organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-nitro-N-(5-nitro-1,3-thia­zol-2-yl)benzamide

aDepartamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

Edited by A. J. Lough, University of Toronto, Canada (Received 25 October 2014; accepted 5 November 2014; online 12 November 2014)

In the title compound, C10H6N4O5S, the mean plane of the non-H atoms of the central amide fragment C—N—C(=O)—C [r.m.s. deviation = 0.0294 Å] forms dihedral angles of 12.48 (7) and 46.66 (9)° with the planes of the thia­zole and benzene rings, respectively. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C—H⋯O hydrogen bonds link these chains, forming a two-dimensional network, containing R44(28) ring motifs parallel to (100).

1. Related literature

For related structures, see: Bruno et al. (2010[Bruno, F. P., Caira, M. R., Monti, G. A., Kassuha, D. E. & Sperandeo, N. R. (2010). J. Mol. Struct. 984, 51-57.], 2013[Bruno, F. P., Caira, M. R., Martin, E. C., Monti, G. A. & Sperandeo, N. R. (2013). J. Mol. Struct. 1036, 318-325.]); Liu et al. (2013[Liu, X.-W., Zhang, H., Yang, Y.-J., Li, J.-Y. & Zhang, J.-Y. (2013). Acta Cryst. E69, o943.]). For anti­viral and anti­parasitic properties of thia­zolides, see: Korba et al. (2008[Korba, B. E., Montero, A. B., Farrar, K., Gaye, K., Mukerjee, S., Ayers, M. S. & Rossignol, J. F. (2008). Antivir. Res. 77, 56-63.]). For hydrogen-bond details, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H6N4O5S

  • Mr = 294.25

  • Monoclinic, P 21 /c

  • a = 9.6949 (2) Å

  • b = 12.4192 (2) Å

  • c = 9.8763 (2) Å

  • β = 94.948 (1)°

  • V = 1184.70 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 295 K

  • 0.20 × 0.17 × 0.12 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 4714 measured reflections

  • 2424 independent reflections

  • 1867 reflections with I > 2σ(I)

  • Rint = 0.017

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 0.97

  • 2424 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.86 2.09 2.949 (2) 175
C9—H9⋯O2ii 0.93 2.59 3.193 (3) 123
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The crystal structure determination of the title compound (I), is part of a study of a series of fenilbenzamidas derived from 5-nitro-1,3-thiazole carried out by our research group. Crystal structures of compounds similar to (I), such as 2-hydroxy-N-(5-nitro-2-thiazolyl)benzamide, (TIZ) (Bruno et al., 2013), 2-acetyloxy-N-(5-nitro-2-thiazolyl)benzamide, (NTZ) (Bruno et al., 2010) and N-(5-nitro-1,3-thiazol-2-yl)-4(trifluoromethyl)benzamide (NTF) (Liu et al., 2013) can be compared with (I). Both the structures of (TIZ) and (NTZ) have been reported in standard antiviral essays as potent inhibitors for hepatitis B and hepatitis C replication process (Korba et al., 2008). These thiazolides have also been reported as a potent antiparasitic and antiviral agents against intestinal infections caused by various parasitic protozoa (Bruno et al., 2013).

The molecular structure of (I) is shown in Fig. 1. The central amide group, C3—N3—C4(O3)—C5, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0294 Å) and forms dihedral angles of 12.48 (7)° and 46.66 (9)° with the thiazole ring and benzene ring, respectively. The bond lengths and the degree of planarity in the central amide group in (I) are similar to those shown in NTZ, TIZ and NTF. The nitro O1/N1/O2 and O4/N4/O5 groups form dihedral angles of 4.07 (11)° and 47.09 (11)° with the attached thiazole and benzene rings, respectively. In the crystal (Fig. 2), molecules are connected by N—H···O hydrogen bonds and weak C—H···O hydrogen bonds (see Table 1, Nardelli, 1995). N3—H3···O3i hydrogen bonds are responsible for hydrogen-bonded chains in the c-axis direction. The N3—H3 group of the amide moiety in the molecule at (x, y, z) acts as a hydrogen-bond donor to O3 atom of the carbonyl group in the molecule at (x, -y+1/2, z-1/2). In addition, weak hydrogen bonds C9—H9···O2ii, form chains in the b-axis direction. The C9—H9 group of the benzene ring in the molecule at (x, y, z) acts as a hydrogen bond donor to atom O2 in the molecule at (x, y-1, z). It is possible that for this weak hydrogen bond to occur, a rotation of the benzene ring with respect to plane formed by the central amide moiety is required. The combination of the above hydrogen bond interactions generate edge-fused R44(28) rings.

Related literature top

For related structures, see: Bruno et al. (2010, 2013); Liu et al. (2013). For antiviral and antiparasitic properties of thiazolides, see: Korba et al. (2008). For hydrogen-bond details, see: Nardelli (1995).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was synthesized using equimolar amounts of 2-nitrobenzoyl chloride (0.171g, 0.923mmol) and 5-nitro-1,3-thiazole (0.134g). The reagents were dissolved in 7 mL of acetonitrile and the solution was refluxed with constant stirring for 4 hours. A after evaporation of the solvent a brown solid was obtained. The solid was washed with distilled water to remove impurities. Pale-brown crystals of good quality [m.p. 515 (1)K] suitable for single-crystal X-ray diffraction were grown from a solution of the title compound in acetonitrile.

Refinement top

All H atoms were positioned in geometrically idealized positions, with C—H = 0.93 Å and N—H = 0.86 Å, and were refined using a riding-model approximation, with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2. Part of the crystal structure of (I), showing the formation of R44(28) rings within a 2-D hydrogen-bonded network (dashed lines) running parallel to (100) [Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x, y-1, z].
2-Nitro-N-(5-nitro-1,3-thiazol-2-yl)benzamide top
Crystal data top
C10H6N4O5SF(000) = 600
Mr = 294.25Dx = 1.650 Mg m3
Monoclinic, P21/cMelting point: 515(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6949 (2) ÅCell parameters from 2543 reflections
b = 12.4192 (2) Åθ = 2.9–26.4°
c = 9.8763 (2) ŵ = 0.30 mm1
β = 94.948 (1)°T = 295 K
V = 1184.70 (4) Å3Block, brown
Z = 40.20 × 0.17 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
1867 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.4°, θmin = 3.3°
CCD rotation images, thick slices scansh = 1212
4714 measured reflectionsk = 1515
2424 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0901P)2 + 0.3259P]
where P = (Fo2 + 2Fc2)/3
2424 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H6N4O5SV = 1184.70 (4) Å3
Mr = 294.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6949 (2) ŵ = 0.30 mm1
b = 12.4192 (2) ÅT = 295 K
c = 9.8763 (2) Å0.20 × 0.17 × 0.12 mm
β = 94.948 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1867 reflections with I > 2σ(I)
4714 measured reflectionsRint = 0.017
2424 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.97Δρmax = 0.51 e Å3
2424 reflectionsΔρmin = 0.27 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33684 (6)0.47701 (4)0.20035 (5)0.0441 (2)
O30.22493 (17)0.28583 (12)0.26475 (14)0.0502 (4)
N10.4288 (2)0.68288 (15)0.16636 (19)0.0473 (4)
N20.3021 (2)0.46806 (14)0.06343 (17)0.0463 (5)
N30.24829 (18)0.30650 (13)0.04092 (17)0.0420 (4)
H30.23900.27660.03790.050*
O20.4626 (2)0.75643 (14)0.09317 (19)0.0648 (5)
C60.0858 (2)0.07681 (18)0.1823 (2)0.0449 (5)
C50.1907 (2)0.13054 (16)0.12231 (19)0.0400 (5)
C100.2795 (2)0.06972 (18)0.0508 (2)0.0470 (5)
H100.35080.10320.00960.056*
C10.3749 (2)0.58660 (17)0.1039 (2)0.0421 (5)
C30.2907 (2)0.41287 (16)0.04889 (19)0.0395 (5)
C40.2206 (2)0.24675 (16)0.1504 (2)0.0401 (5)
O10.4402 (2)0.68685 (15)0.29129 (17)0.0706 (5)
C80.1593 (3)0.09204 (19)0.1018 (2)0.0576 (6)
H80.14980.16640.09500.069*
N40.0150 (2)0.1388 (2)0.2531 (3)0.0650 (6)
C20.3492 (2)0.56887 (17)0.0307 (2)0.0458 (5)
H20.36240.62120.09570.055*
C90.2627 (3)0.04074 (18)0.0405 (2)0.0536 (6)
H90.32240.08070.00860.064*
O50.0429 (3)0.1061 (2)0.3650 (3)0.1011 (8)
C70.0691 (3)0.03301 (19)0.1736 (2)0.0545 (6)
H70.00150.06700.21530.065*
O40.0647 (2)0.2185 (2)0.1957 (3)0.0905 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0603 (4)0.0397 (3)0.0326 (3)0.0048 (2)0.0058 (2)0.0005 (2)
O30.0742 (11)0.0441 (8)0.0327 (8)0.0080 (7)0.0074 (7)0.0032 (6)
N10.0534 (11)0.0408 (10)0.0477 (11)0.0016 (8)0.0051 (8)0.0001 (8)
N20.0615 (11)0.0440 (10)0.0331 (9)0.0017 (8)0.0025 (8)0.0043 (7)
N30.0559 (11)0.0386 (9)0.0318 (9)0.0032 (8)0.0054 (7)0.0030 (7)
O20.0838 (13)0.0436 (9)0.0664 (11)0.0114 (8)0.0033 (9)0.0092 (8)
C60.0490 (12)0.0471 (12)0.0388 (11)0.0053 (10)0.0044 (9)0.0067 (9)
C50.0490 (12)0.0394 (11)0.0313 (10)0.0029 (9)0.0019 (8)0.0002 (8)
C100.0580 (13)0.0458 (12)0.0382 (11)0.0012 (10)0.0100 (10)0.0018 (9)
C10.0463 (12)0.0400 (11)0.0403 (11)0.0003 (9)0.0060 (9)0.0015 (8)
C30.0453 (11)0.0400 (11)0.0337 (10)0.0002 (9)0.0061 (8)0.0009 (8)
C40.0447 (11)0.0405 (11)0.0349 (10)0.0008 (9)0.0029 (8)0.0020 (8)
O10.1054 (15)0.0597 (11)0.0466 (10)0.0183 (10)0.0060 (9)0.0093 (8)
C80.0830 (18)0.0375 (12)0.0515 (14)0.0025 (12)0.0019 (13)0.0042 (10)
N40.0504 (12)0.0725 (16)0.0738 (15)0.0156 (11)0.0157 (11)0.0284 (12)
C20.0539 (13)0.0413 (12)0.0426 (12)0.0009 (10)0.0074 (10)0.0081 (9)
C90.0742 (16)0.0411 (12)0.0464 (13)0.0118 (11)0.0107 (11)0.0009 (10)
O50.0955 (17)0.130 (2)0.0857 (16)0.0291 (15)0.0539 (14)0.0220 (14)
C70.0674 (15)0.0508 (14)0.0458 (13)0.0162 (11)0.0072 (11)0.0017 (10)
O40.0802 (15)0.0786 (15)0.1127 (18)0.0220 (12)0.0079 (13)0.0326 (14)
Geometric parameters (Å, º) top
S1—C31.720 (2)C5—C101.384 (3)
S1—C11.720 (2)C5—C41.493 (3)
O3—C41.227 (2)C10—C91.384 (3)
N1—O21.227 (2)C10—H100.9300
N1—O11.230 (2)C1—C21.349 (3)
N1—C11.424 (3)C8—C91.372 (4)
N2—C31.317 (2)C8—C71.383 (4)
N2—C21.362 (3)C8—H80.9300
N3—C41.357 (3)N4—O41.218 (4)
N3—C31.384 (3)N4—O51.230 (3)
N3—H30.8600C2—H20.9300
C6—C71.375 (3)C9—H90.9300
C6—C51.391 (3)C7—H70.9300
C6—N41.468 (3)
C3—S1—C186.39 (10)N2—C3—S1117.22 (16)
O2—N1—O1123.74 (19)N3—C3—S1123.06 (15)
O2—N1—C1118.47 (18)O3—C4—N3121.59 (19)
O1—N1—C1117.78 (18)O3—C4—C5122.95 (18)
C3—N2—C2109.22 (17)N3—C4—C5115.42 (17)
C4—N3—C3123.71 (17)C9—C8—C7119.9 (2)
C4—N3—H3118.1C9—C8—H8120.0
C3—N3—H3118.1C7—C8—H8120.0
C7—C6—C5122.4 (2)O4—N4—O5125.2 (3)
C7—C6—N4118.1 (2)O4—N4—C6117.3 (2)
C5—C6—N4119.5 (2)O5—N4—C6117.5 (3)
C10—C5—C6117.7 (2)C1—C2—N2114.44 (18)
C10—C5—C4120.18 (19)C1—C2—H2122.8
C6—C5—C4121.46 (18)N2—C2—H2122.8
C5—C10—C9120.3 (2)C8—C9—C10120.9 (2)
C5—C10—H10119.9C8—C9—H9119.6
C9—C10—H10119.9C10—C9—H9119.6
C2—C1—N1126.41 (19)C6—C7—C8118.8 (2)
C2—C1—S1112.72 (16)C6—C7—H7120.6
N1—C1—S1120.87 (16)C8—C7—H7120.6
N2—C3—N3119.67 (18)
C7—C6—C5—C100.5 (3)C3—N3—C4—O33.8 (3)
N4—C6—C5—C10176.9 (2)C3—N3—C4—C5173.84 (18)
C7—C6—C5—C4170.5 (2)C10—C5—C4—O3127.2 (2)
N4—C6—C5—C412.1 (3)C6—C5—C4—O343.6 (3)
C6—C5—C10—C90.1 (3)C10—C5—C4—N350.3 (3)
C4—C5—C10—C9171.2 (2)C6—C5—C4—N3138.8 (2)
O2—N1—C1—C24.0 (3)C7—C6—N4—O4131.6 (3)
O1—N1—C1—C2176.9 (2)C5—C6—N4—O445.9 (3)
O2—N1—C1—S1175.42 (16)C7—C6—N4—O548.1 (3)
O1—N1—C1—S13.7 (3)C5—C6—N4—O5134.4 (2)
C3—S1—C1—C21.01 (17)N1—C1—C2—N2177.9 (2)
C3—S1—C1—N1178.52 (19)S1—C1—C2—N21.6 (3)
C2—N2—C3—N3178.09 (18)C3—N2—C2—C11.4 (3)
C2—N2—C3—S10.6 (3)C7—C8—C9—C100.8 (4)
C4—N3—C3—N2173.3 (2)C5—C10—C9—C80.7 (3)
C4—N3—C3—S19.4 (3)C5—C6—C7—C80.5 (3)
C1—S1—C3—N20.22 (18)N4—C6—C7—C8177.0 (2)
C1—S1—C3—N3177.18 (19)C9—C8—C7—C60.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.862.092.949 (2)175
C9—H9···O2ii0.932.593.193 (3)123
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.862.092.949 (2)175.4
C9—H9···O2ii0.932.593.193 (3)122.9
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1, z.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationBruno, F. P., Caira, M. R., Martin, E. C., Monti, G. A. & Sperandeo, N. R. (2013). J. Mol. Struct. 1036, 318–325.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruno, F. P., Caira, M. R., Monti, G. A., Kassuha, D. E. & Sperandeo, N. R. (2010). J. Mol. Struct. 984, 51–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKorba, B. E., Montero, A. B., Farrar, K., Gaye, K., Mukerjee, S., Ayers, M. S. & Rossignol, J. F. (2008). Antivir. Res. 77, 56–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X.-W., Zhang, H., Yang, Y.-J., Li, J.-Y. & Zhang, J.-Y. (2013). Acta Cryst. E69, o943.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds