research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [Y6(μ6-O)(μ3-OH)8(H2O)24]I8·8H2O

aINSA, UMR 6226, Institut des Sciences Chimiques de Rennes, 35 708 Rennes, France
*Correspondence e-mail: olivier.guillou@insa-rennes.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 October 2014; accepted 20 November 2014; online 26 November 2014)

The crystal structure of the title compound {systematic name: octa-μ3-hydroxido-μ6-oxido-hexa­kis­[tetra­aqua­yttrium(III)] octa­iodide octa­hydrate}, is characterized by the presence of the centrosymmetric mol­ecular entity [Y6(μ6-O)(μ3-OH)8(H2O)24]8+, in which the six Y3+ cations are arranged octa­hedrally around a μ6-O atom at the centre of the cationic complex. Each of the eight faces of the Y6 octa­hedron is capped by an μ3-OH group in the form of a distorted cube. In the hexa­nuclear entity, the Y3+ cations are coordinated by the central μ6-O atom, the O atoms of four μ3-OH and of four water mol­ecules. The resulting coordination sphere of the metal ions is a capped square-anti­prism. The crystal packing is quite similar to that of the ortho­rhom­bic [Ln6(μ6-O)(μ3-OH)8(H2O)24]I8·8H2O structures with Ln = La—Nd, Eu—Tb, Dy, except that the title compound exhibits a slight monoclinic distortion. The proximity of the cationic complexes and the lattice water mol­ecules leads to the formation of a three-dimensional hydrogen-bonded network of medium strength.

1. Chemical context

Rare-earth-based oxido-hydroxido polynuclear complexes are of inter­est because of their unique luminescence (Chen et al., 2010[Chen, X.-Y., Yang, X. & Holliday, B. J. (2010). Inorg. Chem. 49, 2583-2585.]; Le Natur et al., 2013[Le Natur, F., Calvez, G., Daiguebonne, C., Guillou, G., Bernot, K., Ledoux, J., Le Pollès, L. & Roiland, C. (2013). Inorg. Chem. 52, 6720-6730.]; Petit et al., 2009[Petit, S., Baril-Robert, F., Pilet, G., Reber, C. & Luneau, D. (2009). Dalton Trans. pp. 6809-6815.]), magnetic properties (Abbas et al., 2010[Abbas, G., Lan, Y., Kostakis, G. E., Wernsdorfer, W., Anson, C. E. & Powell, A. K. (2010). Inorg. Chem. 49, 8067-8072.]; Xu et al., 2011[Xu, X., Zhao, L., Xu, G.-F., Guo, Y.-N., Tang, J. & Liu, Z. (2011). Dalton Trans. 40, 6440-6444.]) or structural characteristics (Zheng, 2001[Zheng, Z. (2001). Chem. Commun. pp. 2521-2529.]; Andrews et al., 2013[Andrews, P. C., Gee, W. J., Junk, P. C. & Massi, M. (2013). New J. Chem. 37, 35-48.]). Actually, in this kind of complex, the spatial proximity between metal ions affords cooperative/synergetic effects or energy-transfer mechanisms workable in terms of optical properties. For more than a decade, our group has been involved in the synthesis and the characterization of such rare-earth-based hexa­nuclear complexes (Calvez et al., 2010[Calvez, G., Daiguebonne, C., Guillou, O., Pott, T., Méléard, P. & Le Dret, F. (2010). C. R. Chim. 13, 715-730.]). The hexa­nuclear complexes crystallize in different structures depending on the counter-anion (e.g. nitrate, perchlorate, iodide: Zak et al., 1994[Zak, Z., Unfried, P. & Giester, G. (1994). J. Alloys Compd, 205, 235-242.]; Wang et al., 2000[Wang, R., Carducci, M. D. & Zheng, Z. (2000). Inorg. Chem. 39, 1836-1837.]; Mudring et al., 2006[Mudring, A.-V., Timofte, T. & Babai, A. (2006). Inorg. Chem. 45, 5162-5166.]), the number of lattice water mol­ecules and/or the radius of the involved lanthanide ion. Since the pioneering work of Zak et al. (1994[Zak, Z., Unfried, P. & Giester, G. (1994). J. Alloys Compd, 205, 235-242.]), we have developed a systematic synthetic procedure for the nitrate counter-anion complex with most of the rare earth elements (Calvez et al., 2008[Calvez, G., Guillou, O., Daiguebonne, C., Car, P. E., Guillerm, V., Gérault, Y., Le Dret, F. & Mahé, N. (2008). Inorg. Chim. Acta, 361, 2349-2356.], 2010[Calvez, G., Daiguebonne, C., Guillou, O., Pott, T., Méléard, P. & Le Dret, F. (2010). C. R. Chim. 13, 715-730.]). In this context, we have undertaken the study of a series of complexes based on the iodide counter-anion which have never been obtained with heavier rare earth ions. We report here the synthesis and crystal structure of the yttrium derivative.

2. Structural commentary

In contrast to the ortho­rhom­bic [Ln6(μ6-O)(μ3-OH)8(H2O)24]I8·8H2O structures with Ln = La—Nd, Eu—Tb, Dy (Mudring & Babai, 2005[Mudring, A.-V. & Babai, A. (2005). Z. Anorg. Allg. Chem. 631, 261-263.]; Mudring et al., 2006[Mudring, A.-V., Timofte, T. & Babai, A. (2006). Inorg. Chem. 45, 5162-5166.]; Rukk et al., 2009[Rukk, N. S., Al'bov, D. V., Skryabina, A. Y., Osipov, R. A. & Alikberova, L. Y. (2009). Russ. J. Coord. Chem. 35, 12-14.]), the crystal structure of the yttrium member of this series has monoclinic symmetry, with the monoclinic angle close to 90° (Table 2[link]). The asymmetric unit of [Y6(μ6-O)(μ3-OH)8(H2O)24]I8·8H2O contains half of the formula unit because the complete complex is situated on a centre of inversion. Three independent yttrium cations (Y1, Y2 and Y3), four oxygen atoms from μ3-hydroxyl groups (O1, O2, O3, O4), twelve oxygen atoms of terminal aqua ligands coordin­ating to each yttrium cation (Y1: O5, O6, O7, O8; Y2: O9, O10, O11, O12; Y3: O13, O14, O15 O16), one μ6-bridging O atom (O) lying on an inversion centre, four iodide anions (I1, I2, I3, I4) and four oxygen atoms of lattice water mol­ecules (OW1, OW2, OW3, OW4) are present in the crystal structure (Fig. 1[link]). Calculations with the SHAPE software suite (Alvarez et al., 2005[Alvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693-1708.]) indicate that each of the coordination polyhedra surrounding the Y3+ ions is best described as a spherical capped square-anti­prism (Ruiz-Martínez et al., 2010[Ruiz-Martínez, A., Casanova, D. & Alvarez, S. (2010). Chem. Eur. J. 16, 6567-6581.]) with idealized C4v symmetry. However, the true symmetry of this structural fragment in the title structure is C1.

Table 2
Experimental details

Crystal data
Chemical formula [Y6O(OH)8(H2O)24]I8·8H2O
Mr 2277.24
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 12.9099 (2), 14.8050 (2), 14.7933 (3)
β (°) 90.821 (1)
V3) 2827.17 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.54
Crystal size (mm) 0.18 × 0.14 × 0.1
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.])
Tmin, Tmax 0.018, 0.091
No. of measured, independent and observed [I > 2σ(I)] reflections 35352, 6374, 5449
Rint 0.124
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.178, 1.11
No. of reflections 6374
No. of parameters 251
  w = 1/[σ2(Fo2) + (0.0487P)2 + 43.8859P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 2.62, −1.83
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
The asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 50% probability level.

Since the μ6-O atom is located on an inversion centre and binds to six Y3+ cations, a slightly distorted anion-centred [OY6] octa­hedron results (Fig. 2[link]). The average of the Y⋯Y distances between adjacent cations in the octa­hedron is found to be 3.536 Å. The mean Y—(μ6-O) distance is 2.537 Å, while the averaged Y—(μ3-OH) is 2.34 Å. The hydroxide ions are situated above the eight faces of the OY6 octa­hedron and form a distorted cube around the octa­hedron (Fig. 2[link]).

[Figure 2]
Figure 2
The OY6 octa­hedron in the complex [Y6(μ6-O)(μ3-OH)8(H2O)24]8+ cation. Y atoms are green and O atoms are red.

3. Supra­molecular features

The hexa­nuclear [Y6(μ6-O)(μ3-OH)8(H2O)24]8+ units are arranged in a body-centred fashion in the crystal structure. Each of these units is surrounded by twelve iodide anions, connecting the units to each other through Coulombic inter­actions. Although the hydrogen atoms of the water mol­ecules and hydroxide groups could not be located, the range of O⋯O distances between the cationic complex and the lattice water mol­ecules suggest the formation of medium-strength hydrogen bonds (Table 1[link]). These inter­actions lead to the formation of a three-dimensional network in the structure (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å)

DA DA
O7⋯OW2 2.646 (4)
O10⋯OW3 2.764 (1)
O13⋯OW4 2.803 (8)
O15⋯OW1 2.767 (2)
O16⋯OW4 2.836 (2)
O16⋯OW1 2.851 (6)
[Figure 3]
Figure 3
The crystal structure of [Y6(μ6-O)(μ3-OH)8(H2O)24]I8·8H2O in projections along [100], [010] and [001], respectively, from left to right. Y atoms are green, O atoms are red and I atoms are yellow.

4. Synthesis and crystallization

Yttrium oxide Y2O3 (2 g, Strem Chemicals 4M) was dissolved in fresh hydro­iodic acid (9 ml, 57wt%, unstabilized from Acros Organics) under gentle heating (323 K). If the acid used is not fresh, it should be distilled twice. The clear solution was exposed to air under isothermal conditions (6 weeks). At this stage, the pH of the solution remains acidic. Large pale-yellow polyhedral crystals were separated manually from the solution and were mounted into a glass capillary.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms from the water mol­ecules or hydroxide could not be assigned reliably and thus were not included in the refinement. However, they were taken into account for the chemical formula sum, moiety, weight, as well as for the absorption coefficient and the number of electrons in the unit cell.

Supporting information


Chemical context top

Rare-earth-based oxido-hydroxido polynuclear complexes are of inter­est because of their unique luminescence (Chen et al., 2010; Le Natur et al., 2013; Petit et al., 2009), magnetic properties (Abbas et al., 2010; Xu et al., 2011) or structural characteristics (Zheng, 2001; Andrews et al., 2013). Actually, in this kind of complex, the spatial proximity between metal ions affords cooperative/synergetic effects or energy-transfer mechanisms workable in terms of optical properties. For more than a decade, our group has been involved in the synthesis and the characterization of such rare-earth-based hexanuclear complexes (Calvez et al., 2010). The hexanuclear complexes crystallize in different structures depending on the counter-anion (e.g. nitrate, perchlorate, iodide: Zak et al., 1994; Wang et al., 2000; Mudring et al., 2006), the number of lattice water molecules and/or the radius of the involved lanthanide ion. Since the pioneering work of Zak et al. (1994), we have developed a systematic synthetic procedure for the nitrate counter-anion complex with most of the rare earth elements (Calvez et al., 2008, 2010). In this context, we have undertaken the study of a series of complexes based on the iodide counter-anion which have never been obtained with heavier rare earth ions. We report here the synthesis and crystal structure of the yttrium derivative.

Structural commentary top

In contrast to the orthorhombic [Ln66-O)(µ3-OH)8(H2O)24]I8·8H2O structures with Ln = La—Nd, Eu—Tb, Dy (Mudring & Babai, 2005; Mudring et al., 2006; Rukk et al., 2009), the crystal structure of the yttrium member of this series has monoclinic symmetry, with the monoclinic angle close to 90°. The asymmetric unit of [Y66-O)(µ3-OH)8(H2O)24]I8·8H2O contains half of the formula unit because the complete complex is situated on a centre of inversion. Three independent yttrium cations (Y1, Y2 and Y3), four oxygen atoms from µ3-hydroxyl groups (O1, O2, O3, O4), twelve oxygen atoms of terminal aqua ligands coordinating to each yttrium cation (Y1: O5, O6, O7, O8; Y2: O9, O10, O11, O12; Y3: O13, O14, O15 O16), one µ6-bridging O atom (O) lying on an inversion centre, four iodide anions (I1, I2, I3, I4) and four oxygen atoms of lattice water molecules (OW1, OW2, OW3, OW4) are present in the crystal structure (Fig. 1). Calculations with the SHAPE software suite (Alvarez et al., 2005) indicate that each of the coordination polyhedra surrounding the Y3+ ions is best described as a spherical capped square-anti­prism (Ruiz-Martínez et al., 2010) with idealized C4v symmetry. However, the true symmetry of this structural fragment in the title structure is C1.

Since the µ6-O atom is located on an inversion centre and binds to six Y3+ cations, a slightly distorted anion-centred [OY6] o­cta­hedron results (Fig. 2). The average of the Y···Y distances between adjacent cations in the o­cta­hedron is found to be 3.536 Å. The mean Y—(µ6-O) distance is 2.537 Å, while the averaged Y—(µ3-OH) is 2.34 Å. The hydroxide ions are situated above the eight faces of the OY6 o­cta­hedron and form a distorted cube around the o­cta­hedron (Fig. 2).

Supra­molecular features top

The hexanuclear [Y66-O)(µ3-OH)8(H2O)24]8+ units are arranged in a body-centred fashion in the crystal structure. Each of these units is surrounded by twelve iodide anions, connecting the units to each other through Coulombic inter­actions. Although the hydrogen atoms of the water molecules and hydroxide groups could not be located, the range of O···O distances between the cationic complex and the lattice water molecules suggest the formation of medium-strength hydrogen bonds (Table 1). These inter­actions lead to the formation of a three-dimensional network in the structure (Fig. 3).

Synthesis and crystallization top

Yttrium oxide Y2O3 (2 g, Strem Chemicals 4M) was dissolved in fresh hydro­iodic acid (9 ml, 57wt%, unstabilized from Acros Organics) under gentle heating (323 K). If the acid used is not fresh, it should be distilled twice. The clear solution was exposed to air under isothermal conditions (6 weeks). At this stage, the pH of the solution remains acidic. Large pale-yellow polyhedral crystals were separated manually from the solution and were mounted into a glass capillary.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms from the water molecules or hydroxide could not be assigned reliably and thus were not included in the refinement. However, they were taken into account for the chemical formula sum, moiety, weight, as well as for the absorption coefficient and the number of electrons in the unit cell.

Related literature top

For related literature, see: Abbas et al. (2010); Alvarez et al. (2005); Andrews et al. (2013); Calvez et al. (2008, 2010); Chen et al. (2010); Le Natur, Calvez, Daiguebonne, Guillou, Bernot, Ledoux, Le Pollès & Roiland (2013); Mudring & Babai (2005); Mudring et al. (2006); Petit et al. (2009); Ruiz-Martínez, Casanova & Alvarez (2010); Rukk et al. (2009); Wang et al. (2000); Xu et al. (2011); Zak et al. (1994); Zheng (2001).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 50% probability level.

The OY6 octahedron in the complex [Y66-O)(µ3-OH)8(H2O)24]8+ cation. Y atoms are green and O atoms are red.

The crystal structure of [Y66-O)(µ3-OH)8(H2O)24]I8·8H2O in projections along [100], [010] and [001], respectively, from left to right. Y atoms are green, O atoms are red and I atoms are yellow.
Octa-µ3-hydroxido-µ6-oxido-hexakis[tetraaquayttrium(III)] octaiodide octahydrate top
Crystal data top
[Y6O(OH)8(H2O)24]I8·8H2OF(000) = 2116
Mr = 2277.24Dx = 2.675 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 62388 reflections
a = 12.9099 (2) Åθ = 2.9–27.5°
b = 14.8050 (2) ŵ = 10.54 mm1
c = 14.7933 (3) ÅT = 293 K
β = 90.821 (1)°Block, colorless
V = 2827.17 (8) Å30.18 × 0.14 × 0.1 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
6374 independent reflections
Radiation source: fine-focus sealed tube5449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
CCD rotation images, thick slices scansθmax = 27.4°, θmin = 3.1°
Absorption correction: gaussian
(Coppens et al., 1965)
h = 1616
Tmin = 0.018, Tmax = 0.091k = 1918
35352 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.0487P)2 + 43.8859P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.178(Δ/σ)max = 0.001
S = 1.11Δρmax = 2.62 e Å3
6374 reflectionsΔρmin = 1.83 e Å3
251 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00258 (19)
Crystal data top
[Y6O(OH)8(H2O)24]I8·8H2OV = 2827.17 (8) Å3
Mr = 2277.24Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.9099 (2) ŵ = 10.54 mm1
b = 14.8050 (2) ÅT = 293 K
c = 14.7933 (3) Å0.18 × 0.14 × 0.1 mm
β = 90.821 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6374 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
5449 reflections with I > 2σ(I)
Tmin = 0.018, Tmax = 0.091Rint = 0.124
35352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0487P)2 + 43.8859P]
where P = (Fo2 + 2Fc2)/3
S = 1.11Δρmax = 2.62 e Å3
6374 reflectionsΔρmin = 1.83 e Å3
251 parameters
Special details top

Experimental. 6336 sampling points

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.50083 (7)1.00150 (6)1.16560 (6)0.0335 (2)
Y20.46090 (7)1.16586 (6)0.99794 (6)0.0317 (2)
Y30.30677 (7)0.96613 (6)0.99944 (6)0.0323 (2)
I10.49148 (9)0.82346 (8)0.49868 (6)0.0707 (3)
I20.28137 (7)0.72379 (7)0.24171 (7)0.0650 (3)
I30.48625 (14)0.50289 (7)0.14980 (8)0.0932 (4)
I40.78359 (8)0.78678 (8)0.26729 (8)0.0792 (4)
O0.50001.00001.00000.0293 (17)
O10.3633 (5)1.0806 (4)1.0999 (4)0.0328 (13)
O20.4097 (5)0.8826 (4)1.1002 (4)0.0313 (13)
O30.3622 (5)1.0773 (4)0.8978 (4)0.0321 (13)
O40.4081 (5)0.8803 (4)0.9008 (4)0.0335 (13)
O50.6563 (13)1.0251 (17)1.2721 (11)0.150 (8)
O60.5306 (14)0.8859 (13)1.2758 (10)0.136 (7)
O70.3511 (12)0.9672 (11)1.2711 (9)0.106 (5)
O80.4775 (9)1.1210 (7)1.2708 (6)0.069 (3)
O90.4402 (8)1.2676 (6)1.1305 (7)0.064 (2)
O100.2918 (7)1.2392 (6)0.9958 (7)0.065 (2)
O110.4402 (7)1.2644 (6)0.8649 (7)0.060 (2)
O120.5819 (8)1.2981 (6)0.9988 (7)0.066 (2)
O130.1968 (6)0.9524 (7)1.1339 (6)0.058 (2)
O140.2216 (8)0.8163 (7)1.0027 (8)0.075 (3)
O150.1950 (6)0.9452 (7)0.8664 (6)0.059 (2)
O160.1578 (7)1.0700 (7)0.9987 (7)0.063 (2)
OW10.0079 (7)0.8851 (8)0.8689 (7)0.070 (3)
OW20.2083 (19)0.5431 (17)0.0762 (13)0.164 (8)
OW30.7261 (18)0.5806 (14)0.051 (2)0.216 (13)
OW40.9948 (7)0.8828 (8)0.1328 (7)0.069 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0380 (5)0.0307 (5)0.0318 (4)0.0014 (3)0.0006 (3)0.0000 (3)
Y20.0313 (4)0.0271 (4)0.0367 (5)0.0001 (3)0.0010 (3)0.0003 (3)
Y30.0297 (4)0.0292 (4)0.0381 (5)0.0001 (3)0.0011 (3)0.0003 (3)
I10.0799 (7)0.0740 (7)0.0580 (5)0.0010 (5)0.0028 (4)0.0014 (4)
I20.0624 (5)0.0599 (5)0.0731 (6)0.0069 (4)0.0146 (4)0.0202 (4)
I30.1624 (13)0.0473 (5)0.0701 (7)0.0080 (6)0.0074 (7)0.0003 (4)
I40.0647 (6)0.0771 (7)0.0950 (8)0.0062 (5)0.0237 (5)0.0377 (6)
O0.035 (4)0.021 (4)0.032 (4)0.001 (3)0.002 (3)0.002 (3)
O10.032 (3)0.028 (3)0.039 (3)0.001 (2)0.001 (3)0.003 (3)
O20.029 (3)0.023 (3)0.042 (3)0.001 (2)0.000 (3)0.005 (3)
O30.029 (3)0.033 (3)0.034 (3)0.002 (2)0.003 (2)0.003 (3)
O40.029 (3)0.033 (3)0.038 (3)0.000 (2)0.006 (3)0.000 (3)
O50.099 (11)0.26 (3)0.090 (11)0.009 (13)0.001 (9)0.023 (13)
O60.157 (15)0.171 (17)0.080 (9)0.027 (12)0.002 (9)0.065 (10)
O70.127 (11)0.120 (11)0.070 (7)0.043 (9)0.026 (7)0.005 (7)
O80.101 (8)0.057 (6)0.050 (5)0.002 (5)0.000 (5)0.018 (4)
O90.064 (6)0.051 (5)0.078 (6)0.003 (4)0.004 (5)0.020 (5)
O100.054 (5)0.052 (5)0.089 (7)0.018 (4)0.004 (5)0.006 (5)
O110.058 (5)0.047 (5)0.075 (6)0.001 (4)0.006 (4)0.020 (4)
O120.067 (6)0.048 (5)0.082 (7)0.007 (4)0.004 (5)0.007 (5)
O130.041 (4)0.073 (6)0.061 (5)0.000 (4)0.005 (4)0.010 (4)
O140.062 (6)0.065 (6)0.098 (8)0.027 (5)0.003 (5)0.002 (6)
O150.045 (4)0.075 (6)0.058 (5)0.004 (4)0.018 (4)0.005 (4)
O160.041 (4)0.079 (6)0.071 (6)0.023 (4)0.002 (4)0.006 (5)
OW10.051 (5)0.086 (7)0.072 (6)0.006 (5)0.004 (4)0.009 (5)
OW20.19 (2)0.19 (2)0.114 (14)0.012 (17)0.028 (13)0.005 (14)
OW30.158 (19)0.091 (13)0.40 (4)0.027 (13)0.09 (2)0.004 (19)
OW40.052 (5)0.086 (7)0.068 (6)0.010 (5)0.006 (4)0.010 (5)
Geometric parameters (Å, º) top
Y1—O22.321 (6)Y2—O112.462 (9)
Y1—O3i2.326 (6)Y2—O92.490 (9)
Y1—O12.328 (7)Y2—O122.506 (9)
Y1—O4i2.332 (7)Y2—O2.5070 (9)
Y1—O82.378 (9)Y3—O22.336 (6)
Y1—O62.390 (14)Y3—O32.347 (6)
Y1—O2.4497 (9)Y3—O42.348 (7)
Y1—O72.553 (13)Y3—O12.362 (6)
Y1—O52.557 (18)Y3—O152.443 (8)
Y2—O2i2.341 (6)Y3—O162.462 (8)
Y2—O32.341 (6)Y3—O132.469 (8)
Y2—O4i2.344 (6)Y3—O142.477 (10)
Y2—O12.347 (6)Y3—O2.5444 (9)
Y2—O102.438 (9)
O2—Y1—O3i80.5 (2)O10—Y2—O128.0 (2)
O2—Y1—O180.1 (2)O11—Y2—O127.6 (2)
O3i—Y1—O1131.5 (2)O9—Y2—O127.3 (3)
O2—Y1—O4i130.4 (2)O12—Y2—O129.8 (2)
O3i—Y1—O4i79.4 (2)O2—Y3—O3127.1 (2)
O1—Y1—O4i80.4 (2)O2—Y3—O478.1 (2)
O2—Y1—O8140.2 (3)O3—Y3—O478.7 (2)
O3i—Y1—O8137.8 (3)O2—Y3—O179.1 (2)
O1—Y1—O878.2 (3)O3—Y3—O178.8 (2)
O4i—Y1—O877.7 (3)O4—Y3—O1127.5 (2)
O2—Y1—O679.4 (5)O2—Y3—O15140.4 (3)
O3i—Y1—O678.5 (5)O3—Y3—O1575.8 (3)
O1—Y1—O6139.4 (5)O4—Y3—O1576.0 (3)
O4i—Y1—O6138.4 (5)O1—Y3—O15140.5 (3)
O8—Y1—O696.2 (6)O2—Y3—O16140.4 (3)
O2—Y1—O65.23 (16)O3—Y3—O1678.7 (3)
O3i—Y1—O65.46 (16)O4—Y3—O16141.0 (3)
O1—Y1—O66.07 (16)O1—Y3—O1677.8 (3)
O4i—Y1—O65.21 (16)O15—Y3—O1667.9 (3)
O8—Y1—O131.5 (3)O2—Y3—O1376.8 (3)
O6—Y1—O132.4 (5)O3—Y3—O13139.3 (3)
O2—Y1—O773.7 (4)O4—Y3—O13142.0 (3)
O3i—Y1—O7137.2 (4)O1—Y3—O1374.2 (3)
O1—Y1—O777.0 (4)O15—Y3—O13107.4 (3)
O4i—Y1—O7142.9 (4)O16—Y3—O1366.2 (3)
O8—Y1—O769.2 (4)O2—Y3—O1476.3 (3)
O6—Y1—O763.7 (6)O3—Y3—O14141.2 (3)
O—Y1—O7128.1 (3)O4—Y3—O1477.2 (3)
O2—Y1—O5138.5 (6)O1—Y3—O14139.8 (3)
O3i—Y1—O573.9 (4)O15—Y3—O1469.2 (4)
O1—Y1—O5140.9 (6)O16—Y3—O14102.3 (4)
O4i—Y1—O576.2 (5)O13—Y3—O1469.5 (4)
O8—Y1—O566.5 (5)O2—Y3—O63.48 (15)
O6—Y1—O564.0 (7)O3—Y3—O63.63 (15)
O—Y1—O5127.5 (4)O4—Y3—O63.47 (15)
O7—Y1—O5104.2 (5)O1—Y3—O64.06 (15)
O2i—Y2—O379.8 (2)O15—Y3—O126.5 (2)
O2i—Y2—O4i78.0 (2)O16—Y3—O130.0 (3)
O3—Y2—O4i128.4 (2)O13—Y3—O126.1 (2)
O2i—Y2—O1128.9 (2)O14—Y3—O127.7 (3)
O3—Y2—O179.2 (2)Y1i—O—Y1180.0
O4i—Y2—O179.7 (2)Y1i—O—Y2i90.07 (3)
O2i—Y2—O10140.8 (3)Y1—O—Y2i89.93 (3)
O3—Y2—O1076.2 (3)Y1i—O—Y289.93 (3)
O4i—Y2—O10140.9 (3)Y1—O—Y290.07 (3)
O1—Y2—O1076.1 (3)Y2i—O—Y2180.0
O2i—Y2—O1175.9 (3)Y1i—O—Y3i89.73 (3)
O3—Y2—O1177.0 (3)Y1—O—Y3i90.27 (3)
O4i—Y2—O11138.8 (3)Y2i—O—Y3i89.76 (3)
O1—Y2—O11141.2 (3)Y2—O—Y3i90.24 (3)
O10—Y2—O1168.8 (3)Y1i—O—Y390.27 (3)
O2i—Y2—O9139.4 (3)Y1—O—Y389.73 (3)
O3—Y2—O9140.6 (3)Y2i—O—Y390.24 (3)
O4i—Y2—O976.0 (3)Y2—O—Y389.76 (3)
O1—Y2—O975.8 (3)Y3i—O—Y3180.0
O10—Y2—O968.6 (3)Y1—O1—Y297.2 (2)
O11—Y2—O9105.1 (4)Y1—O1—Y397.4 (2)
O2i—Y2—O1278.0 (3)Y2—O1—Y398.4 (2)
O3—Y2—O12140.8 (3)Y1—O2—Y398.3 (2)
O4i—Y2—O1277.3 (3)Y1—O2—Y2i97.4 (2)
O1—Y2—O12139.3 (3)Y3—O2—Y2i99.9 (2)
O10—Y2—O12102.2 (3)Y1i—O3—Y297.3 (2)
O11—Y2—O1266.5 (3)Y1i—O3—Y398.5 (2)
O9—Y2—O1266.3 (3)Y2—O3—Y399.0 (2)
O2i—Y2—O64.02 (15)Y1i—O4—Y2i97.2 (2)
O3—Y2—O64.31 (16)Y1i—O4—Y398.3 (2)
O4i—Y2—O64.12 (16)Y2i—O4—Y399.4 (2)
O1—Y2—O64.86 (16)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å) top
D—H···AD···A
O7···OW22.646 (4)
O10···OW32.764 (1)
O13···OW42.803 (8)
O15···OW12.767 (2)
O16···OW42.836 (2)
O16···OW12.851 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD···A
O7···OW22.646 (4)
O10···OW32.764 (1)
O13···OW42.803 (8)
O15···OW12.767 (2)
O16···OW42.836 (2)
O16···OW12.851 (6)

Experimental details

Crystal data
Chemical formula[Y6O(OH)8(H2O)24]I8·8H2O
Mr2277.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.9099 (2), 14.8050 (2), 14.7933 (3)
β (°) 90.821 (1)
V3)2827.17 (8)
Z2
Radiation typeMo Kα
µ (mm1)10.54
Crystal size (mm)0.18 × 0.14 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.018, 0.091
No. of measured, independent and
observed [I > 2σ(I)] reflections
35352, 6374, 5449
Rint0.124
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.178, 1.11
No. of reflections6374
No. of parameters251
w = 1/[σ2(Fo2) + (0.0487P)2 + 43.8859P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.62, 1.83

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The Centre de DIFractométrie X of the University of Rennes 1 is acknowledged for the data collection. FLeN thanks Région Bretagne for funding (ARED Ln6 Program).

References

First citationAbbas, G., Lan, Y., Kostakis, G. E., Wernsdorfer, W., Anson, C. E. & Powell, A. K. (2010). Inorg. Chem. 49, 8067–8072.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAlvarez, S., Alemany, P., Casanova, D., Cirera, J., Llunell, M. & Avnir, D. (2005). Coord. Chem. Rev. 249, 1693–1708.  Web of Science CrossRef CAS Google Scholar
First citationAndrews, P. C., Gee, W. J., Junk, P. C. & Massi, M. (2013). New J. Chem. 37, 35–48.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCalvez, G., Daiguebonne, C., Guillou, O., Pott, T., Méléard, P. & Le Dret, F. (2010). C. R. Chim. 13, 715–730.  Web of Science CrossRef CAS Google Scholar
First citationCalvez, G., Guillou, O., Daiguebonne, C., Car, P. E., Guillerm, V., Gérault, Y., Le Dret, F. & Mahé, N. (2008). Inorg. Chim. Acta, 361, 2349–2356.  Web of Science CrossRef CAS Google Scholar
First citationChen, X.-Y., Yang, X. & Holliday, B. J. (2010). Inorg. Chem. 49, 2583–2585.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLe Natur, F., Calvez, G., Daiguebonne, C., Guillou, G., Bernot, K., Ledoux, J., Le Pollès, L. & Roiland, C. (2013). Inorg. Chem. 52, 6720–6730.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMudring, A.-V. & Babai, A. (2005). Z. Anorg. Allg. Chem. 631, 261–263.  Web of Science CrossRef CAS Google Scholar
First citationMudring, A.-V., Timofte, T. & Babai, A. (2006). Inorg. Chem. 45, 5162–5166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPetit, S., Baril-Robert, F., Pilet, G., Reber, C. & Luneau, D. (2009). Dalton Trans. pp. 6809–6815.  Web of Science CSD CrossRef Google Scholar
First citationRuiz-Martínez, A., Casanova, D. & Alvarez, S. (2010). Chem. Eur. J. 16, 6567–6581.  PubMed Google Scholar
First citationRukk, N. S., Al'bov, D. V., Skryabina, A. Y., Osipov, R. A. & Alikberova, L. Y. (2009). Russ. J. Coord. Chem. 35, 12–14.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R., Carducci, M. D. & Zheng, Z. (2000). Inorg. Chem. 39, 1836–1837.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, X., Zhao, L., Xu, G.-F., Guo, Y.-N., Tang, J. & Liu, Z. (2011). Dalton Trans. 40, 6440–6444.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZak, Z., Unfried, P. & Giester, G. (1994). J. Alloys Compd, 205, 235–242.  CAS Google Scholar
First citationZheng, Z. (2001). Chem. Commun. pp. 2521–2529.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds