22—C21—C26—C251.1 (3)
C1—C8—C9—C1763.9 (2)C18—C21—C26—C25177.68 (18)
C2—C8—C9—C17176.33 (16)C9—C10—N1—C120.4 (2)
C17—C9—C10—N10.82 (19)C9—C10—N1—C11177.06 (19)
C8—C9—C10—N1175.99 (15)C13—C12—N1—C10179.10 (18)
N1—C12—C13—C14179.21 (18)C17—C12—N1—C100.1 (2)
C17—C12—C13—C140.4 (3)C13—C12—N1—C112.5 (3)
C12—C13—C14—C150.3 (3)C17—C12—N1—C11176.47 (19)
C13—C14—C15—C161.0 (3)C23—C22—N2—C19177.94 (18)
C14—C15—C16—C170.8 (3)C21—C22—N2—C190.4 (2)
C15—C16—C17—C120.1 (3)C23—C22—N2—C205.7 (3)
C15—C16—C17—C9179.65 (19)C21—C22—N2—C20176.8 (2)
N1—C12—C17—C16179.56 (15)C18—C19—N2—C220.6 (2)
C13—C12—C17—C160.5 (3)C18—C19—N2—C20175.8 (2)
N1—C12—C17—C90.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F10.932.322.969 (3)126
C16—H16···F30.932.513.029 (2)116
C26—H26···F20.932.422.989 (2)120
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F10.932.322.969 (3)126
C16—H16···F30.932.513.029 (2)116
C26—H26···F20.932.422.989 (2)120
 

Acknowledgements

We thank Guangxi University and Natural Science Foundation of Guangxi Province (grant No. 2014GXNSFBA118048) for supporting this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLo, K. K., Sze, K.-S., Tsang, K. H.-K. & Zhu, N.-Y. (2007). Organometallics, 26, 3440–3447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiura, M., Feng, C.-G., Ma, S. & Yu, J.-Q. (2013). Org. Lett. 15, 5258–5261.  CrossRef CAS PubMed Google Scholar
First citationPurser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShang, M., Sun, S.-Z., Wang, H.-L., Laforteza, B. N., Dai, H.-X. & Yu, J.-Q. (2014). Angew. Chem. Int. Ed. 53, 10439–10442.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y.-L., Zeng, M.-H., Liu, X.-C., Liang, H. & Kurmoo, M. (2011). Chem. Eur. J. 17, 14084–14093.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds