research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733

On the Σ classes in E6

CROSSMARK_Color_square_no_text.svg

aJupiterstrasse 3, CH-3015 Berne, Switzerland
*Correspondence e-mail: pengel@bluewin.ch

Edited by A. Altomare, Institute of Crystallography - CNR, Bari, Italy (Received 17 April 2020; accepted 20 July 2020; online 25 August 2020)

In E6, the cone of positive definite quadratic forms is subdivided into Σs subcones and its equivalence classes [{\cal E}_{\Sigma _s}] are determined for s = 0–3, and 18–21.

1. Introduction

The discovery of quasicrystals, the structure of which can be viewed as projected from higher-dimensional translation lattices, has greatly stimulated the investigation of lattices and parallelohedra in arbitrary dimensions. The classification of the combinatorial types of primitive parallelohedra [{\sf P}] induces a structure on the cone of positive definite quadratic forms [{\cal C}^{+}].

In a series of papers, the shape of [{\cal C}] and its subdivision into Φ and Σ subcones were discussed (Baburin & Engel, 2013[Baburin, I. A. & Engel, P. (2013). Acta Cryst. A69, 510-516.]; Engel, 2015[Engel, P. (2015). Cryst. Res. Technol. 50, 929-943.], 2019[Engel, P. (2019). Acta Cryst. A75, 574-583.]).

Ryshkov (1973[Ryshkov, S. S. (1973). Sov. Math. Dokl. 14, 1314-1318.]) defined the S subcone which contains all parallelohedra that have the same set of facet vectors [{\cal F}], but without characterizing its boundary. The complete subcone was determined by Engel (2015[Engel, P. (2015). Cryst. Res. Technol. 50, 929-943.]) by the half-space intersection

[\Sigma \left ( {\sf P} \right ): = \bigcap _{h = 1}^{3N_{b}} {\sf H}_{h}. \eqno(1)]

The investigation of translation lattices becomes most attractive in E6 because many new phenomena appear for the first time in dimension 6.

In the report by Engel (2019[Engel, P. (2019). Acta Cryst. A75, 574-583.]), minimal and maximal Σs classes in E6, [{\cal E}_{\Sigma _{0}}] and [{\cal E}_{\Sigma _{21}}], were investigated. The subscript `s' is an invariant of the class and denotes the number of closed zones of [{\sf P}] [see Engel (2019[Engel, P. (2019). Acta Cryst. A75, 574-583.]), equations (12)–(13)]. This classification is continued for the Σs classes, s = 0, 1, 2, 3 and 18, 19, 20, 21.

The infinite family of Σ cones generate a face-to-face tiling of the cone [{\cal C}] [see Engel (2019[Engel, P. (2019). Acta Cryst. A75, 574-583.]), equation (17) ff.]. In this tiling, for each class representative [\Sigma _{s}^{i}] are determined all the neighbouring Σ's adjacent to [\Sigma _{s}^{i}] by a common wall, in order to find new [\Sigma _{r}^{j}]. Proceeding in this way, for each class [{\cal E}_{\Sigma _{s}^{k}}] can be found at least one representative [\Sigma _{s}^{k}] along a finite path of adjacent Σ's.

As a main result we obtain by this adjacency procedure:

For s = 0, 1, 2, 3 there exist 1, 1, 6, 58 Σs classes, and for s = 18, 19, 20, 21 there exist 15, 3, 1, 1 Σs classes in [{\cal C}].

2. Determination of the Σs classes

Most concepts used in what follows were described by Engel (2019[Engel, P. (2019). Acta Cryst. A75, 574-583.]).

Beginning with Σ0 as a representative of its class [{\cal E}_{\Sigma _{0}}], and its subdivision into combinatorial Φ types, the Σs classes for s = 0, 1, 2, 3 are successively determined. Recall that Σ0 has 216 walls [{\sf W}_{i}^{\Sigma _{0}}], [i = 1,\cdots,216], which all are equivalent under the group [{\cal G}_{E_{6}^{*}}] (see Engel, 2019[Engel, P. (2019). Acta Cryst. A75, 574-583.]). The neighbouring Σs adjacent to Σ0 are equivalent too, and were determined along the following steps:

Step S1: Within the class of equivalent walls, one wall [{\sf W}_{l}^{\Sigma _{0}}], 1 ≤ l ≤ 216, is selected, and for any [\Phi _{j} \subset \Sigma _{0}] leaning on [{\sf W}_{l}^{\Sigma _{0}}], the neighbouring Φk opposite to that wall is taken. Let [{\sf Q} \in \Phi _{k}^{+}]. The determination of [\Sigma _{s} ({\sf Q})] requires first the computation of the primitive parallelohedron,

[{\sf P} \left ( {\sf Q} \right ) \, : = \bigcap _{\forall \, {\bf t} \in \Lambda^{d} \setminus \{ O\}} {\sf H}_{\bf t} . \eqno(2)]

Note that in E6 every primitive parallelohedron has 126 facet vectors. The set of facet vectors of [{\sf P}] is denoted by

[{\cal F}_{\sf P} \, : = \{ {\bf f}_{1}, \cdots, {\bf f}_{126} \} . \eqno(3)]

This shows that [{\sf P} ({\sf Q})] has one closed zone with zone vector z* = (0, 0, 0, 0, 0, 1), and thus it belongs to [{\Sigma}_{1} ({\sf Q})]. Because of symmetry, for each equivalent wall an equivalent result will be obtained.

Step S2: Next all triplets [{\bf f}_{i},{\bf f}_{j},{\bf f}_{k} \in {\cal F}_{\sf P}] that fulfil the belt condition

[{\bf f}_{i} + {\bf f}_{j} + {\bf f}_{k} = 0 , \eqno(4)]

are determined. Their number is Nb = 371, and thus,

[\Sigma _{1} \left ( {\sf Q} \right ) \, : = \bigcap _{h = 1}^{3N_{b}} {\sf H}_{h} , \eqno(5)]

is obtained. Because of the large number of half-spaces [{\sf H}_{h}], the direct calculation of Σ1 is not practicable. Instead, the calculation of the Φ subcones inside Σ1 will reveal the walls [{\sf W}_{i}^{\Sigma _{1}}]. Recall that [{\sf Q}] is interior to Σ1 if

[{\sf Q} \in {\sf H}_{h}^{+}, \quad h = 1, \cdots, 3N_{b} . \eqno(6)]

This allows the calculation of all [\Phi _{k} \subset \Sigma _{1}] without explicitly knowing Σ1, and for the walls of Σ1 it holds that:

A wall [{\sf W}_{j}^{\Phi _{k}}] of [\Phi _{k} \subset \Sigma _{1}] is a wall of Σ1 if there exists a wall [{\sf H}_{h}^{0}], 1 ≤ h ≤ 3Nb, such that

[{\sf W}_{j}^{\Phi _{k}} = {\sf H}_{h}^{0} . \eqno(7)]

By calculating a sufficiently large number of [\Phi _{k} \subset \Sigma _{1}], most of the walls of Σ1 can be determined. The process converts relatively quickly.

Step S3: In order to verify the result, the induced symmetry of Σ1 is applied:

For any [{\sf Q} \in \Sigma _{1}] the induced symmetry of Σ1 is defined by

[{\cal G}_{\Sigma _{1}} \, : = \left \{ {\sf S}_{i} \mid {\sf Q}_{i} = {\sf S}_{i} {\sf Q} {\sf S}_{i}^{t} \in \Sigma _{1}, \quad \forall \, {\sf S}_{i} \in {\cal G}_{E_{6}^{*}} \right \} . \eqno(8)]

The centre

[{\sf C} \, : = \sum _{\forall \, {\sf Q}_{i} \in \Sigma _{1}} {\sf Q}_{i} , \eqno(9)]

is invariant under the group [{\cal G}_{\Sigma _{1}}] and lies in Σ1. Applying the symmetry [{\cal G}_{\Sigma _{1}}] to the walls of Σ1 proves that there are 166 walls which belong to seven classes under [{\cal G}_{\Sigma _{1}}], and these are shown in Table 1[link]. The neighbouring Σs, s = 0, 1, 2, are given in Table 2[link].

Table 1
Wall normals ni for the wall classes of Σ1 in E6

Class Order n11, …, n16 / n22, …, n26 / n33, … / n66 Neighbour
1 1 0 −1 1 0 0 1 / 0 0 −1 1 −1 / 0 1 −1 1 / 0 0 1 / 0 −1 / −1 Σ0
2 5 0 −1 1 −1 1 / 0 0 0 0 0 / 0 0 0 0 / 0 0 0 / 0 0 / 0 Σ1
3 30 0 0 0 0 0 0 / 0 0 0 0 0 / 0 1 0 0 / 0 0 0 / 0 0 / 0 [\Sigma _{2}^{1}]
4 40 0 0 0 0 0 1 / 0 0 0 0 0 / 0 0 0 0 / 0 0 0 / 0 0 / 0 [\Sigma _{2}^{2}]
5 10 0 1 0 0 0 0 / 0 0 0 0 0 / 0 0 0 0 / 0 0 0 / 0 0 / 0 [\Sigma _{2}^{3}]
6 20 0 0 0 0 0 0 / 0 −1 0 0 0 / 1 0 0 1 / 0 0 0 / 0 0 / 0 [\Sigma _{2}^{4}]
7 60 0 0 0 0 0 0 / 0 0 0 0 0 / 0 0 0 0 / 0 0 0 / 0 1 / 0 [\Sigma _{2}^{5}]

Table 2
Σ classes for levels 0–3 in E6

s Class Subcone Order Neighbours
0 Σ0 216 103860 [216]Σ1
1 Σ1 166 480 Σ0, [5]Σ1, [[30]\Sigma _{2}^{1}], [[40]\Sigma _{2}^{2}], [[10]\Sigma _{2}^{3}], [[20]\Sigma _{2}^{4}], [[60]\Sigma _{2}^{5}]
2 [\Sigma _{2}^{1}] 129 32 [2]Σ1, [[4]\Sigma _{2}^{1}], [[2]\Sigma _{2}^{3}], [[8]\Sigma _{3}^{1}], [[8]\Sigma _{3}^{2}], [[8]\Sigma _{3}^{3}], [[8]\Sigma _{3}^{4}], [[8]\Sigma _{3}^{5}], [[4]\Sigma _{3}^{6}], [[16]\Sigma _{3}^{7}], [[16]\Sigma _{3}^{8}], [[8]\Sigma _{3}^{9}], [[8+8]\Sigma _{3}^{10}], [[4]\Sigma _{3}^{11}], [[4]\Sigma _{3}^{12}], [[8]\Sigma _{3}^{13}], [[4]\Sigma _{3}^{14}], [\Sigma _{3}^{44}]
  [\Sigma _{2}^{2}] 129 24 [2]Σ1, [[2]\Sigma _{2}^{2}], [[2]\Sigma _{2}^{4}], [[6]\Sigma _{2}^{5}], [[12]\Sigma _{3}^{2}], [[3]\Sigma _{3}^{3}], [[6]\Sigma _{3}^{4}], [[6]\Sigma _{3}^{5}], [[12]\Sigma _{3}^{8}], [[6]\Sigma _{3}^{14}], [[6]\Sigma _{3}^{15}], [[6]\Sigma _{3}^{16}], [[6]\Sigma _{3}^{17}], [[6+6]\Sigma _{3}^{18}], [[6]\Sigma _{3}^{19}], [[6]\Sigma _{3}^{20}], [[6]\Sigma _{3}^{21}], [[6]\Sigma _{3}^{22}], [[12]\Sigma _{3}^{23}], [[3]\Sigma _{3}^{45}], [[2]\Sigma _{3}^{46}], [\Sigma _{3}^{47}]
  [\Sigma _{2}^{3}] 138 96 [2]Σ1, [[6]\Sigma _{2}^{1}], [[4]\Sigma _{2}^{6}], [[24]\Sigma _{3}^{5}], [[12]\Sigma _{3}^{6}], [[24]\Sigma _{3}^{19}], [[24]\Sigma _{3}^{22}], [[12]\Sigma _{3}^{24}], [[24]\Sigma _{3}^{25}], [[6]\Sigma _{3}^{44}]
  [\Sigma _{2}^{4}] 134 48 [2]Σ1, [[4]\Sigma _{2}^{2}], [[6]\Sigma _{2}^{5}], [[2]\Sigma _{2}^{6}], [[24]\Sigma _{3}^{7}], [[6]\Sigma _{3}^{9}], [[12]\Sigma _{3}^{11}], [[3]\Sigma _{3}^{12}], [[6]\Sigma _{3}^{15}], [[12]\Sigma _{3}^{19}], [[12]\Sigma _{3}^{20}], [[6]\Sigma _{3}^{21}], [[3]\Sigma _{3}^{24}], [[6]\Sigma _{3}^{26}], [[6]\Sigma _{3}^{27}], [[12]\Sigma _{3}^{28}] [[6]\Sigma _{3}^{29}], [[2]\Sigma _{3}^{46}], [\Sigma _{3}^{48}], [[3]\Sigma _{3}^{49}]
  [\Sigma _{2}^{5}] 125 16 [2]Σ1, [[4]\Sigma _{2}^{2}], [[2]\Sigma _{2}^{4}], [[4]\Sigma _{2}^{5}], [[8]\Sigma _{3}^{1}], [[4]\Sigma _{3}^{4}], [[2]\Sigma _{3}^{6}], [[8]\Sigma _{3}^{7}], [[8]\Sigma _{3}^{8}], [[4]\Sigma _{3}^{10}], [[8]\Sigma _{3}^{13}], [[4+4]\Sigma _{3}^{16}], [[8]\Sigma _{3}^{17}], [[4]\Sigma _{3}^{20}], [[4]\Sigma _{3}^{22}], [[4]\Sigma _{3}^{23}], [[8]\Sigma _{3}^{25}], [[4]\Sigma _{3}^{26}], [\Sigma _{3}^{27}], [[8]\Sigma _{3}^{28}], [[8+4]\Sigma _{3}^{30}], [[4]\Sigma _{3}^{45}], [[2]\Sigma _{3}^{49}]
  [\Sigma _{2}^{6}] 105.256280 12 [\Sigma _{2}^{3}], [\Sigma _{2}^{4}], [\Sigma _{2}^{6}], [[3]\Sigma _{3}^{12}], [[6]\Sigma _{3}^{31}], [[6]\Sigma _{3}^{32}], [[12]\Sigma _{3}^{33}], [[6]\Sigma _{3}^{34}], [[3]\Sigma _{3}^{35}], [[12]\Sigma _{3}^{36}], [[6]\Sigma _{3}^{37}], [[6]\Sigma _{3}^{38}], [[6]\Sigma _{3}^{39}], [[12]\Sigma _{3}^{40}], [[6]\Sigma _{3}^{41}], [[3]\Sigma _{3}^{42}], [[6]\Sigma _{3}^{43}], [[3]\Sigma _{3}^{50}], [[6]\Sigma _{3}^{51}]
3 [\Sigma _{3}^{1}] 129 4 [\Sigma _{2}^{1}], [[2]\Sigma _{2}^{5}], [[2]\Sigma _{3}^{1}], [\Sigma _{3}^{2}], [[2]\Sigma _{3}^{4}], [[2]\Sigma _{3}^{7}], [[2]\Sigma _{3}^{8}], [[2]\Sigma _{3}^{22}], [115]Σ4
  [\Sigma _{3}^{2}] 103.497315 4 [[2]\Sigma _{2}^{2}], [\Sigma _{3}^{1}], [[2]\Sigma _{3}^{2}], [[2]\Sigma _{3}^{4}], [[2]\Sigma _{3}^{7}], [[2]\Sigma _{3}^{8}], [[2]\Sigma _{3}^{22}], [90]Σ4
  [\Sigma _{3}^{3}] 99.344740 8 [[2]\Sigma _{2}^{1}], [[4]\Sigma _{3}^{5}], [[2]\Sigma _{3}^{9}], [[2]\Sigma _{3}^{12}], [89]Σ4
  [\Sigma _{3}^{4}] 100.361510 4 [\Sigma _{2}^{1}], [\Sigma _{2}^{5}], [[2]\Sigma _{3}^{1}], [[2]\Sigma _{3}^{2}], [\Sigma _{3}^{4}], [\Sigma _{3}^{11}], [[2]\Sigma _{3}^{13}], [\Sigma _{3}^{14}], [[1+1]\Sigma _{3}^{22}], [87]Σ4
  [\Sigma _{3}^{5}] 105.390562 4 [\Sigma _{2}^{1}], [\Sigma _{2}^{3}], [[1+1]\Sigma _{3}^{3}], [[1+1]\Sigma _{3}^{5}], [\Sigma _{3}^{6}], [\Sigma _{3}^{9}], [\Sigma _{3}^{10}], [\Sigma _{3}^{24}], [[2]\Sigma _{3}^{36}], [\Sigma _{3}^{39}], [89]Σ4
  [\Sigma _{3}^{6}] 107.485226 8 [\Sigma _{2}^{1}], [\Sigma _{2}^{3}], [[2]\Sigma _{3}^{5}], [[2+2]\Sigma _{3}^{10}], [\Sigma _{3}^{12}], [\Sigma _{3}^{24}], [[2]\Sigma _{3}^{38}], [\Sigma _{3}^{42}], [94]Σ4
  [\Sigma _{3}^{7}] 103.401973 2 [\Sigma _{2}^{1}], [\Sigma _{2}^{4}], [\Sigma _{2}^{5}], [\Sigma _{3}^{1}], [\Sigma _{3}^{2}], [[1+1]\Sigma _{3}^{7}], [[1+1+1]\Sigma _{3}^{8}], [\Sigma _{3}^{11}], [\Sigma _{3}^{13}], [\Sigma _{3}^{19}], [\Sigma _{3}^{25}], [\Sigma _{3}^{33}], [\Sigma _{3}^{36}], [87]Σ4
  [\Sigma _{3}^{8}] 98.307538 2 [\Sigma _{2}^{1}], [\Sigma _{2}^{2}], [\Sigma _{2}^{5}], [\Sigma _{3}^{1}], [\Sigma _{3}^{2}], [[1+1+1]\Sigma _{3}^{7}], [[1+1]\Sigma _{3}^{8}], [\Sigma _{3}^{13}], [\Sigma _{3}^{14}], [\Sigma _{3}^{19}], [\Sigma _{3}^{25}], [84]Σ4
  [\Sigma _{3}^{9}] 99.282678 8 [[2]\Sigma _{2}^{1}], [\Sigma _{2}^{4}], [[2]\Sigma _{3}^{3}], [[2]\Sigma _{3}^{5}], [\Sigma _{3}^{9}], [[2]\Sigma _{3}^{10}], [\Sigma _{3}^{24}], [88]Σ4
  [\Sigma _{3}^{10}] 99.311756 4 [[1+1]\Sigma _{2}^{1}], [\Sigma _{2}^{5}], [\Sigma _{3}^{3}], [\Sigma _{3}^{5}], [[1+1]\Sigma _{3}^{6}], [\Sigma _{3}^{9}], [[1+1]\Sigma _{3}^{10}], [\Sigma _{3}^{12}], [88]Σ4
  [\Sigma _{3}^{11}] 109.471017 8 [\Sigma _{2}^{1}], [[2]\Sigma _{2}^{4}], [[2]\Sigma _{3}^{4}], [[4]\Sigma _{3}^{7}], [[2]\Sigma _{3}^{13}], [\Sigma _{3}^{14}], [[2]\Sigma _{3}^{19}], [[2]\Sigma _{3}^{32}], [[2]\Sigma _{3}^{38}], [91]Σ4
  [\Sigma _{3}^{12}] 112.627736 16 [[2]\Sigma _{2}^{1}], [\Sigma _{2}^{4}], [[2]\Sigma _{2}^{6}], [[2]\Sigma _{3}^{6}], [[4]\Sigma _{3}^{10}], [[2]\Sigma _{3}^{12}], [[2]\Sigma _{3}^{52}], [97]Σ4
  [\Sigma _{3}^{13}] 95.226124 4 [\Sigma _{2}^{1}], [[2]\Sigma _{2}^{5}], [[2]\Sigma _{3}^{4}], [[2]\Sigma _{3}^{7}], [[2]\Sigma _{3}^{8}], [\Sigma _{3}^{11}], [\Sigma _{3}^{13}], [\Sigma _{3}^{14}], [[2]\Sigma _{3}^{25}], [82]Σ4
  [\Sigma _{3}^{14}] 98.258158 8 [\Sigma _{2}^{1}], [[2]\Sigma _{2}^{2}], [[4]\Sigma _{3}^{8}], [[2]\Sigma _{3}^{4}], [[2]\Sigma _{3}^{19}], [[2]\Sigma _{3}^{13}], [\Sigma _{3}^{11}], [84]Σ4
  [\Sigma _{3}^{15}] 108.550026 8 [[2]\Sigma _{2}^{2}], [\Sigma _{3}^{15}], [[2]\Sigma _{3}^{16}], [[2]\Sigma _{3}^{18}], [[2]\Sigma _{3}^{20}], [[4]\Sigma _{3}^{23}], [[2]\Sigma _{3}^{26}], [[2]\Sigma _{3}^{27}], [[2]\Sigma _{3}^{39}], [89]Σ4
  [\Sigma _{3}^{16}] 94.214427 4 [\Sigma _{2}^{2}], [[1+1]\Sigma _{2}^{5}], [\Sigma _{3}^{15}], [[1+2]\Sigma _{3}^{16}], [[1+1]\Sigma _{3}^{18}], [[1+1]\Sigma _{3}^{20}], [[2]\Sigma _{3}^{23}], [\Sigma _{3}^{26}], [\Sigma _{3}^{27}], [[2]\Sigma _{3}^{30}], [77]Σ4
  [\Sigma _{3}^{17}] 96.285460 4 [\Sigma _{2}^{2}], [[2]\Sigma _{2}^{5}], [[2]\Sigma _{3}^{17}], [[2]\Sigma _{3}^{18}], [[2]\Sigma _{3}^{21}], [[2]\Sigma _{3}^{23}], [[2+2]\Sigma _{3}^{28}], [[2]\Sigma _{3}^{30}], [79]Σ4
  [\Sigma _{3}^{18}] 98.321970 4 [[1+1]\Sigma _{2}^{2}], [\Sigma _{2}^{5}], [\Sigma _{3}^{15}], [[1+1]\Sigma _{3}^{16}], [[2]\Sigma _{3}^{17}], [\Sigma _{3}^{18}], [\Sigma _{3}^{20}], [[1+1[\Sigma _{3}^{21}], [[2]\Sigma _{3}^{23}], [\Sigma _{3}^{26}], [[2]\Sigma _{3}^{30}], [81]Σ4
  [\Sigma _{3}^{19}] 112.567544 4 [\Sigma _{2}^{2}], [\Sigma _{2}^{3}], [\Sigma _{2}^{4}], [[2]\Sigma _{3}^{7}], [[2]\Sigma _{3}^{8}], [\Sigma _{3}^{11}], [\Sigma _{3}^{14}], [\Sigma _{3}^{19}], [[1+1]\Sigma _{3}^{22}], [[2]\Sigma _{3}^{25}], [\Sigma _{3}^{31}], [\Sigma _{3}^{32}], [\Sigma _{3}^{34}], [\Sigma _{3}^{37}], [\Sigma _{3}^{41}], [93]Σ4
  [\Sigma _{3}^{20}] 103.395491 4 [\Sigma _{2}^{2}], [\Sigma _{2}^{4}], [\Sigma _{2}^{5}], [\Sigma _{3}^{15}], [\Sigma _{3}^{16}], [[1+1]\Sigma _{3}^{18}], [\Sigma _{3}^{20}], [\Sigma _{3}^{21}], [[2]\Sigma _{3}^{23}], [\Sigma _{3}^{26}], [[2]\Sigma _{3}^{28}], [\Sigma _{3}^{29}], [[2]\Sigma _{3}^{30}], [\Sigma _{3}^{34}], [\Sigma _{3}^{43}], [84]Σ4
  [\Sigma _{3}^{21}] 103.387689 8 [[2]\Sigma _{2}^{2}], []\Sigma _{2}^{4}], [[4]\Sigma _{3}^{17}], [[2+2]\Sigma _{3}^{18}], [[2]\Sigma _{3}^{20}], [[2]\Sigma _{3}^{21}], [[2]\Sigma _{3}^{28}], [\Sigma _{3}^{29}], [[2]\Sigma _{3}^{51}], [83]Σ4
  [\Sigma _{3}^{22}] 108.531296 4 [\Sigma _{2}^{2}], [\Sigma _{2}^{3}], [\Sigma _{2}^{5}], [[2]\Sigma _{3}^{1}], [[2]\Sigma _{3}^{2}], [[1+1]\Sigma _{3}^{4}], [[1+1]\Sigma _{3}^{19}], [\Sigma _{3}^{22}], [[2]\Sigma _{3}^{25}], [\Sigma _{3}^{37}], [\Sigma _{3}^{43}], [\Sigma _{3}^{51}], [91]Σ4
  [\Sigma _{3}^{23}] 99.343145 4 [[2]\Sigma _{2}^{2}], [\Sigma _{2}^{5}], [[2]\Sigma _{3}^{15}], [[2]\Sigma _{3}^{16}], [[2]\Sigma _{3}^{17}], [[2]\Sigma _{3}^{18}], [[2]\Sigma _{3}^{20}], [[2]\Sigma _{3}^{23}], [[2]\Sigma _{3}^{28}], [\Sigma _{3}^{30}], [81]Σ4
  [\Sigma _{3}^{24}] 114.572071 16 [[2]\Sigma _{2}^{3}], [\Sigma _{2}^{4}], [[2]\Sigma _{3}^{6}], [[4]\Sigma _{3}^{5}], [[2]\Sigma _{3}^{9}], [[4]\Sigma _{3}^{31}], [[2]\Sigma _{3}^{35}], [[2]\Sigma _{3}^{50}], [95]Σ4
  [\Sigma _{3}^{25}] 104.367659 4 [\Sigma _{2}^{3}], [[2]\Sigma _{2}^{5}], [[2]\Sigma _{3}^{7}], [[2]\Sigma _{3}^{8}], [[2]\Sigma _{3}^{13}], [[2]\Sigma _{3}^{19}], [[2]\Sigma _{3}^{22}], [\Sigma _{3}^{25}], [[2]\Sigma _{3}^{33}], [[2]\Sigma _{3}^{40}], [86]Σ4
  [\Sigma _{3}^{26}] 98.295360 8 [\Sigma _{2}^{4}], [[2]\Sigma _{2}^{5}], [[2]\Sigma _{3}^{15}], [[2]\Sigma _{3}^{16}], [[2]\Sigma _{3}^{18}], [[2]\Sigma _{3}^{20}], [[2]\Sigma _{3}^{27}], [\Sigma _{3}^{26}], [[4]\Sigma _{3}^{30}], [80]Σ4
  [\Sigma _{3}^{27}] 111.490894 16 [[2]\Sigma _{2}^{4}], [\Sigma _{2}^{4}], [[4]\Sigma _{3}^{15}], [[4]\Sigma _{3}^{16}], [[4]\Sigma _{3}^{26}], [[2]\Sigma _{3}^{27}], [[2]\Sigma _{3}^{35}], [[2]\Sigma _{3}^{42}], [[2]\Sigma _{3}^{52}], [88]Σ4
  [\Sigma _{3}^{28}] 99.298816 4 [\Sigma _{2}^{4}], [[2]\Sigma _{2}^{5}], [[2+2]\Sigma _{3}^{17}], [[2]\Sigma _{3}^{20}], [\Sigma _{3}^{21}], [[2]\Sigma _{3}^{23}], [[2+2]\Sigma _{3}^{28}], [\Sigma _{3}^{29}], [[2]\Sigma _{3}^{38}], [[2]\Sigma _{3}^{40}], [78]Σ4
  [\Sigma _{3}^{29}] 113.641446 24 [[3]\Sigma _{2}^{4}], [[6]\Sigma _{3}^{20}], [[3]\Sigma _{3}^{21}], [[6]\Sigma _{3}^{28}], [[6]\Sigma _{3}^{41}], [89]Σ4
  [\Sigma _{3}^{30}] 90.184843 4 [[2+1]\Sigma _{2}^{5}], [[2]\Sigma _{3}^{16}], [[2]\Sigma _{3}^{17}], [[2]\Sigma _{3}^{18}], [[2]\Sigma _{3}^{20}], [\Sigma _{3}^{23}], [[2]\Sigma _{3}^{26}], [[2]\Sigma _{3}^{28}], [[2]\Sigma _{3}^{30}], [72]Σ4
  [\Sigma _{3}^{31}] 86.61862 4 [\Sigma _{2}^{6}], [\Sigma _{3}^{19}], [\Sigma _{3}^{24}], [[2]\Sigma _{3}^{36}], [\Sigma _{3}^{37}], [\Sigma _{3}^{38}], [\Sigma _{3}^{53}], [\Sigma _{3}^{56}], [77]Σ4
  [\Sigma _{3}^{32}] 86.59029 4 [\Sigma _{2}^{6}], [[2]\Sigma _{3}^{33}], [\Sigma _{3}^{37}], [\Sigma _{3}^{11}], [\Sigma _{3}^{56}], [\Sigma _{3}^{57}], [\Sigma _{3}^{19}], [\Sigma _{3}^{38}], [77]Σ4
  [\Sigma _{3}^{33}] 78.36807 2 [\Sigma _{2}^{6}], [\Sigma _{3}^{7}], [\Sigma _{3}^{25}], [\Sigma _{3}^{32}], [\Sigma _{3}^{33}], [\Sigma _{3}^{36}], [\Sigma _{3}^{37}], [71]Σ4
  [\Sigma _{3}^{34}] 84.57367 4 [\Sigma _{2}^{6}], [\Sigma _{3}^{19}], [\Sigma _{3}^{20}], [[2]\Sigma _{3}^{40}], [\Sigma _{3}^{41}], [[1+1]\Sigma _{3}^{43}], [\Sigma _{3}^{51}], [75]Σ4
  [\Sigma _{3}^{35}] 90.79939 8 [\Sigma _{2}^{6}], [\Sigma _{3}^{24}], [\Sigma _{3}^{27}], [\Sigma _{3}^{35}], [[2]\Sigma _{3}^{39}], [[1+1]\Sigma _{3}^{42}], [\Sigma _{3}^{52}], [81]Σ4
  [\Sigma _{3}^{36}] 78.36807 2 [\Sigma _{2}^{6}], [\Sigma _{3}^{5}], [\Sigma _{3}^{7}], [\Sigma _{3}^{31}], [\Sigma _{3}^{33}], [\Sigma _{3}^{36}], [\Sigma _{3}^{38}], [71]Σ4
  [\Sigma _{3}^{37}] 86.61862 4 [\Sigma _{2}^{6}], [\Sigma _{3}^{19}], [\Sigma _{3}^{22}], [\Sigma _{3}^{31}], [\Sigma _{3}^{32}], [[2]\Sigma _{3}^{33}], [\Sigma _{3}^{54}], [\Sigma _{3}^{57}], [77]Σ4
  [\Sigma _{3}^{38}] 86.57513 4 [\Sigma _{2}^{6}], [\Sigma _{3}^{57}], [\Sigma _{3}^{31}], [[2]\Sigma _{3}^{36}], [\Sigma _{3}^{11}], [\Sigma _{3}^{6}], [\Sigma _{3}^{32}], [78]Σ4
  [\Sigma _{3}^{39}] 83.39029 4 [\Sigma _{2}^{6}], [\Sigma _{3}^{5}], [\Sigma _{3}^{15}], [\Sigma _{3}^{35}], [[1+1]\Sigma _{3}^{39}], [\Sigma _{3}^{42}], [76]Σ4
  [\Sigma _{3}^{40}] 73.25013 2 [\Sigma _{2}^{6}], [\Sigma _{3}^{25}], [\Sigma _{3}^{28}], [\Sigma _{3}^{34}], [[1+1]\Sigma _{3}^{40}], [\Sigma _{3}^{41}], [\Sigma _{3}^{43}], [\Sigma _{3}^{51}], [64]Σ4
  [\Sigma _{3}^{41}] 89.74566 4 [\Sigma _{2}^{6}], [\Sigma _{3}^{19}], [\Sigma _{3}^{29}], [\Sigma _{3}^{34}], [[2]\Sigma _{3}^{40}], [\Sigma _{3}^{41}], [\Sigma _{3}^{43}], [\Sigma _{3}^{51}], [\Sigma _{3}^{53}], [[1+1]\Sigma _{3}^{54}], [77]Σ4
  [\Sigma _{3}^{42}] 89.73349 8 [\Sigma _{2}^{6}], [\Sigma _{3}^{6}], [\Sigma _{3}^{27}], [[2]\Sigma _{3}^{34}], [[1+1]\Sigma _{3}^{35}], [[1+1]\Sigma _{3}^{52}], [80]Σ4
  [\Sigma _{3}^{43}] 84.57367 4 [\Sigma _{2}^{5}], [\Sigma _{3}^{20}], [\Sigma _{3}^{22}], [[1+1]\Sigma _{3}^{34}], [[2]\Sigma _{3}^{40}], [\Sigma _{3}^{41}], [\Sigma _{3}^{51}], [75]Σ4
  [\Sigma _{3}^{44}] 113.559629 32 [\Sigma _{2}^{1}], [[2]\Sigma _{2}^{3}], [[2]\Sigma _{3}^{44}], [[4]\Sigma _{3}^{50}], [104]Σ4
  [\Sigma _{3}^{45}] 93.276584 8 [\Sigma _{2}^{2}], [[2]\Sigma _{2}^{5}], [[2+2]\Sigma _{3}^{45}], [[2]\Sigma _{3}^{46}], [[2]\Sigma _{3}^{47}], [[2+2+4]\Sigma _{3}^{49}], [74]Σ4
  [\Sigma _{3}^{46}] 99.399178 24 [[2]\Sigma _{2}^{2}], [\Sigma _{2}^{4}], [[6]\Sigma _{3}^{45}], [[1+2]\Sigma _{3}^{46}], [[2]\Sigma _{3}^{47}], [\Sigma _{3}^{48}], [[3]\Sigma _{3}^{49}], [81]Σ4
  [\Sigma _{3}^{47}] 99.417350 72 [[3]\Sigma _{2}^{2}], [[9]\Sigma _{3}^{45}], [[6]\Sigma _{3}^{46}], [81]Σ4
  [\Sigma _{3}^{48}] 102.398634 144 [[3]\Sigma _{2}^{4}], [[6]\Sigma _{3}^{46}], [[9]\Sigma _{3}^{49}], [84]Σ4
  [\Sigma _{3}^{49}] 96.338198 16 [\Sigma _{2}^{4}], [[2]\Sigma _{2}^{5}], [[4+4]\Sigma _{3}^{45}], [[2]\Sigma _{3}^{46}], [\Sigma _{3}^{48}], [[2+2]\Sigma _{3}^{49}], [78]Σ4
  [\Sigma _{3}^{50}] 89.80719 8 [\Sigma _{2}^{6}], [\Sigma _{3}^{24}], [\Sigma _{3}^{44}], [\Sigma _{3}^{50}], [\Sigma _{3}^{55}], [\Sigma _{3}^{58}], [83]Σ4
  [\Sigma _{3}^{51}] 81.41501 4 [\Sigma _{2}^{6}], [\Sigma _{3}^{21}], [\Sigma _{3}^{22}], [\Sigma _{3}^{34}], [[2]\Sigma _{3}^{40}], [\Sigma _{3}^{41}], [\Sigma _{3}^{43}], [\Sigma _{3}^{51}], [72]Σ4
  [\Sigma _{3}^{52}] 83.35433 8 [\Sigma _{3}^{12}], [\Sigma _{3}^{27}], [\Sigma _{3}^{35}], [[1+1]\Sigma _{3}^{42}], [\Sigma _{3}^{52}], [77]Σ4
  [\Sigma _{3}^{53}] 73.14453 8 [[2]\Sigma _{3}^{41}], [[2]\Sigma _{3}^{31}], [[2]\Sigma _{3}^{54}], [67]Σ4
  [\Sigma _{3}^{54}] 71.12163 4 [\Sigma _{3}^{37}], [[1+1]\Sigma _{3}^{41}], [\Sigma _{3}^{53}], [67]Σ4
  [\Sigma _{3}^{55}] 78.28445 16 [[2]\Sigma _{3}^{35}], [[2]\Sigma _{3}^{50}], [[2+2]\Sigma _{3}^{58}], [70]Σ4
  [\Sigma _{3}^{56}] 69.13979 8 [[2]\Sigma _{3}^{31}], [[2]\Sigma _{3}^{32}], [[2]\Sigma _{3}^{57}], [63]Σ4
  [\Sigma _{3}^{57}] 68.12463 4 [\Sigma _{3}^{56}], [\Sigma _{3}^{38}], [\Sigma _{3}^{32}], [\Sigma _{3}^{37}], [64]Σ4
  [\Sigma _{3}^{58}] 75.21855 8 [\Sigma _{3}^{35}], [\Sigma _{3}^{42}], [\Sigma _{3}^{50}], [[1+1]\Sigma _{3}^{55}], [70]Σ4

Step S4: For each Σs obtained, we proceed analogously to steps S1 to S3 in order to get further Σs. For each new Σs we have to check their equivalence:

[\Sigma _{s}^{k}] and [\Sigma _{s}^{l}] are arithmetically equivalent and belong to the same equivalence class [{\cal E}_{\Sigma _{s}^{k}}] if there exists [{\sf A} \in GL_{d} ({\bb Z})] such that for any [{\sf Q}_{j} \in \Sigma _{s}^{l}] it holds that

[{\sf Q}_{i} = {\sf A} {\sf Q}_{j} {\sf A}^{t} \in \Sigma _{s}^{k} . \eqno(10)]

Because [GL_{d} ({\bb Z})] is of infinite order, the above equation is not practicable. However, if optimal bases are admitted to the forms [{\sf Q}] only, then the number of transformations [{\sf A}] that have to be taken into account becomes finite. It was discovered for every Σs at maximal path length 5 from Σ0 (see Fig. 1[link]) that it is sufficient to consider [{\sf A} \in {\cal G}_{E_{6}^{*}}] only, in order to verify equivalence. If equivalence is proved for any [{\sf Q}_{j}] then it holds for all [{\sf Q} \in \Sigma _{s}^{l}].

[Figure 1]
Figure 1
Shortest paths among the Σs classes for levels s = 0–3 in E6.

Alternatively, the combinatorial equivalence of parallelohedra may be compared:

[\Sigma _{s}^{k}] and [\Sigma _{s}^{l}] are equivalent and belong to the same equivalence class if there exist [{\sf Q}_{i} \in \Sigma _{s}^{k}] and [{\sf Q}_{j} \in \Sigma _{s}^{l}] such that

[{\sf P} \left ( {\sf Q}_{i} \right )_{\simeq}^{\rm comb} \, {\sf P} \left ( {\sf Q}_{j} \right ) . \eqno(11)]

The latter procedure requires a sufficiently large number of Φ cones to be determined in order to find at least one equivalent pair.

Analogously, using the procedures described in steps S1 to S4 the Σs cones, s = 21, 20, 19, 18, were successively determined starting with Σ21 as a representative of its class [{\cal E}_{\Sigma _{21}}]. Recall that Σ21 has 21 walls [{\sf W}_{i}^{\Sigma _{21}}], [i = 1, \cdots, 21], which all are equivalent under the group [{\cal G}_{A_{6}^{*}}] (see Engel, 2019[Engel, P. (2019). Acta Cryst. A75, 574-583.]).

3. Results

In Table 2[link] are given the Σs classes, s = 0, 1, 2, 3, under the general linear group [GL_{d} ({\bb Z})]. Each equivalence class [{\cal E}_{\Sigma _{s}^{i}}] is given by its representative [\Sigma _{s}^{i}]. [\Sigma _{s}^{i} ({\sf Q})] is chosen such that [{\sf Q}] becomes optimal. Under the heading `s' is given the number of closed zones. Under the heading `Subcone' is stated the number of walls of [\Sigma _{s}^{i}]. In cases where the complete Σs cone was calculated, the numbers of walls and edges are indicated as Nw and Ne, respectively. Under the heading `Order' is given the order of the induced symmetry under [{\cal G}_{E_{6}^{*}}]. Under the heading `Neighbours' are stated the neighbouring [\Sigma _{s}^{j}], each of them preceded, in brackets, by the number of equivalent subcones under the group [{\cal G}_{\Sigma _{s}^{i}}]. If more than one number is given, it means that they are equivalent under [{\cal G}_{E_{6}^{*}}]. Remarkably, [\Sigma _{r}^{i}] has neighbours with s = r − 1, r, r + 1 only. Note that Σ4 cones were not determined and the preceding number gives an upper bound for the number of equivalent subcones only. In Fig. 1[link] are drawn the shortest paths from Σ0 to each other [\Sigma _{s}^{i}].

In Table 3[link] are given the Σs classes, s = 21, 20, 19, 18. Under the heading `Subcone' are given the numbers of walls Nw and edges Ne. Most of the cones are simple with Φ and Σ cones identical. In cases where the cone is not simple, two numbers are shown as `a/b' under the heading `Types', where `a' indicates the number of Φ types and `b' gives the total number of Φ cones in [\Sigma _{s}^{i}]. The numbers of Φ types for s = 21, 20, 19, 18 correspond to the numbers given by Baburin & Engel (2013[Baburin, I. A. & Engel, P. (2013). Acta Cryst. A69, 510-516.]). All these Φ types correspond to principal primitive parallelo­hedra. Under the heading `Order' is given the order of the induced symmetry under [{\cal G}_{A_{6}^{*}}]. Under the heading `Neighbours' are listed the neighbouring [\Sigma _{s}^{j}] which are preceded, in brackets, by the number of equivalent types under the group [{\cal G}_{\Sigma _{s}^{i}}]. Note that the Σ17 cones were not determined and the preceding number gives an upper bound for the number of equivalent types only. In Fig. 2[link] are drawn the shortest paths from Σ21 to each other [\Sigma _{s}^{i}].

Table 3
Σ classes for levels 21–18 in E6

s Class Subcone Types Order Neighbours
21 Σ21 21.21 1 10080 [21]Σ20
20 Σ20 21.21 1 480 Σ21, [[10]\Sigma _{19}^{1}], [[10]\Sigma _{19}^{2}]
19 [\Sigma _{19}^{1}] 25.22 1/2 48 [2]Σ20, [[8]\Sigma _{18}^{1}], [[12]\Sigma _{18}^{2}], [[3]\Sigma _{18}^{3}]
  [\Sigma _{19}^{2}] 21.21 1 48 Σ20, [\Sigma _{19}^{2}], [\Sigma _{19}^{3}], [[4]\Sigma _{18}^{1}], [[6]\Sigma _{18}^{2}], [[4]\Sigma _{18}^{4}], [[4]\Sigma _{18}^{5}]
  [\Sigma _{19}^{3}] 21.21 1 96 [[2]\Sigma _{19}^{2}], [\Sigma _{18}^{6}], [[6]\Sigma _{18}^{7}], [[8]\Sigma _{18}^{8}], [[4]\Sigma _{18}^{9}]
18 [\Sigma _{18}^{1}] 21.21 1 12 [\Sigma _{19}^{1}], [\Sigma _{19}^{2}], [\Sigma _{18}^{1}], [\Sigma _{18}^{10}], [17]Σ17
  [\Sigma _{18}^{2}] 25.23 3/3 8 [\Sigma _{19}^{1}], [\Sigma _{19}^{2}], [\Sigma _{18}^{2}], [\Sigma _{18}^{7}], [21]Σ17
  [\Sigma _{18}^{3}] 33.25 2/12 16 [[3]\Sigma _{19}^{1}], [30]Σ17
  [\Sigma _{18}^{4}] 25.22 2/2 24 [[2]\Sigma _{19}^{2}], [[2]\Sigma _{18}^{5}], [[2]\Sigma _{18}^{8}], [19]Σ17
  [\Sigma _{18}^{5}] 21.21 1 24 [[2]\Sigma _{19}^{2}], [[2]\Sigma _{18}^{4}], [\Sigma _{18}^{11}], [16]Σ17
  [\Sigma _{18}^{6}] 21.21 1 96 [\Sigma _{19}^{3}], [[2]\Sigma _{18}^{6}], [18]Σ17
  [\Sigma _{18}^{7}] 27.24 4/5 16 [\Sigma _{19}^{3}], [[2]\Sigma _{18}^{2}], [24]Σ17
  [\Sigma _{18}^{8}] 21.21 1 12 [\Sigma _{19}^{3}], [\Sigma _{18}^{4}], [\Sigma _{18}^{12}], [19]Σ17
  [\Sigma _{18}^{9}] 21.21 1 24 [\Sigma _{19}^{3}], [\Sigma _{18}^{13}], [19]Σ17
  [\Sigma _{18}^{10}] 21.21 1 24 [[2]\Sigma _{18}^{1}], [\Sigma _{18}^{12}], [18]Σ17
  [\Sigma _{18}^{11}] 21.21 1 24 [\Sigma _{18}^{5}], [[2]\Sigma _{18}^{13}], [18]Σ17
  [\Sigma _{18}^{12}] 21.21 1 24 [[2]\Sigma _{18}^{8}], [\Sigma _{18}^{10}], [18]Σ17
  [\Sigma _{18}^{13}] 21.21 1 12 [\Sigma _{18}^{9}], [\Sigma _{18}^{11}], [\Sigma _{18}^{14}], [18]Σ17
  [\Sigma _{18}^{14}] 21.21 1 24 [[2]\Sigma _{18}^{13}], [\Sigma _{18}^{15}], [18]Σ17
  [\Sigma _{18}^{15}] 21.21 1 72 [[3]\Sigma _{18}^{14}], [18]Σ17
[Figure 2]
Figure 2
Shortest paths among the Σs classes for levels s = 21–18 in E6.

References

First citationBaburin, I. A. & Engel, P. (2013). Acta Cryst. A69, 510–516.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEngel, P. (2015). Cryst. Res. Technol. 50, 929–943.  Web of Science CrossRef Google Scholar
First citationEngel, P. (2019). Acta Cryst. A75, 574–583.  CrossRef IUCr Journals Google Scholar
First citationRyshkov, S. S. (1973). Sov. Math. Dokl. 14, 1314–1318.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds