organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-chloro-2-{(E)-[(3,4-di­methyl­phen­yl)imino]­meth­yl}phenol

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 May 2015; accepted 16 May 2015; online 23 May 2015)

In the title compound, C15H14ClNO, which is isostructural with its bromo analogue [Tahir et al. (2012[Tahir, M. N., Khan, A. H., Tariq, M. I., Hussain, I. & Shafiq, M. (2012). Acta Cryst. E68, o2730.]). Acta Cryst., E68, o2730], the dihedral angle between the planes of the aromatic rings is 2.71 (7)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, extremely weak C—H⋯π inter­actions link the mol­ecules into a three-dimensional network.

1. Related literature

For related structures, see: Demircioğlu et al. (2014[Demircioğlu, Z., Albayrak, C., Çiğdem, & Büyükgüngör, O. (2014). J. Mol. Struct. 1065-1066, 210-222.]); Jin et al. (2012[Jin, Y.-B., Chang, Y.-K., Zhang, Y. & Lei, K.-W. (2012). Acta Cryst. E68, o2415.]); Sun et al. (2013[Sun, L.-X., Zhu, L.-Z. & Wang, J.-K. (2013). Acta Cryst. E69, o631.]); Tahir et al. (2012[Tahir, M. N., Khan, A. H., Tariq, M. I., Hussain, I. & Shafiq, M. (2012). Acta Cryst. E68, o2730.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H14ClNO

  • Mr = 259.72

  • Monoclinic, P 21 /n

  • a = 12.1875 (10) Å

  • b = 7.4438 (5) Å

  • c = 14.3141 (12) Å

  • β = 101.549 (4)°

  • V = 1272.30 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.14 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.968

  • 10293 measured reflections

  • 2785 independent reflections

  • 1871 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.04

  • 2785 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.5998 (19) 149
C3—H3⋯Cg1i 0.93 2.98 3.732 (2) 139
C6—H6⋯Cg2ii 0.93 2.93 3.576 (2) 128
C14—H14BCg2iii 0.96 2.96 3.656 (2) 131
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound, (I, Fig. 1) has been synthesized in continuation of forming different derivatives of 3,4-dimethylaniline. (I) will also be utilized for synthesizing different metal complexes.

The crystal structures of 4-bromo-2-((E)-[(3,4-dimethylphenyl)imino]methyl)phenol (Tahir et al., 2012), 2-((3,4-dimethylphenyl)carbonoimidoyl)-3-methoxyphenol (Demircioğlu et al., 2014), N-[(E)-4-bromobenzylidene]-3,4-dimethylaniline (Sun et al., 2013) and N-[(E)-4-fluorobenzylidene]-3,4-dimethylaniline (Jin et al., 2012) have been published which are related to the title compound.

The title compound is isostructural to 4-bromo-2-((E)-[(3,4-dimethyl phenyl)imino]methyl)phenol (Tahir et al., 2012) and is almost planar with r. m. s. deviation of 0.0325 Å, with maximum deviation of 0.0803 (9) Å for Cl1 atom from the mean square plane. There exist intramolecular H-bonding of O—H···N type (Table 1, Fig. 1) with S(6) ring motif. There exist C—H···π interactions (Table 1).

Related literature top

For related structures, see: Demircioğlu et al. (2014); Jin et al. (2012); Sun et al. (2013); Tahir et al. (2012).

Experimental top

Equimolar quantities of 5-chlorosalicylaldehyde and 3,4-dimethylaniline were refluxed in methanol for 3 h. The solution was kept at room temperature for crystallization which affoarded light yellow plates after 72 h.

Refinement top

The H atoms were positioned geometrically (C–H = 0.93–0.96 Å, O—H= 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl & hydroxy and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line shows intramolecular H-bonding.
[Figure 2] Fig. 2. Packing diagram for the title compound.
4-Chloro-2-{(E)-[(3,4-dimethylphenyl)imino]methyl}phenol top
Crystal data top
C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.1875 (10) ÅCell parameters from 1871 reflections
b = 7.4438 (5) Åθ = 2.0–27.0°
c = 14.3141 (12) ŵ = 0.29 mm1
β = 101.549 (4)°T = 296 K
V = 1272.30 (17) Å3Plate, light yellow
Z = 40.25 × 0.20 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2785 independent reflections
Radiation source: fine-focus sealed tube1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 2.0°
ω scansh = 1512
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 89
Tmin = 0.933, Tmax = 0.968l = 1815
10293 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.2053P]
where P = (Fo2 + 2Fc2)/3
2785 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H14ClNOV = 1272.30 (17) Å3
Mr = 259.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1875 (10) ŵ = 0.29 mm1
b = 7.4438 (5) ÅT = 296 K
c = 14.3141 (12) Å0.25 × 0.20 × 0.14 mm
β = 101.549 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1871 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.968Rint = 0.024
10293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2785 reflectionsΔρmin = 0.22 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31558 (4)0.47763 (8)0.94032 (3)0.0702 (2)
O10.45252 (11)0.6419 (2)0.58212 (9)0.0684 (4)
H10.40360.61510.53610.103*
N10.26240 (12)0.51118 (17)0.49303 (10)0.0442 (4)
C10.41674 (14)0.6064 (2)0.66249 (12)0.0462 (4)
C20.31233 (14)0.5273 (2)0.66205 (11)0.0400 (4)
C30.28167 (14)0.4894 (2)0.74847 (12)0.0434 (4)
H30.21280.43630.74920.052*
C40.35292 (14)0.5305 (2)0.83271 (12)0.0447 (4)
C50.45476 (15)0.6104 (2)0.83316 (12)0.0499 (4)
H50.50220.63830.89070.060*
C60.48620 (15)0.6486 (2)0.74880 (13)0.0524 (5)
H60.55490.70350.74930.063*
C70.23682 (15)0.4821 (2)0.57324 (12)0.0432 (4)
H70.16790.43040.57530.052*
C80.18970 (13)0.4694 (2)0.40504 (11)0.0394 (4)
C90.23021 (14)0.5050 (2)0.32363 (12)0.0414 (4)
H90.30160.55340.32960.050*
C100.16807 (14)0.4712 (2)0.23319 (12)0.0407 (4)
C110.06064 (14)0.3993 (2)0.22426 (12)0.0429 (4)
C120.02122 (14)0.3625 (2)0.30650 (12)0.0455 (4)
H120.04990.31330.30100.055*
C130.08330 (14)0.3962 (2)0.39585 (12)0.0456 (4)
H130.05440.37010.44970.055*
C140.21523 (18)0.5150 (3)0.14640 (13)0.0576 (5)
H14A0.21650.40830.10890.086*
H14B0.29010.56030.16590.086*
H14C0.16930.60420.10900.086*
C150.01190 (16)0.3653 (3)0.12815 (13)0.0599 (5)
H15A0.02360.27880.09430.090*
H15B0.02250.47560.09270.090*
H15C0.08320.32000.13600.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0742 (4)0.1002 (4)0.0366 (3)0.0049 (3)0.0120 (2)0.0047 (2)
O10.0658 (9)0.0930 (10)0.0483 (8)0.0276 (8)0.0159 (7)0.0033 (7)
N10.0472 (8)0.0498 (8)0.0349 (8)0.0009 (6)0.0069 (6)0.0023 (6)
C10.0493 (10)0.0475 (10)0.0428 (10)0.0042 (8)0.0116 (8)0.0025 (7)
C20.0427 (9)0.0390 (9)0.0376 (9)0.0015 (7)0.0061 (7)0.0012 (7)
C30.0430 (10)0.0469 (10)0.0407 (9)0.0001 (7)0.0093 (8)0.0005 (7)
C40.0493 (11)0.0476 (10)0.0364 (9)0.0048 (8)0.0065 (8)0.0002 (7)
C50.0519 (11)0.0500 (10)0.0432 (10)0.0005 (8)0.0013 (8)0.0027 (8)
C60.0476 (11)0.0523 (11)0.0550 (12)0.0103 (8)0.0048 (9)0.0008 (9)
C70.0440 (10)0.0450 (9)0.0404 (10)0.0016 (7)0.0080 (8)0.0015 (7)
C80.0421 (10)0.0383 (9)0.0376 (9)0.0011 (7)0.0073 (7)0.0016 (7)
C90.0404 (9)0.0421 (9)0.0423 (10)0.0036 (7)0.0102 (7)0.0015 (7)
C100.0480 (10)0.0368 (9)0.0389 (9)0.0015 (7)0.0125 (7)0.0007 (7)
C110.0482 (10)0.0368 (9)0.0417 (10)0.0013 (7)0.0040 (7)0.0007 (7)
C120.0410 (9)0.0474 (10)0.0482 (10)0.0044 (8)0.0091 (8)0.0017 (8)
C130.0467 (10)0.0520 (10)0.0400 (10)0.0016 (8)0.0132 (8)0.0029 (8)
C140.0672 (13)0.0661 (12)0.0422 (10)0.0091 (9)0.0171 (9)0.0008 (8)
C150.0621 (12)0.0674 (13)0.0461 (11)0.0079 (10)0.0008 (9)0.0017 (9)
Geometric parameters (Å, º) top
Cl1—C41.7365 (17)C8—C131.389 (2)
O1—C11.336 (2)C9—C101.386 (2)
O1—H10.8200C9—H90.9300
N1—C71.267 (2)C10—C111.396 (2)
N1—C81.422 (2)C10—C141.505 (2)
C1—C61.387 (2)C11—C121.385 (2)
C1—C21.401 (2)C11—C151.500 (2)
C2—C31.391 (2)C12—C131.372 (2)
C2—C71.452 (2)C12—H120.9300
C3—C41.372 (2)C13—H130.9300
C3—H30.9300C14—H14A0.9600
C4—C51.375 (2)C14—H14B0.9600
C5—C61.368 (2)C14—H14C0.9600
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—H70.9300C15—H15C0.9600
C8—C91.379 (2)
C1—O1—H1109.5C8—C9—H9118.9
C7—N1—C8122.85 (15)C10—C9—H9118.9
O1—C1—C6118.44 (15)C9—C10—C11118.83 (15)
O1—C1—C2122.14 (15)C9—C10—C14120.27 (16)
C6—C1—C2119.42 (15)C11—C10—C14120.89 (15)
C3—C2—C1119.12 (15)C12—C11—C10118.45 (15)
C3—C2—C7119.72 (15)C12—C11—C15120.34 (16)
C1—C2—C7121.15 (15)C10—C11—C15121.20 (16)
C4—C3—C2120.07 (16)C13—C12—C11122.41 (16)
C4—C3—H3120.0C13—C12—H12118.8
C2—C3—H3120.0C11—C12—H12118.8
C3—C4—C5120.82 (16)C12—C13—C8119.34 (15)
C3—C4—Cl1119.80 (14)C12—C13—H13120.3
C5—C4—Cl1119.37 (13)C8—C13—H13120.3
C6—C5—C4119.86 (16)C10—C14—H14A109.5
C6—C5—H5120.1C10—C14—H14B109.5
C4—C5—H5120.1H14A—C14—H14B109.5
C5—C6—C1120.69 (16)C10—C14—H14C109.5
C5—C6—H6119.7H14A—C14—H14C109.5
C1—C6—H6119.7H14B—C14—H14C109.5
N1—C7—C2121.73 (16)C11—C15—H15A109.5
N1—C7—H7119.1C11—C15—H15B109.5
C2—C7—H7119.1H15A—C15—H15B109.5
C9—C8—C13118.75 (15)C11—C15—H15C109.5
C9—C8—N1116.19 (14)H15A—C15—H15C109.5
C13—C8—N1125.06 (14)H15B—C15—H15C109.5
C8—C9—C10122.23 (15)
O1—C1—C2—C3178.21 (15)C7—N1—C8—C9178.57 (14)
C6—C1—C2—C31.3 (2)C7—N1—C8—C131.2 (3)
O1—C1—C2—C70.9 (3)C13—C8—C9—C100.4 (2)
C6—C1—C2—C7179.60 (15)N1—C8—C9—C10179.85 (13)
C1—C2—C3—C40.4 (2)C8—C9—C10—C110.3 (2)
C7—C2—C3—C4179.50 (14)C8—C9—C10—C14179.07 (14)
C2—C3—C4—C50.5 (3)C9—C10—C11—C120.8 (2)
C2—C3—C4—Cl1178.37 (12)C14—C10—C11—C12179.62 (15)
C3—C4—C5—C60.4 (3)C9—C10—C11—C15178.03 (15)
Cl1—C4—C5—C6178.42 (13)C14—C10—C11—C150.7 (2)
C4—C5—C6—C10.5 (3)C10—C11—C12—C130.8 (3)
O1—C1—C6—C5178.16 (16)C15—C11—C12—C13178.10 (15)
C2—C1—C6—C51.4 (3)C11—C12—C13—C80.1 (3)
C8—N1—C7—C2179.54 (13)C9—C8—C13—C120.5 (2)
C3—C2—C7—N1178.66 (14)N1—C8—C13—C12179.79 (15)
C1—C2—C7—N10.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.5998 (19)149
C3—H3···Cg1i0.932.983.732 (2)139
C6—H6···Cg2ii0.932.933.576 (2)128
C14—H14B···Cg2iii0.962.963.656 (2)131
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.5998 (19)148.8
C3—H3···Cg1i0.932.983.732 (2)139
C6—H6···Cg2ii0.932.933.576 (2)128
C14—H14B···Cg2iii0.962.963.656 (2)131
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemircioğlu, Z., Albayrak, C., Çiğdem, & Büyükgüngör, O. (2014). J. Mol. Struct. 1065–1066, 210–222.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJin, Y.-B., Chang, Y.-K., Zhang, Y. & Lei, K.-W. (2012). Acta Cryst. E68, o2415.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L.-X., Zhu, L.-Z. & Wang, J.-K. (2013). Acta Cryst. E69, o631.  CSD CrossRef IUCr Journals Google Scholar
First citationTahir, M. N., Khan, A. H., Tariq, M. I., Hussain, I. & Shafiq, M. (2012). Acta Cryst. E68, o2730.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds