organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o95-o96

The crystal structure of 1,5-di­benzyl-1H-pyrazolo­[3,4-d]pyrimidine-4(5H)-thione

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bMedicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: em_essassi@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 24 December 2014; accepted 31 December 2014; online 10 January 2015)

In the title compound, C19H16N4S, the pyrazolo­[3,4-d]pyrimidine ring is close to being planar, with the greatest deviation from the mean plane being 0.023 (2) Å for the C atom bearing the thione S atom. The two phenyl rings are nearly perpendicular to the fused ring system [dihedral angles = 71.4 (2) and 78.1 (2)°], but are oriented in opposite directions; the dihedral angle between the phenyl rings is 32.22 (16)°. In the crystal, linear supra­molecular chains along [101] are sustained by C—H⋯S inter­actions.

1. Related literature

For pharmacological and biochemical properties of pyrazolo­[1,5-a]pyrimidine, see: Orlikova et al. (2014[Orlikova, B., Chaouni, W., Schumacher, M., Aadil, M., Diederich, M. & Kirsch, G. (2014). Eur. J. Med. Chem. 85, 450-457.]); Yuan et al. (2013[Yuan, L., Song, C., Wei, , Li, Y., Hu, , Li, Y., Dong, L., Yin, S. & Fan, (2013). Eur. J. Med. Chem. 67, 152-157.]); Rashad et al. (2011[Rashad, A. E., Mahmoud, A. E. & Ali, M. M. (2011). Eur. J. Med. Chem. 46, 1019-1026.]). For related structures, see: El Fal et al. (2013[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.], 2014[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o1005-o1006.]); Alsubari et al. (2011[Alsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926.]); Ramli et al. (2012[Ramli, Y., Zouihri, H., Azougagh, M., Moussaif, A. & Essassi, E. M. (2012). Acta Cryst. E68, o396.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H16N4S

  • Mr = 332.42

  • Monoclinic, P 21

  • a = 4.4953 (12) Å

  • b = 29.140 (8) Å

  • c = 6.3889 (16) Å

  • β = 97.860 (9)°

  • V = 829.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.37 × 0.34 × 0.29 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.589, Tmax = 0.746

  • 9214 measured reflections

  • 3582 independent reflections

  • 2406 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.084

  • S = 0.97

  • 3582 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1730 Friedel pairs

  • Absolute structure parameter: −0.11 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S1i 0.93 2.87 3.784 (3) 167
Symmetry code: (i) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Pyrazolo­[3,4-d] pyrimidine-4-thione are inter­mediate sub-units useful for the development of molecules of pharmaceutical inter­est. They have found applications in various therapeutic areas, including anti-inflammatory, anti-tumour and anti-cancer (Orlikova et al., 2014; Yuan et al., 2013; Rashad et al., 2011). The present paper is a continuation of our research work devoted to the development of pyrazolo­[3,4-d] pyrimidine derivatives with potential pharmacological activities (El Fal et al., 2013; El Fal et al., 2014; Alsubari et al., 2011; Ramli et al., 2012).

The molecule of the title compound is build up from two fused five- and six-membered heterocycles linked to two phenyl rings via two –CH2– groups as shown in Fig. 1. The pyrazolo­[3,4-d]pyrimidine system is virtually planar with the largest deviation from the mean plane being -0.023 (2) Å at C1 and makes dihedral angles of 71.4 (2)° and 78.1 (2)° with the mean plane through the first (C7 to C12) and the second (C14 to C19) phenyl rings, respectively. As a matter of fact, the two phenyl rings are oriented in opposite direction to the plane of the fused rings. No classic hydrogen bonds are observed in the present structure.

Synthesis and crystallization top

3.32 g (10 mmol) of 1,5-di­benzyl-1H, 4H, 5H-pyrazolo [3,4-d] pyrimidin-4-one is refluxed in pyridine (30 ml) with 5.55 g (25 mmol) of phospho­rus penta­sulfide for 4 h. Then the solvent was evaporated under reduced pressure. The precipitate that formed was washed with hot water to remove residual dimerized P2S5 until colourless filtrate was noted. The solid was re-crystallized from ethanol to afford the title compound as yellow crystals (yield: 85%; m.p. = 563 K).

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic) and C—H = 0.97 Å (methyl­ene). All hydrogen with Uiso(H) = 1.2 Ueq (aromatic and methyl­ene). Two reflections, i.e. 0 -2 0 and 0 2 0, were omitted fro the final refinement owing to poor agreement.

Related literature top

For pharmacological and biochemical properties of pyrazolo[1,5-a]pyrimidine, see: Orlikova et al. (2014); Yuan et al. (2013); Rashad et al. (2011). For related structures, see: El Fal et al. (2013, 2014); Alsubari et al. (2011); Ramli et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1,5-Dibenzyl-1H-pyrazolo[3,4-d]pyrimidine-4(5H)-thione top
Crystal data top
C19H16N4SF(000) = 348
Mr = 332.42Dx = 1.332 Mg m3
Monoclinic, P21Melting point: 563 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 4.4953 (12) ÅCell parameters from 3582 reflections
b = 29.140 (8) Åθ = 2.8–27.1°
c = 6.3889 (16) ŵ = 0.20 mm1
β = 97.860 (9)°T = 296 K
V = 829.0 (4) Å3Block, yellow
Z = 20.37 × 0.34 × 0.29 mm
Data collection top
Bruker X8 APEX
diffractometer
3582 independent reflections
Radiation source: fine-focus sealed tube2406 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.589, Tmax = 0.746k = 3737
9214 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0318P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3582 reflectionsΔρmax = 0.14 e Å3
217 parametersΔρmin = 0.12 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 1730 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (7)
Crystal data top
C19H16N4SV = 829.0 (4) Å3
Mr = 332.42Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.4953 (12) ŵ = 0.20 mm1
b = 29.140 (8) ÅT = 296 K
c = 6.3889 (16) Å0.37 × 0.34 × 0.29 mm
β = 97.860 (9)°
Data collection top
Bruker X8 APEX
diffractometer
3582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2406 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.746Rint = 0.040
9214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.14 e Å3
S = 0.97Δρmin = 0.12 e Å3
3582 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1730 Friedel pairs
217 parametersAbsolute structure parameter: 0.11 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5941 (5)0.48633 (8)0.9980 (3)0.0412 (6)
C20.4720 (5)0.44502 (8)1.0570 (3)0.0411 (6)
C30.5145 (7)0.41623 (9)1.2377 (4)0.0586 (7)
H30.65060.42221.35780.070*
C40.2489 (6)0.42310 (9)0.9208 (4)0.0457 (6)
C50.2551 (6)0.47501 (9)0.6716 (4)0.0488 (6)
H50.18850.48640.53750.059*
C60.5892 (5)0.54088 (9)0.6906 (4)0.0477 (6)
H6A0.61970.53300.54760.057*
H6B0.78260.54950.76720.057*
C70.3812 (5)0.58142 (8)0.6832 (4)0.0425 (6)
C80.3274 (6)0.60388 (9)0.8650 (4)0.0545 (7)
H80.41880.59350.99590.065*
C90.1404 (7)0.64137 (10)0.8546 (5)0.0651 (8)
H90.10700.65630.97800.078*
C100.0034 (7)0.65686 (11)0.6635 (5)0.0700 (8)
H100.12420.68210.65690.084*
C110.0546 (7)0.63514 (11)0.4817 (5)0.0701 (9)
H110.03750.64580.35150.084*
C120.2421 (6)0.59761 (9)0.4912 (4)0.0551 (7)
H120.27540.58300.36710.066*
C130.0331 (7)0.34855 (9)0.9311 (5)0.0701 (9)
H13A0.17460.36090.81670.084*
H13B0.14610.33741.03960.084*
C140.1353 (6)0.30957 (9)0.8500 (5)0.0538 (7)
C150.1948 (7)0.27009 (11)0.9677 (5)0.0701 (8)
H150.12350.26731.09700.084*
C160.3567 (8)0.23521 (11)0.8969 (8)0.0926 (12)
H160.39460.20880.97780.111*
C170.4635 (8)0.23889 (15)0.7078 (9)0.0961 (13)
H170.57580.21520.66050.115*
C180.4049 (8)0.27764 (16)0.5874 (6)0.0898 (11)
H180.47660.28010.45810.108*
C190.2406 (7)0.31279 (11)0.6575 (5)0.0705 (8)
H190.20000.33890.57480.085*
N10.3381 (6)0.38019 (8)1.2147 (4)0.0633 (6)
N20.1709 (5)0.38498 (7)1.0188 (4)0.0575 (6)
N30.1303 (5)0.43742 (7)0.7249 (3)0.0529 (5)
N40.4758 (4)0.49978 (6)0.7928 (3)0.0422 (5)
S10.85051 (15)0.51743 (3)1.14918 (10)0.0571 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (13)0.0485 (15)0.0369 (13)0.0091 (11)0.0049 (10)0.0077 (11)
C20.0406 (14)0.0454 (15)0.0366 (13)0.0074 (11)0.0030 (11)0.0022 (11)
C30.0693 (19)0.0591 (18)0.0468 (16)0.0095 (16)0.0061 (14)0.0028 (14)
C40.0446 (15)0.0458 (16)0.0474 (15)0.0080 (12)0.0087 (13)0.0024 (13)
C50.0507 (16)0.0561 (18)0.0367 (13)0.0104 (14)0.0046 (11)0.0056 (12)
C60.0459 (15)0.0593 (16)0.0395 (14)0.0032 (13)0.0116 (12)0.0003 (12)
C70.0424 (15)0.0473 (14)0.0375 (14)0.0095 (12)0.0049 (11)0.0009 (12)
C80.0618 (18)0.0591 (18)0.0412 (15)0.0018 (14)0.0023 (13)0.0010 (13)
C90.071 (2)0.0571 (19)0.069 (2)0.0002 (16)0.0151 (17)0.0094 (15)
C100.071 (2)0.0573 (19)0.082 (2)0.0038 (16)0.0097 (17)0.0114 (18)
C110.073 (2)0.073 (2)0.0607 (19)0.0017 (18)0.0028 (16)0.0207 (17)
C120.0593 (18)0.0584 (18)0.0467 (15)0.0083 (15)0.0040 (13)0.0037 (13)
C130.0531 (18)0.0551 (19)0.102 (2)0.0104 (15)0.0102 (17)0.0024 (16)
C140.0479 (16)0.0475 (16)0.0647 (18)0.0101 (12)0.0028 (14)0.0036 (14)
C150.074 (2)0.0588 (19)0.076 (2)0.0095 (17)0.0032 (16)0.0059 (17)
C160.079 (3)0.053 (2)0.140 (4)0.0019 (19)0.006 (3)0.003 (2)
C170.062 (2)0.080 (3)0.144 (4)0.000 (2)0.004 (3)0.041 (3)
C180.076 (3)0.116 (3)0.077 (2)0.014 (2)0.0093 (19)0.036 (3)
C190.069 (2)0.069 (2)0.072 (2)0.0072 (16)0.0068 (17)0.0002 (16)
N10.0782 (18)0.0568 (16)0.0564 (15)0.0011 (13)0.0142 (13)0.0070 (12)
N20.0550 (15)0.0504 (14)0.0681 (16)0.0002 (11)0.0118 (12)0.0033 (13)
N30.0503 (13)0.0496 (14)0.0558 (14)0.0029 (11)0.0034 (11)0.0043 (11)
N40.0406 (11)0.0509 (12)0.0342 (10)0.0034 (9)0.0021 (9)0.0013 (9)
S10.0536 (4)0.0676 (4)0.0463 (4)0.0042 (4)0.0073 (3)0.0052 (4)
Geometric parameters (Å, º) top
C1—C21.396 (3)C10—C111.370 (4)
C1—N41.402 (3)C10—H100.9300
C1—S11.667 (2)C11—C121.377 (4)
C2—C41.390 (3)C11—H110.9300
C2—C31.419 (3)C12—H120.9300
C3—N11.312 (3)C13—N21.463 (3)
C3—H30.9300C13—C141.496 (4)
C4—N21.345 (3)C13—H13A0.9700
C4—N31.357 (3)C13—H13B0.9700
C5—N31.297 (3)C14—C191.380 (4)
C5—N41.376 (3)C14—C151.380 (4)
C5—H50.9300C15—C161.363 (5)
C6—N41.487 (3)C15—H150.9300
C6—C71.503 (3)C16—C171.364 (5)
C6—H6A0.9700C16—H160.9300
C6—H6B0.9700C17—C181.371 (5)
C7—C121.381 (3)C17—H170.9300
C7—C81.383 (3)C18—C191.373 (5)
C8—C91.374 (4)C18—H180.9300
C8—H80.9300C19—H190.9300
C9—C101.367 (4)N1—N21.376 (3)
C9—H90.9300
C2—C1—N4112.4 (2)C11—C12—C7120.7 (3)
C2—C1—S1125.35 (18)C11—C12—H12119.6
N4—C1—S1122.28 (18)C7—C12—H12119.6
C4—C2—C1120.3 (2)N2—C13—C14111.3 (2)
C4—C2—C3104.1 (2)N2—C13—H13A109.4
C1—C2—C3135.7 (2)C14—C13—H13A109.4
N1—C3—C2111.7 (3)N2—C13—H13B109.4
N1—C3—H3124.1C14—C13—H13B109.4
C2—C3—H3124.1H13A—C13—H13B108.0
N2—C4—N3126.1 (2)C19—C14—C15118.5 (3)
N2—C4—C2107.4 (2)C19—C14—C13120.5 (3)
N3—C4—C2126.5 (2)C15—C14—C13120.9 (3)
N3—C5—N4126.9 (2)C16—C15—C14120.9 (3)
N3—C5—H5116.6C16—C15—H15119.6
N4—C5—H5116.6C14—C15—H15119.6
N4—C6—C7113.42 (17)C15—C16—C17120.3 (4)
N4—C6—H6A108.9C15—C16—H16119.9
C7—C6—H6A108.9C17—C16—H16119.9
N4—C6—H6B108.9C16—C17—C18119.8 (4)
C7—C6—H6B108.9C16—C17—H17120.1
H6A—C6—H6B107.7C18—C17—H17120.1
C12—C7—C8118.3 (2)C17—C18—C19120.1 (4)
C12—C7—C6120.0 (2)C17—C18—H18119.9
C8—C7—C6121.7 (2)C19—C18—H18119.9
C9—C8—C7120.7 (3)C18—C19—C14120.3 (3)
C9—C8—H8119.6C18—C19—H19119.8
C7—C8—H8119.6C14—C19—H19119.8
C10—C9—C8120.3 (3)C3—N1—N2105.5 (2)
C10—C9—H9119.9C4—N2—N1111.2 (2)
C8—C9—H9119.9C4—N2—C13127.6 (2)
C9—C10—C11119.8 (3)N1—N2—C13120.7 (2)
C9—C10—H10120.1C5—N3—C4111.8 (2)
C11—C10—H10120.1C5—N4—C1122.1 (2)
C10—C11—C12120.1 (3)C5—N4—C6116.1 (2)
C10—C11—H11119.9C1—N4—C6121.78 (19)
C12—C11—H11119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S1i0.932.873.784 (3)167
Symmetry code: (i) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S1i0.932.873.784 (3)167
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAlsubari, A., Ramli, Y., Essassi, E. M. & Zouihri, H. (2011). Acta Cryst. E67, o1926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o1005–o1006.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOrlikova, B., Chaouni, W., Schumacher, M., Aadil, M., Diederich, M. & Kirsch, G. (2014). Eur. J. Med. Chem. 85, 450–457.  Google Scholar
First citationRamli, Y., Zouihri, H., Azougagh, M., Moussaif, A. & Essassi, E. M. (2012). Acta Cryst. E68, o396.  Google Scholar
First citationRashad, A. E., Mahmoud, A. E. & Ali, M. M. (2011). Eur. J. Med. Chem. 46, 1019–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, L., Song, C., Wei, , Li, Y., Hu, , Li, Y., Dong, L., Yin, S. & Fan, (2013). Eur. J. Med. Chem. 67, 152–157.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o95-o96
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds