short communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733

The intrinsic group–subgroup structures of the Diamond and Gyroid minimal surfaces in their conventional unit cells

crossmark logo

aNiels Bohr Institute, University of Copenhagen, Denmark, bResearch School of Physics, Australian National University, Australia, and cSchool of Chemistry, University of Sydney, Australia
*Correspondence e-mail: mcpe@nbi.ku.dk

Edited by A. Altomare, Institute of Crystallography - CNR, Bari, Italy (Received 2 November 2021; accepted 6 December 2021)

The intrinsic, hyperbolic crystallography of the Diamond and Gyroid minimal surfaces in their conventional unit cells is introduced and analysed. Tables are constructed of symmetry subgroups commensurate with the translational symmetries of the surfaces as well as group–subgroup lattice graphs.

1. Introduction

The Primitive, Diamond (Schwarz, 1890[Schwarz, H. A. (1890). Gesammelte mathematische Abhandlungen.]) and Gyroid (Schoen, 1970[Schoen, A. (1970). Infinite Periodic Minimal Surfaces Without Self-intersections. NASA.]) minimal surfaces are well known structures in the context of materials science, where they emerge in simulations of and experiments on a variety of systems ranging from butterfly wing scales (Dolan et al., 2015[Dolan, J. A., Wilts, B. D., Vignolini, S., Baumberg, J. J., Steiner, U. & Wilkinson, T. D. (2015). Adv. Opt. Mater. 3, 12-32.]) and biological detergent systems (Mezzenga et al., 2019[Mezzenga, R., Seddon, J. M., Drummond, C. J., Boyd, B. J., Schröder-Turk, G. E. & Sagalowicz, L. (2019). Adv. Mater. 31, 1-19.]) to bulk polymer phases (Castelletto & Hamley, 2004[Castelletto, V. & Hamley, I. W. (2004). Curr. Opin. Solid State Mater. Sci. 8, 426-438.]).

Their crystallographic properties are well documented (Sadoc & Charvolin, 1989[Sadoc, J.-F. & Charvolin, J. (1989). Acta Cryst. A45, 10-20.]; Robins et al., 2004[Robins, V., Ramsden, S. J. & Hyde, S. T. (2004). Eur. Phys. J. B, 39, 365-375.]; Hyde et al., 2014[Hyde, S. T., Ramsden, S. J. & Robins, V. (2014). Acta Cryst. A70, 319-337.]) though only for the primitive unit cell of the side-preserving translation group. However, many applications such as molecular simulations (Kirkensgaard et al., 2014[Kirkensgaard, J. J. K., Evans, M. E., de Campo, L. & Hyde, S. T. (2014). Proc. Natl Acad. Sci. USA, 111, 1271-1276.]), field theory based approaches (Welch et al., 2019[Welch, P. M., Rasmussen, K. Ø. & Welch, C. F. (2019). J. Chem. Phys. 150, 174905. ]) or meshing algorithms (Pellé & Teillaud, 2014[Pellé, A. & Teillaud, M. (2014). In 23rd International Meshing Roundtable (IMR23), Londres, UK. HAL Id: hal-01089967 https://hal.inria.fr/hal-01089967.]) rely on mutually orthogonal lattice vectors of equal length, corresponding to the conventional unit cells of these surfaces. The results from such computations are therefore better analysed in the conventional unit-cell settings (Fig. 1[link]).

[Figure 1]
Figure 1
Left: the Primitive (top), Diamond (middle) and Gyroid (bottom) minimal surfaces oriented in their conventional unit cells with space groups [Pm\bar{3}m], [Fd\bar{3}m] and I4132, respectively. Right: corresponding translational patches in the universal covering space, [{\bb H}^{2}], visualized using the Poincaré disc model of [{\bb H}^{2}]. The combinatorics and group theory of the compactification of these patches as well as their coordinates can be found in the supporting information.

Here, we extend previous results on the intrinsic (hyperbolic) crystallography of these surfaces (Robins et al., 2004[Robins, V., Ramsden, S. J. & Hyde, S. T. (2004). Eur. Phys. J. B, 39, 365-375.]) to these settings; we introduce canonical versions of their conventional unit cell in the universal covering space, [{\bb H}^{2}], along with the group theory needed to construct the related translational subgroups. We derive the group–subgroup structure of the symmetries commensurate with the surfaces in these settings. We label our groups by their orbifold symbols which are explained at length in the literature (Thurston, 1980[Thurston, W. P. (1980). The Geometry and Topology of Three-Manifolds. Princeton: Princeton University.]; Conway et al., 2008[Conway, J. H., Burgiel, H. & Goodman-Strauss, C. (2008). The Symmetries of Things. Wellesley, Massachusetts: CRC Press.]; Hyde et al., 2014[Hyde, S. T., Ramsden, S. J. & Robins, V. (2014). Acta Cryst. A70, 319-337.]).

For completeness, we include the Primitive surface in our calculations and tables but stress that these are identical to the ones presented earlier (Robins et al., 2004[Robins, V., Ramsden, S. J. & Hyde, S. T. (2004). Eur. Phys. J. B, 39, 365-375.]), as the primitive and conventional unit cells of the Primitive surface coincide. We note that recent changes to GAP's enumeration algorithms mean that our ordering differs slightly from the previous report.

2. Preliminaries and method

The intrinsic symmetry group of these three minimal surfaces can be labelled with the orbifold symbol [{\sf{\ast}246}]. Similarly, upon compactification by pairwise identifying sides of the unit cells in Fig. 1[link], the resulting surfaces are the (genus-3) tritorus, the (genus-9) enneatorus and the (genus-5) pentatorus, respectively. Hence, the Conway orbifold symbols [{\sf{\circ}^{3}}], [{\sf{\circ}^{9}}] and [{\sf{\circ}^{5}}] describe the related translational groups.

We list the translations needed to construct the translational subgroups corresponding to the domains in Fig. 1[link] in the supporting information along with additional information and data on these groups.

Next, we construct and analyse all symmetry groups of the surfaces by the procedure described by Robins et al. (2004[Robins, V., Ramsden, S. J. & Hyde, S. T. (2004). Eur. Phys. J. B, 39, 365-375.]) using the methods outlined below along with the data presented in the supporting information. First, all subgroups for a given surface (represented via the quotient group labelled [{\sf{\ast}246/T}], where [{\sf T}] is the appropriate translational subgroup) are computed using GAP and KBMag (Epstein et al., 1991[Epstein, D. B. A., Holt, D. F. & Rees, S. E. (1991). J. Symbolic Comp. 12, 397-414.]; The GAP Group, 2021[The GAP Group, (2021). GAP - Groups, Algorithms, and Programming. https://www.gap-system.org/.]). Then, for each subgroup, its generators are identified and the associated cosets are calculated. From these cosets, the Delaney–Dress (Dress, 1987[Dress, A. W. (1987). Adv. Math. 63, 196-212.]; Delgado-Friedrichs, 2003[Delgado-Friedrichs, O. (2003). Theor. Comput. Sci. 303, 431-445. ]) and orbifold symbols of the subgroup are computed. The suite of resulting groups describe all possible intrinsic symmetry groups of the parent minimal surfaces whose translations are those of their conventional unit cells.

3. Results and discussion

The results of our enumeration can be found in Table 1[link]. Expanded tables containing detailed information on each subgroup can be found in the supporting information alongside group–subgroup lattice graphs outlining the structure of our three quotient groups.

Table 1
The number of subgroups per index in [{\sf{\ast}246/T}], where [{\sf T}] is the translational subgroup for the given surface in its conventional unit cell

The entries assigned a dash, –, are not combinatorially possible for the respective surface/group.

    Primitive Diamond Gyroid
Subgroup index Euler characteristic [{\sf{\ast}246/{\circ}^{3}}] [{\sf{\ast}246/{\circ}^{9}}] [{\sf{\ast}246/{\circ}^{5}}]
1 [-{{1} \over {24}}] 1 1 1
2 [-{{1} \over {12}}] 7 7 7
3 [-{{1} \over {8}}] 1 1 1
4 [-{{1} \over {6}}] 8 8 12
6 [-{{1} \over {4}}] 15 15 15
8 [-{{1} \over {3}}] 8 10 14
12 [-{{1} \over {2}}] 39 55 47
16 [-{{2} \over {3}}] 7 14 12
24 [-1] 32 128 64
32 [-{{4} \over {3}}] 1 10 7
48 [-2] 11 135 41
64 [-{{8} \over {3}}] 7 1
96 [-4] 1 57 11
128 [-{{16} \over {3}}] 1
192 [-8] 13 1
384 [-16] 1
Total   131 463 234

We note that the translational domains shown in Fig. 1[link] and the corresponding translations listed in the supporting information are not unique. One can represent the pentatorus as e.g. a 20-gon rather than the outlined 30-gon, and accordingly the enneatorus can be represented as a 36-gon rather than our 60-gon. However, we retain the sixfold symmetry around the origin for easier subsequent analysis.

Changing translational symmetries of the primitive unit cells to those of the conventional unit cells admits additional symmetry groups on the surfaces. Fig. 2[link] shows an example of a trivalent net on the Gyroid which respects the translations of the conventional, but not the primitive, unit cell of that surface. The specific decoration and its embeddings in [{\bb H}^{2}] and on the Gyroid were derived as outlined elsewhere (Pedersen & Hyde, 2018[Pedersen, M. C. & Hyde, S. T. (2018). Proc. Natl Acad. Sci. USA, 115, 6905-6910.]; Hyde & Pedersen, 2021[Hyde, S. T. & Pedersen, M. C. (2021). Proc. R. Soc. A. 477, 20200372.]). Whereas the primitive cells admit 131 distinct groups, the enlarged unit cells of the Diamond and Gyroid surfaces include 463 and 234 groups, respectively, each associated with a three-dimensional space group. More information on these groups can be found in the supporting information and at https://gitlab.com/mcpe/tpmsgroups.

[Figure 2]
Figure 2
Left: an [8, 3] Schwarzite net on the Gyroid with intrinsic symmetry [{\sf {23{\ast}}}], subgroup No. 222 in the table for the Gyroid in the supporting information. The net – or rather its symmetry – is not commensurate with the primitive unit cell yet can be embedded in [{\bb E}^{3}] via the conventional unit cell. Right: the same net shown in the universal covering space, [{\bb H}^{2}]. Crystallographic information on the canonical embedding (Delgado-Friedrichs & O'Keeffe, 2003[Delgado-Friedrichs, O. & O'Keeffe, M. (2003). Acta Cryst. A59, 351-360.]) of this net can be found in the supporting information.

Supporting information


Funding information

MCP thanks the Villum Foundation for financial support through grant No. 22833.

References

First citationCastelletto, V. & Hamley, I. W. (2004). Curr. Opin. Solid State Mater. Sci. 8, 426–438.  CrossRef CAS Google Scholar
First citationConway, J. H., Burgiel, H. & Goodman-Strauss, C. (2008). The Symmetries of Things. Wellesley, Massachusetts: CRC Press.  Google Scholar
First citationDelgado-Friedrichs, O. (2003). Theor. Comput. Sci. 303, 431–445.   Google Scholar
First citationDelgado-Friedrichs, O. & O'Keeffe, M. (2003). Acta Cryst. A59, 351–360.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolan, J. A., Wilts, B. D., Vignolini, S., Baumberg, J. J., Steiner, U. & Wilkinson, T. D. (2015). Adv. Opt. Mater. 3, 12–32.  CrossRef CAS Google Scholar
First citationDress, A. W. (1987). Adv. Math. 63, 196–212.  CrossRef Google Scholar
First citationEpstein, D. B. A., Holt, D. F. & Rees, S. E. (1991). J. Symbolic Comp. 12, 397–414.  CrossRef Google Scholar
First citationHyde, S. T. & Pedersen, M. C. (2021). Proc. R. Soc. A. 477, 20200372.  CrossRef Google Scholar
First citationHyde, S. T., Ramsden, S. J. & Robins, V. (2014). Acta Cryst. A70, 319–337.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKirkensgaard, J. J. K., Evans, M. E., de Campo, L. & Hyde, S. T. (2014). Proc. Natl Acad. Sci. USA, 111, 1271–1276.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMezzenga, R., Seddon, J. M., Drummond, C. J., Boyd, B. J., Schröder-Turk, G. E. & Sagalowicz, L. (2019). Adv. Mater. 31, 1–19.  Google Scholar
First citationPedersen, M. C. & Hyde, S. T. (2018). Proc. Natl Acad. Sci. USA, 115, 6905–6910.  CrossRef PubMed Google Scholar
First citationPellé, A. & Teillaud, M. (2014). In 23rd International Meshing Roundtable (IMR23), Londres, UK. HAL Id: hal-01089967 https://hal.inria.fr/hal-01089967Google Scholar
First citationRobins, V., Ramsden, S. J. & Hyde, S. T. (2004). Eur. Phys. J. B, 39, 365–375.  Web of Science CrossRef CAS Google Scholar
First citationSadoc, J.-F. & Charvolin, J. (1989). Acta Cryst. A45, 10–20.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSchoen, A. (1970). Infinite Periodic Minimal Surfaces Without Self-intersections. NASA.  Google Scholar
First citationSchwarz, H. A. (1890). Gesammelte mathematische Abhandlungen.  Google Scholar
First citationThe GAP Group, (2021). GAP – Groups, Algorithms, and Programming. https://www.gap-system.org/Google Scholar
First citationThurston, W. P. (1980). The Geometry and Topology of Three-Manifolds. Princeton: Princeton University.  Google Scholar
First citationWelch, P. M., Rasmussen, K. Ø. & Welch, C. F. (2019). J. Chem. Phys. 150, 174905.   Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds