organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-benzamido-2-hy­dr­oxy­benzoic acid

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, bDepartment of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir, Pakistan, and cDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 May 2015; accepted 11 May 2015; online 20 May 2015)

In the title compound, C14H11NO4, the dihedral angle between the mean planes of the aromatic rings is 3.96 (12)° and an intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. A short intra­molecular C—H⋯O contact is also seen. In the crystal, carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) loops. Conversely, the N—H group does not form a hydrogen bond. Aromatic ππ inter­actions exist at a centroid–centroid distance of 3.8423 (15) Å between the benzene rings. An extremely weak C—H⋯π inter­action also is present.

1. Related literature

For related structures, see: Gibson et al. (2010[Gibson, E. A., Duhme-Klair, A.-K. & Perutz, R. N. (2010). New J. Chem. 34, 1125-1134.]); Júnior et al. (2013[Júnior, A. A. B. C., De Carvalho, G. S. G., Marques, L. F., Corrêa, C. C., Da Silva, A. D. & Machado, F. C. (2013). Acta Cryst. C69, 934-936.]); Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H11NO4

  • Mr = 257.24

  • Monoclinic, P 21 /c

  • a = 5.6689 (5) Å

  • b = 32.039 (3) Å

  • c = 6.6413 (5) Å

  • β = 103.530 (5)°

  • V = 1172.74 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.38 × 0.30 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.984

  • 9560 measured reflections

  • 2582 independent reflections

  • 1602 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.147

  • S = 1.04

  • 2582 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.6470 (19) 176
O3—H3⋯O2 0.82 1.88 2.601 (2) 146
C4—H4⋯O4 0.93 2.23 2.828 (3) 122
C12—H12⋯Cg2ii 0.93 2.95 3.773 (3) 142
Symmetry codes: (i) -x+1, -y, -z-1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of methyl 4-(isonicotinoylamino)-2-methoxybenzoate (Gibson, 2010), 4-acetamido-2-hydroxybenzoic acid (Montis & Hursthouse, 2012) and 2-([(4-carboxy-3-hydroxyphenyl)iminiumyl]methyl)phenolate (Junior et al., 2013) have been published which are related to the title compound (I, Fig. 1). (I) is synthesized for the biological studies and for the complexation with different metals.

In (I), the parts of 4-aminosalicylic acid A (C1–C7/O1/O2/O3) and benzaldehyde B (C8—C14/O4) are planar with r. m. s. deviation of 0.0189 Å and 0.0524 Å, respectively. The dihedral angle between A/B is 5.86 (10)°. All heavy atoms of the compound form roughly a plane with r. m. s. devation of 0.0997 Å. In this plane the maximumu deviation is for O4-atom which is 0.321 (2) Å from the mean square plane. There exist intermolecular H-bonding of O—H···O type (Table 1, Fig. 2) forming S (6) loop. The molecules are dimerized due to inversion and O—H···O type of H-bonding (Table 1, Fig. 2) completing R22(8) rings motifs (Table 1, Fig. 2). The dimers are interlinked due to C—H···O interactions (Table 1, Fig. 2). There exist strong ππ interactions at a distance of 3.8423 (15) Å between the centeroids of Cg1—Cg2i and Cg2—Cg1ii [i = x, y, -1 + z: ii = x, y, 1 + z], where Cg1 and Cg2 are the centroids of benzene rings C (C2—C7) and D (C9—C14), respectively. There also exist a C—H···π interaction (Table 1) and may have important role in stabilizing the molecules.

Related literature top

For related structures, see: Gibson et al. (2010); Júnior et al. (2013); Montis & Hursthouse (2012).

Experimental top

4-Aminosalicylic acid was dissolved in ethylacetate and equimolar benzoyl chloride was added to the solution under stirring. The mixture was stired for 5 h. Light orange plates were obtained after 48 h.

Refinement top

The H atoms were positioned geometrically (C–H = 0.93 Å, N—H= 0.86 Å, O—H= 0.82 Å) and refined as riding with Uiso(H) = xUeq (C, N, O), where x = 1.5 for hydroxy and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line show intramolecular H-bonding.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form dimers and which are interlinked with each othere.
4-Benzamido-2-hydroxybenzoic acid top
Crystal data top
C14H11NO4F(000) = 536
Mr = 257.24Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.6689 (5) ÅCell parameters from 1602 reflections
b = 32.039 (3) Åθ = 3.2–27.1°
c = 6.6413 (5) ŵ = 0.11 mm1
β = 103.530 (5)°T = 296 K
V = 1172.74 (18) Å3Plate, light orange
Z = 40.38 × 0.30 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2582 independent reflections
Radiation source: fine-focus sealed tube1602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 7.70 pixels mm-1θmax = 27.1°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 4124
Tmin = 0.960, Tmax = 0.984l = 88
9560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.062P)2 + 0.2313P]
where P = (Fo2 + 2Fc2)/3
2582 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H11NO4V = 1172.74 (18) Å3
Mr = 257.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6689 (5) ŵ = 0.11 mm1
b = 32.039 (3) ÅT = 296 K
c = 6.6413 (5) Å0.38 × 0.30 × 0.16 mm
β = 103.530 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1602 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.984Rint = 0.044
9560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2582 reflectionsΔρmin = 0.22 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7252 (3)0.01068 (6)0.2615 (2)0.0515 (5)
H10.69640.00230.37080.077*
O20.3434 (3)0.03147 (5)0.3868 (2)0.0478 (4)
O30.1427 (3)0.08122 (6)0.1660 (2)0.0554 (5)
H30.14980.06700.26700.083*
O40.2383 (3)0.14573 (7)0.4823 (3)0.0723 (6)
N10.6221 (3)0.12432 (6)0.4934 (2)0.0457 (5)
H1A0.76820.12530.56770.055*
C10.5318 (4)0.03152 (7)0.2456 (3)0.0379 (5)
C20.5512 (4)0.05479 (7)0.0538 (3)0.0339 (5)
C30.3563 (4)0.07877 (7)0.0233 (3)0.0367 (5)
C40.3735 (4)0.10154 (7)0.1581 (3)0.0415 (6)
H40.24190.11700.17750.050*
C50.5876 (4)0.10094 (7)0.3091 (3)0.0378 (5)
C60.7835 (4)0.07703 (8)0.2805 (3)0.0439 (6)
H60.92730.07660.38260.053*
C70.7651 (4)0.05425 (7)0.1036 (3)0.0416 (6)
H70.89590.03820.08730.050*
C80.4525 (4)0.14561 (8)0.5685 (3)0.0449 (6)
C90.5423 (4)0.16900 (7)0.7674 (3)0.0417 (6)
C100.7710 (5)0.16503 (9)0.8943 (3)0.0550 (7)
H100.88310.14720.85690.066*
C110.8349 (5)0.18742 (9)1.0775 (4)0.0620 (8)
H110.98960.18461.16260.074*
C120.6713 (6)0.21360 (9)1.1334 (4)0.0639 (8)
H120.71490.22871.25610.077*
C130.4429 (5)0.21765 (9)1.0090 (4)0.0648 (8)
H130.33190.23561.04730.078*
C140.3771 (5)0.19531 (8)0.8274 (4)0.0533 (7)
H140.22100.19790.74460.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0514 (10)0.0617 (12)0.0387 (9)0.0102 (9)0.0050 (7)0.0200 (8)
O20.0507 (9)0.0585 (11)0.0312 (8)0.0042 (8)0.0034 (7)0.0140 (7)
O30.0487 (10)0.0754 (14)0.0379 (9)0.0111 (9)0.0016 (7)0.0185 (8)
O40.0574 (12)0.1049 (18)0.0502 (10)0.0122 (11)0.0037 (8)0.0290 (10)
N10.0492 (11)0.0537 (13)0.0324 (9)0.0019 (10)0.0059 (8)0.0152 (9)
C10.0473 (13)0.0353 (13)0.0319 (10)0.0030 (11)0.0111 (9)0.0027 (9)
C20.0411 (12)0.0335 (13)0.0275 (10)0.0052 (10)0.0090 (8)0.0033 (8)
C30.0414 (12)0.0412 (14)0.0271 (10)0.0043 (10)0.0072 (8)0.0029 (9)
C40.0461 (13)0.0452 (15)0.0346 (11)0.0001 (11)0.0120 (9)0.0068 (10)
C50.0511 (13)0.0366 (14)0.0276 (10)0.0068 (11)0.0133 (9)0.0064 (9)
C60.0442 (13)0.0548 (16)0.0298 (11)0.0008 (12)0.0031 (9)0.0073 (10)
C70.0440 (13)0.0462 (15)0.0345 (11)0.0025 (11)0.0090 (9)0.0057 (10)
C80.0515 (15)0.0474 (16)0.0347 (11)0.0022 (12)0.0079 (10)0.0041 (10)
C90.0570 (14)0.0368 (14)0.0323 (11)0.0025 (11)0.0124 (10)0.0026 (9)
C100.0643 (16)0.0577 (17)0.0404 (13)0.0090 (13)0.0070 (11)0.0099 (11)
C110.0696 (18)0.066 (2)0.0430 (14)0.0040 (15)0.0008 (12)0.0123 (13)
C120.089 (2)0.0590 (19)0.0442 (14)0.0075 (16)0.0173 (14)0.0202 (12)
C130.0700 (18)0.064 (2)0.0639 (17)0.0005 (15)0.0223 (14)0.0274 (14)
C140.0570 (15)0.0515 (17)0.0525 (14)0.0018 (13)0.0152 (11)0.0103 (12)
Geometric parameters (Å, º) top
O1—C11.309 (3)C6—C71.366 (3)
O1—H10.8200C6—H60.9300
O2—C11.245 (2)C7—H70.9300
O3—C31.354 (2)C8—C91.501 (3)
O3—H30.8200C9—C101.377 (3)
O4—C81.215 (3)C9—C141.386 (3)
N1—C81.365 (3)C10—C111.386 (3)
N1—C51.409 (2)C10—H100.9300
N1—H1A0.8600C11—C121.365 (4)
C1—C21.458 (3)C11—H110.9300
C2—C31.399 (3)C12—C131.369 (4)
C2—C71.404 (3)C12—H120.9300
C3—C41.392 (3)C13—C141.377 (3)
C4—C51.382 (3)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.398 (3)
C1—O1—H1109.5C6—C7—H7119.6
C3—O3—H3109.5C2—C7—H7119.6
C8—N1—C5128.08 (19)O4—C8—N1122.7 (2)
C8—N1—H1A116.0O4—C8—C9120.6 (2)
C5—N1—H1A116.0N1—C8—C9116.6 (2)
O2—C1—O1121.71 (18)C10—C9—C14118.9 (2)
O2—C1—C2122.3 (2)C10—C9—C8124.8 (2)
O1—C1—C2115.96 (18)C14—C9—C8116.4 (2)
C3—C2—C7118.20 (18)C9—C10—C11120.3 (2)
C3—C2—C1120.46 (18)C9—C10—H10119.8
C7—C2—C1121.3 (2)C11—C10—H10119.8
O3—C3—C4116.45 (19)C12—C11—C10120.1 (2)
O3—C3—C2122.51 (17)C12—C11—H11119.9
C4—C3—C2121.04 (18)C10—C11—H11119.9
C5—C4—C3119.5 (2)C11—C12—C13120.1 (2)
C5—C4—H4120.3C11—C12—H12120.0
C3—C4—H4120.3C13—C12—H12120.0
C4—C5—C6119.99 (18)C12—C13—C14120.2 (3)
C4—C5—N1122.9 (2)C12—C13—H13119.9
C6—C5—N1117.12 (19)C14—C13—H13119.9
C7—C6—C5120.4 (2)C13—C14—C9120.4 (2)
C7—C6—H6119.8C13—C14—H14119.8
C5—C6—H6119.8C9—C14—H14119.8
C6—C7—C2120.9 (2)
O2—C1—C2—C31.0 (3)C3—C2—C7—C60.9 (3)
O1—C1—C2—C3178.68 (19)C1—C2—C7—C6178.3 (2)
O2—C1—C2—C7179.8 (2)C5—N1—C8—O42.4 (4)
O1—C1—C2—C70.5 (3)C5—N1—C8—C9178.3 (2)
C7—C2—C3—O3179.9 (2)O4—C8—C9—C10168.2 (2)
C1—C2—C3—O30.8 (3)N1—C8—C9—C1011.1 (4)
C7—C2—C3—C40.0 (3)O4—C8—C9—C149.7 (3)
C1—C2—C3—C4179.2 (2)N1—C8—C9—C14171.0 (2)
O3—C3—C4—C5179.1 (2)C14—C9—C10—C110.8 (4)
C2—C3—C4—C51.0 (3)C8—C9—C10—C11178.6 (3)
C3—C4—C5—C61.1 (3)C9—C10—C11—C120.0 (4)
C3—C4—C5—N1177.6 (2)C10—C11—C12—C130.4 (5)
C8—N1—C5—C410.2 (4)C11—C12—C13—C140.1 (5)
C8—N1—C5—C6171.0 (2)C12—C13—C14—C90.9 (4)
C4—C5—C6—C70.2 (3)C10—C9—C14—C131.2 (4)
N1—C5—C6—C7178.6 (2)C8—C9—C14—C13179.3 (2)
C5—C6—C7—C20.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.6470 (19)176
O3—H3···O20.821.882.601 (2)146
C4—H4···O40.932.232.828 (3)122
C12—H12···Cg2ii0.932.953.773 (3)142
Symmetry codes: (i) x+1, y, z1; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.6470 (19)176
O3—H3···O20.821.882.601 (2)146
C4—H4···O40.932.232.828 (3)122
C12—H12···Cg2ii0.932.953.773 (3)142
Symmetry codes: (i) x+1, y, z1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGibson, E. A., Duhme-Klair, A.-K. & Perutz, R. N. (2010). New J. Chem. 34, 1125–1134.  CSD CrossRef CAS Google Scholar
First citationJúnior, A. A. B. C., De Carvalho, G. S. G., Marques, L. F., Corrêa, C. C., Da Silva, A. D. & Machado, F. C. (2013). Acta Cryst. C69, 934–936.  CSD CrossRef IUCr Journals Google Scholar
First citationMontis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242–5254.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds