addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733

Calculation of absorption and secondary scattering of X-rays by spherical amorphous materials in an asymmetric transmission geometry. Corrigendum

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Washington University, St Louis, Missouri 63130-4899, USA
*Correspondence e-mail: jbendert@physics.wustl.edu

(Received 16 July 2018; accepted 16 July 2018; online 1 September 2018)

A revised version of Table 2 of Bendert et al. [Acta Cryst. (2013). A69, 131–139] is provided.

The expressions for Ai for i = 3 and 4 reported in Table 2 of Bendert et al. (2013)[Bendert, J. C., Blodgett, M. E. & Kelton, K. F. (2013). Acta Cryst. A69, 131-139.] should be negative. The correct values are given in the table shown below[link].

Table 2
Coefficients for small-angle expansion of the off-axis spherical absorption

i Ai
0 +1
1 [+\cos (\phi )\mu {{r}_{\rm s}} {{x}_{\rm s}}]
2 [\eqalign{{{+\mu {r_{\rm s}}}\over {6( {x_{\rm s}}^2 - 1)}}&\,[2\mu {r_{\rm s}}\cos (\phi)^2 {x_{\rm s}}^4 - {x_{\rm s}}^2 (1 - {x_{\rm s}}^2)^{1/2 }\cr &- 2\mu {r_{\rm s}}\cos (\phi)^2 {x_{\rm s}}^2 + (1 - {x_{\rm s}}^2)^{1/2 }\cr &- 2{x_{\rm s}}^2\cos (\phi )^2 (1 - {x_{\rm s}}^2)^{1/2 }]\cr}\qquad\qquad\qquad\qquad\qquad\qquad]
3 [{{{-x_{\rm s}}\cos (\phi )\mu {r_{\rm s}}}\over {6({x_{\rm s}}^2 - 1)}}[2\mu {r_{\rm s}}\cos (\phi )^2 {x_{\rm s}}^2 (1 - {x_{\rm s}}^2)^{1/2} + {x_{\rm s}}^2 - 1]\qquad\qquad\qquad\qquad\qquad\qquad]
4 [\eqalign {{{-\mu {r_{\rm s}}}\over {360( {x_{\rm s}}^2 - 1)}}&\,[8(\mu {r_{\rm s}} )^3 {x_{\rm s}}^6\cos(\phi )^4 + 40\mu {r_{\rm s}}{x_{\rm s}}^4\cos (\phi )^4\cr &- 14\mu {r_{\rm s}}{x_{\rm s}}^4 + 32( \mu {r_{\rm s}} )^2 {x_{\rm s}}^4\cos(\phi )^4 (1 - {x_{\rm s}}^2)^{1/2} \cr &- 8( \mu {r_{\rm s}} )^3{x_{\rm s}}^4\cos (\phi )^4\cr &- 32( \mu {r_{\rm s}} )^2{x_{\rm s}}^4\cos (\phi )^2 (1 - {x_{\rm s}}^2)^{1/2}\cr & + 44\mu {r_{\rm s}}{x_{\rm s}}^4\cos (\phi )^2 - 11(1 - {x_{\rm s}}^2)^{1/2} {x_{\rm s}}^2\cr &- 4{x^2}\cos (\phi )^2 (1 - {x_{\rm s}}^2)^{1/2} - 44\mu {r_{\rm s}}{x_{\rm s}}^2\cos (\phi )^2\cr &+ 32( \mu {r_{\rm s}})^2 {x_{\rm s}}^2\cos (\phi )^2 (1 - {x_{\rm s}}^2)^{1/2} \cr &+ 11(1 - {x_{\rm s}}^2)^{1/2} - 14\mu {r_{\rm s}} + 28\mu {r_{\rm s}}{x_{\rm s}}^2]\cr} \qquad\qquad\qquad\qquad\qquad\qquad]
5 [\eqalign{{{+\mu {r_{\rm s}} x_{\rm s} \cos(\phi)}\over {360( {x_{\rm s}}^2 - 1)}}&\,[8( \mu {r_s} )^3 {x_s}^4\cos (\phi )^4 (1 - {x_s}^2)^{1/2}\cr &+ 16( \mu {r_s} )^2 {x_s}^4- 40( \mu {r_s} )^2 {x_s}^4\cos (\phi )^4\cr &+ 8( \mu {r_s} )^3 {x_s}^4\cos (\phi )^2 (1 - {x_s}^2)^{1/2} \cr &+ 24( \mu {r_s} )^2 {x_s}^4\cos (\phi )^2 + 3{x_s}^2 \cr &- 6\mu {r_s}{x_s}^2 (1 - {x_s}^2)^{1/2}- 3 + 16( \mu {r_s} )^2\cr & - 8( \mu {r_s} )^3{x_s}^2\cos(\phi )^2 (1 - {x_s}^2)^{1/2}\cr &+ 6\mu {r_s}(1 - {x_s}^2)^{1/2}- 32( \mu {r_s} )^2{x_s}^2 \cr &+ 36\mu {r_s}{x_s}^2\cos (\phi )^2 (1 - {x_s}^2)^{1/2}\cr &- 24( \mu {r_s} )^2 {x_s}^2\cos (\phi )^2]\cr}\qquad\qquad\qquad\qquad\qquad\qquad\quad]

References

First citationBendert, J. C., Blodgett, M. E. & Kelton, K. F. (2013). Acta Cryst. A69, 131–139.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds