research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Fine-tuning of bi­aryl dihedral angles: structural characterization of five homologous three-atom bridged bi­phenyls by X-ray crystallography

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: tim.wallace@manchester.ac.uk

(Received 10 December 2004; accepted 3 March 2005)

The homologous series of three-atom bridged biaryls comprising 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]oxepine, 6,7-dihydro-1,2,3,9,10,11-hexamethoxy-6-methyl-5H-dibenzo[c,e]azepinium chloride, 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine, and the 6-oxide and 6,6-dioxide derivatives of the latter have been characterized by X-ray crystal structure analysis. Within this series the endocyclic and exocyclic biaryl dihedral angles vary over 10° ranges, reflecting the changing balance of intramolecular (steric, geometric) and intermolecular (crystal packing) forces, the former being potential control elements for fine-tuning the helicity of the biaryl system.

1. Introduction

Biaryls with three-atom bridges connecting the 2,2′-positions have been the subject of continuing interest since the pioneering studies by Mislow and others in the 1960s into their chiroptical properties and the features which determine their configurational stability (Mislow et al., 1962[Mislow, K., Glass, M. A. W., O'Brien, R. E., Rutkin, P., Steinberg, D. H., Weiss, J. & Djerassi, C. (1962). J. Am. Chem. Soc. 84, 1455-1478.], 1964[Mislow, K., Glass, M. A. W., Hopps, H. B., Simon, E. & Wahl, G. H. (1964). J. Am. Chem. Soc. 86, 1710-1733.]; Kurland et al., 1964[Kurland, R. J., Rubin, M. B. & Wise, W. B. (1964). J. Chem. Phys. 40, 2426-2427.]; Hall, 1969[Hall, M. D. (1969). Progress in Stereochemistry, Vol. 4, edited by B. J. Aylett & M. M. Harris, pp. 1-42. London: Butterworths.]); more recently their biological effects have become increasingly significant. The alkaloid (−)-colchicine (1) (Fig. 1[link]) binds strongly to the protein tubulin, thereby disrupting microtubule-dependent cell functions (Boyé & Brossi, 1992[Boyé, O. & Brossi, A. (1992). The Alkaloids, Vol. 41, edited by A. Brossi & G. A. Cordell, ch. 3. San Diego: Academic Press.]; Brossi, 1990[Brossi, A. (1990). J. Med. Chem. 33, 2311-2319.]; Le Hello, 2000[Le Hello, C. (2000). The Alkaloids, Vol. 53, edited by G. A. Cordell, ch. 5. San Diego: Academic Press.]), and although the therapeutic value of (1) is compromised by its toxicity, a number of related structures such as the allocolchicine derivatives (2) and (3) have similar or enhanced tubulin-binding ability (Kang et al., 1990[Kang, G. J., Getahun, Z., Muzaffar, A., Brossi, A. & Hamel, E. (1990). J. Biol. Chem. 265, 10255-10259.]; Boyé et al., 1993[Boyé, O., Getahun, Z., Grover, S., Hamel, E. & Brossi, A. (1993). J. Labelled Compd. Radiopharm. 33, 293-299.]; Shi et al., 1997[Shi, Q., Verdier-Pinard, P., Brossi, A., Hamel, E. & Lee, K.-H. (1997). Bioorg. Med. Chem. 5, 2277-2282.], 1998[Shi, Q., Chen, K., Brossi, A., Verdier-Pinard, P., Hamel, E., McPhail, A. T. & Lee, K.-H. (1998). Helv. Chim. Acta, 81, 1023-1037.]; Lee, 1999[Lee, K.-H. (1999). Med. Res. Rev. 19, 569-596.]). From this series a phosphate pro-drug, ZD6126, derived from (3), has been identified as a promising candidate for clinical use in targeting the vascular systems of solid tumours (Davis et al., 2002[Davis, P. D., Dougherty, G. J., Blakey, D. C., Galbraith, S. M., Tozer, G. M., Holder, A. L., Naylor, M. A., Nolan, J., Stratford, M. R. L., Chaplin, D. J. & Hill, S. A. (2002). Cancer Res. 62, 7247-7253.]). It has been established that colchicine analogues only bind efficiently to tubulin if they possess, or can achieve, the same sense of helicity as the natural product (Brossi et al., 1990[Brossi, A., Boyé, O., Muzaffar, A., Yeh, H. J. C., Toome, V., Wegrzynski, B. & George, C. (1990). FEBS Lett. 262, 5-7.]; Berg & Bladh, 1999[Berg, U. & Bladh, H. (1999). Helv. Chim. Acta, 82, 323-325.]; Brossi et al., 1999[Brossi, A., Lee, H.-H. & Yeh, H. J. C. (1999). Helv. Chim. Acta, 82, 1223-1224.]). The nature of the bridging B-ring influences the conformational mobility of the AC axis, and in (−)-(1) the preference of the 7-substituent for an equatorial orientation effectively induces the (aR) configuration depicted. However, structures with an unsubstituted B-ring such as (4) (Banwell et al., 1992[Banwell, M. G., Cameron, J. M., Corbett, M., Dupuche, J. R., Hamel, E., Lambert, J. N., Lin, C. M. & Mackay, M. F. (1992). Aust. J. Chem. 45, 1967-1982.]) and (5) (Boyé et al., 1989[Boyé, O., Itoh, Y. & Brossi, A. (1989). Helv. Chim. Acta, 72, 1690-1696.]) are also efficient tubulin binders and these exist in solution as mixtures of (aR)- and (aS)-atropisomers, of which the former is the active conformation (Cavazza et al., 2000[Cavazza, M., Zandomeneghi, M. & Pietra, F. (2000). Tetrahedron Lett. 41, 9129-9133.]; Bergemann et al., 2003[Bergemann, S., Brecht, R., Büttner, F., Guénard, D., Gust, R., Seitz, G., Stubbs, M. T. & Thoret, S. (2003). Bioorg. Med. Chem. 11, 1269-1281.]). The discovery that open-chain biaryls also bind to the colchicine binding site of tubulin has led to further speculation about the role of inter-aryl flexibility in the binding process (Janik & Bane, 2002[Janik, M. E. & Bane, S. L. (2002). Bioorg. Med. Chem. 10, 1895-1903.]).

[Figure 1]
Figure 1
Structures of three-atom bridged biaryls (1)–(12).

Our interest in these and other aspects of biaryl conformation, in particular the principle of fine tuning the dihedral angles, led us to seek new ways of controlling this property. Using complementary kinetic and thermodynamic resolution processes we prepared the first examples, (6) and (7), of a new type of conformationally restrained bridged biaryl lactam (Edwards et al., 2003[Edwards, D. J., Pritchard, R. G. & Wallace, T. W. (2003). Tetrahedron Lett. 44, 4665-4668.]). To gain further insight into the structural characteristics of three-atom bridged biaryls, we prepared the homologous series of polymethoxylated structures (8)–(12) for analysis by X-ray crystallography. We herein describe the results of this study, which provide some direct comparison of the factors that contribute to the final three-dimensional structure of such molecules.

2. Experimental

All compounds are racemic. Melting points were determined using a Buchi 512 or an Electrothermal 9100 apparatus and are uncorrected. IR spectra were of neat thin films on NaCl plates, recorded on Perkin-Elmer 1710FT or Nicolet Nexus 670/870 spectrometers. NMR spectra were measured on Bruker DPX200 (1H at 200 MHz), DPX300 (1H at 300 MHz, 13C at 75 MHz) or DPX400 (1H at 400 MHz, 13C at 100 MHz) instruments for solutions in deuteriochloroform; J values are quoted to the nearest 0.5 Hz. NMR spectra were assigned with the aid of HMQC and DEPT-135 spectra where appropriate. Mass spectra were measured on a Micromass LCT instrument using a Waters 2790 separations module with electrospray ionization and TOF fragment detection. Starting materials and solvents were either used as supplied or purified by conventional techniques (Perrin et al., 1980[Perrin, D. D., Armarego, W. L. F. & Perrin, D. R. (1980). Purification of Laboratory Chemicals, 2nd ed. Oxford: Pergamon Press.]) and most reactions were carried out under nitrogen or argon. Organic solutions were dried using anhydrous magnesium sulfate and concentrated by rotary evaporation. TLC was carried out using Merck silica gel 60 on aluminium plates and the chromatograms visualized using UV light (254 nm) and/or the following developing agents: ethanolic vanillin or acidified aqueous potassium permanganate. Preparative (flash) chromatography (Still et al., 1978[Still, W. C., Kahn, M. & Mitra, A. (1978). J. Org. Chem. 43, 2923-2925.]) was carried out on 60 H silica gel (Merck 9385). Compositions of solvent mixtures are quoted as ratios of volume. `Ether' refers to diethyl ether.

2.1. Dimethyl 4,4′,5,5′,6,6′-hexamethoxy-2,2′-diphenate (±)-(14)

To a suspension of ellagic acid (13) (8.8 g, 29.1 mmol) in water (170 ml) at room temperature tetrabutylammonium iodide (537 mg, 1.45 mmol, 5 mol %) and dimethyl sulfate (29 ml, 38.66 g, 0.3 mol) were added. To the vigorously stirred suspension was slowly added a solution of KOH (28.6 g, 0.5 mol) in water (56 ml) over 3 h and the mixture was then heated under reflux for 12 h. After cooling to room temperature, the mixture was acidified with concentrated HCl and extracted with DCM (3 × 100 ml). The organic layer was dried and evaporated to give a crude solid (8 g), which was dissolved in DMF (70 ml) and treated at 273 K with NaH (4.79 g, 60% dispersion in mineral oil, 0.12 mol). After stirring for 0.5 h, iodomethane (10 ml, 22.8 g, 0.16 mol) was added and the mixture was stirred overnight at room temperature. The reaction was quenched by the addition of 2 M hydrochloric acid (20 ml) at 273 K and the mixture extracted with ether (3 × 100 ml). The combined extracts were dried and evaporated. Purification of the crude material by flash chromatography over silica gel (200 g), eluting with hexane–ethyl acetate (3:1), followed by recrystallization from ether–hexane gave the title compound (14) (5.07 g, 39%) as a colourless solid, m.p. 352–354 K, lit. 353 K (Itoh et al., 1996[Itoh, T., Chika, J.-I., Shirakami, S., Ito, H., Yoshida, T., Kubo, Y. & Uenishi, J.-I. (1996). J. Org. Chem. 61, 3700-3705.]); δH (300 MHz, CDCl3) 7.38 (2H, s, 3 and 3′-H), 3.97 (6H, s, 2 × OMe), 3.95 (6H, s, 2 × OMe), 3.65 (12H, s, 2 × OMe and 2 × CO2Me); δC (75 MHz, CDCl3) 52.2, 56.3, 60.9, 61.2, 109.2, 125.4, 127.0, 145.8, 151.6, 152.4, 167.3.

2.2. 4,4′,5,5′,6,6′-Hexamethoxy-1,1′-biphenyl-2,2′-dimethanol (±)-(15)

To a suspension of LiAlH4 (1.14 g, 30 mmol) in dry THF (20 ml) under argon was added a solution of (14) (4.5 g, 10.0 mmol) in dry THF (20 ml) and the mixture was then heated under reflux for 3 h. After being cooled to room temperature, the mixture was cautiously acidified with concentrated hydrochloric acid (5 ml) and extracted with ether (3 × 100 ml). The combined extracts were dried and evaporated to give a crude solid (3.8 g), which was purified by flash chromatography over silica gel (200 g), eluting with hexane–ethyl acetate (1:1; Rf = 0.29), followed by recrystallization from ethyl acetate–hexane, which gave the diol (15) (3.6 g, 91%), m.p. 380–382 K, lit. 378–379 K (benzene–ether; Kochetkov et al., 1962[Kochetkov, N. K., Khorlin, A. Y., Chizhov, O. S. & Sheichenko, V. I. (1962). Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) pp. 797-801.]); δH (400 MHz, CDCl3) 6.87 (2H, s, 3-H, 3′-H), 4.16 (4H, s, 2 × CH2), 3.91 (6H, s, 2 × OMe), 3.87 (6H, s, 2 × OMe), 3.65 (6H, s, 2 × OMe), 2.78 (2H, br. s, 2 × OH); δC (100 MHz, CDCl3) 56.04, 61.03, 61.05, 63.73 (CH2), 108.84 (3-H, 3′-H), 121.68, 135.77, 141.69, 151.07, 153.38, consistent with published data (Warshawsky & Meyers, 1990[Warshawsky, A. M. & Meyers, A. I. (1990). J. Am. Chem. Soc. 112, 8090-8099.]); νmax (cm–1) 3402, 2936, 2835, 1600, 1488, 1464, 1402, 1324, 1192, 1130, 1099, 1014, 917; m/z (ES) 347 (50%, MH+—CH2O), 377 (4%, MH+—H2O), 417 (3%, MNa+), 458 (100%, MNa2H2O+).

2.3. 5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]oxepine (±)-(8)

Concentrated hydrochloric acid (0.2 ml) was added to a solution of the diol (15) (160 mg, 0.41 mmol) in THF (3 ml) and 2 M hydrochloric acid (3 ml), and the mixture was heated under reflux for 4 h. The mixture was then cooled to room temperature, diluted with water (30 ml) and extracted with ether (3 × 30 ml). The combined extracts were dried and evaporated to give a crude solid (142 mg), which was purified by flash chromatography over silica gel (20 g), eluting with hexane–ethyl acetate (1:1; Rf = 0.33) to obtain the title compound (±)-(8) (130 mg, 85%) as colourless crystals, m.p. 417–419 K (EtOAc), lit. 420–421 K (MeOH; Kashiwada et al., 1994[Kashiwada, Y., Huang, L., Ballas, L. M., Jiang, J. B., Janzen, W. P. & Lee, K.-H. (1994). J. Med. Chem. 37, 195-200.]). Found: C 63.70, H 6.55; C20H24O7 requires C 63.82, H 6.43%; δH (200 MHz, CDCl3) 6.72 (2H, s, 4-H, 8-H), 4.38 (2H, d, J = 11 Hz, 5-HA, 7-HA), 4.05 (2H, d, J = 11 Hz, 5-HB, 7-HB), 3.92 (6H, s, 2 × OMe), 3.91 (6H, s, 2 × OMe), 3.72 (6H, s, 2 × OMe); δC (100 MHz, CDCl3) 56.16, 60.88, 61.12, 67.59 (5-C, 7-C), 107.98 (4-C, 8-C), 123.18, 130.94, 142.40, 151.36, 153.40; νmax (cm−1) 2983, 2940, 2855, 1599, 1492, 1463, 1403, 1318, 1238, 1191, 1127, 1097; m/z (ES) 347 (8%, MH+—CH2O), 377 (2%, MH+), 399 (3%, MNa+), 440 (100%, MNa2H2O+).

2.4. (±)-2,2′-Bis(bromomethyl)-5,7-dihydro-4,4′,5,5′,6,6′-hexamethoxy-1,1′-biphenyl (16)

Phosphorus tribromide (417 mg, 1.54 mmol) was added to a solution of the diol (15) (0.92 g, 2.33 mmol) in DCM (20 ml) and the mixture was stirred for 1 h. TLC indicated complete conversion and water (30 ml) was then added. The organic phase was then separated and the aqueous phase extracted with DCM (2 × 30 ml). The combined extracts were dried and evaporated in vacuo to give the crude dibromide (16), which was used without further purification.

2.5. 6,7-Dihydro-1,2,3,9,10,11-hexamethoxy-6-methyl-5H-dibenzo[c,e]azepine (±)-(9)

Methylamine hydrochloride (0.181 g, 2.68 mmol) and tri­ethylamine (0.475 g, 4.7 mmol) were added to a solution of the dibromide (16), prepared as described above from the diol (15) (0.67 mmol), in dry DMF (2 ml) at 273 K under argon, and the mixture was stirred overnight at room temperature. Water (20 ml) was added and the mixture was extracted with ethyl acetate (3 × 20 ml). The combined organic extract was washed with brine (20 ml), dried and evaporated in vacuo. Flash chromatography of the residue over silica gel (50 g), eluting with ethyl acetate, followed by crystallization from ethyl acetate yielded the title compound (9) (166 mg, 64%) as a colourless solid, m.p. 401–402 K. Found: C 64.7, H 6.6, N 4.0; C21H27NO6 requires C 64.77, H, 6.99, N 3.60%; δH (400 MHz, CDCl3) 6.64 (2H, s, 4-H, 8-H), 3.90 (6H, s, 2 × OMe), 3.89 (6H, s, 2 × OMe), 3.69 (6H, s, 2 × OMe), 3.34 (2H, d, J = 12.5 Hz, 5-HA, 7-HA), 3.09 (2H, d, J = 12.5 Hz, 5-HB, 7-HB), 2.36 (3H, s, NMe); δC (100 MHz, CDCl3) 43.00, 56.15, 57.19 (5-C, 7-C), 60.82, 61.12, 108.21 (4-C, 8-C), 122.73, 130.03, 141.76, 151.48, 152.88; νmax (cm−1) 2940, 2835, 2788, 1596, 1487, 1464, 1410, 1363, 1320, 1243, 1130, 1107; m/z (ES) 390 (100%, MH+).

2.6. 5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine (±)-(10)

Sodium sulfide nonahydrate (0.483 g, 2.0 mmol) and tri­ethylamine (0.204 g, 2.0 mmol) was added to a solution of the dibromide (16), prepared as described above from the diol (15) (0.67 mmol), in dry DMF (2 ml) at 273 K under argon, and the mixture stirred overnight at room temperature. Water (20 ml) was added and the mixture extracted with ethyl acetate (3 × 20 ml). The combined organic extract was washed with brine (20 ml), dried and evaporated in vacuo. Flash chromatography of the residue over silica gel (50 g), eluting with ethyl acetate, followed by crystallization from ethyl acetate yielded the title compound (10) (230 mg, 87%) as a colourless solid, m.p. 482–484 K. Found: C 61.2, H 6.1, S 8.1; C20H24O6S requires C 61.21, H 6.16, S 8.17%; δH (400 MHz, CDCl3) 6.63 (2H, s, 4-H, 8-H), 3.90 (6H, s, 2 × OMe), 3.88 (6H, s, 2 × OMe), 3.67 (6H, s, 2 × OMe), 3.40 (2H, d, J = 12.5 Hz, 5-HA, 7-HA), 3.23 (2H, d, J = 12.5 Hz, 5-HB, 7-HB); δC (100 MHz, CDCl3) 32.21 (5-C, 7-C), 56.09, 60.67, 61.10, 106.68 (4-C, 8-C), 122.01, 131.45, 141.45, 151.39, 153.62; νmax (cm−1) 2928, 1594, 1488, 1458, 1399, 1318, 1242, 1199, 1093, 1008; m/z (ES) 393 (8%, MH+), 415 (4%, MNa+), 456 (100%, MNa2H2O+).

2.7. 5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine 6-oxide (±)-(11) and 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine 6,6-dioxide (±)-(12)

m-Chloroperbenzoic acid (41 mg, purity ca 70%, 0.17 mmol) was added to a solution of (±)-(10) (66 mg, 0.17 mmol) in acetone (1 ml). The mixture was stirred at 273 K for 5 h, then cooled to room temperature, diluted with water (10 ml) and extracted with ether (3 × 10 ml). The combined extracts were dried and evaporated to give a crude solid (62 mg) which was purified by flash chromatography over silica gel (10 g), eluting initially with ethyl acetate and later with ethyl acetate–methanol (10:1). The first fractions gave the title sulfone (12) (18 mg, 25%) as colourless crystals, m.p. 497 K (EtOAc). Found: C 56.7, H 5.8, S 7.5; C20H24O8S requires C 56.59, H 5.70, S 7.55%; δH (400 MHz, CDCl3) 6.75 (2H, s, 4-H, 8-H), 3.98 (2H, d, J = 13.5 Hz, 5-HA, 7-HA), 3.92 (6H, s, 2 × OMe), 3.90 (6H, s, 2 × OMe), 3.86 (2H, d, J = 13.5 Hz, 5-HB, 7-HB), 3.71 (6H, s, 2 × OMe); δC (100 MHz, CDCl3) 56.27, 57.77 (5-C, 7-C), 61.12, 61.17, 109.08 (4-C, 8-C), 122.51, 124.12, 142.78, 152.19, 154.15; m/z (ES) 425 (31%, MH+), 447 (4%, MNa+), 488 (100%, MNa2H2O+); Rf = 0.60 (EtOAc). Later fractions afforded the title sulfoxide (11) (43 mg, 63%) as colourless crystals, m.p. 435 K (EtOAc). Found: C 58.8, H 6.0, S 7.8; C20H24O7S requires C 58.81, H 5.92, S 7.85%; δH (400 MHz, CDCl3) 6.72 (1H, s, 4-H or 8-H), 6.66 (1H, s, 8-H or 4-H), 4.13 (1H, d, J = 12.0 Hz, 5-H or 7-H), 3.93 (3H, s, OMe), 3.91 (3H, s, OMe), 3.905 (3H, s, OMe), 3.90 (3H, s, OMe), 3.74 (3H, s, OMe), 3.71 (3H, s, OMe), 3.68 (1H, d, J = 14.0 Hz, 5-H or 7-H), 3.40 (1H, d, J = 14.0 Hz, 5-H or 7-H), 3.17 (1H, d, J = 12.0 Hz, 5-H or 7-H); δC (75 MHz, CDCl3) 53.88, 55.97 (5-C, 7-C), 56.20, 56.28, 61.00, 61.03, 61.05, 61.12 (6 × OCH3), 108.45, 110.12 (4-C, 8-C), 122.28, 122.38, 123.90, 125.43 (4a-C, 7a-C, 11a-C and 11b-C), 142.52, 142.98, 151.82, 152.39, 153.23, 153.41 (6 × OCAr); νmax (cm−1) 2944, 2839, 1596, 1577, 1487, 1464, 1406, 1328, 1243, 1200, 1130, 1099, 1041; m/z (ES) 409 (34%, MH+), 431 (4%, MNa+), 472 (100%, MNa2H2O+); Rf = 0.20 (EtOAc).

2.8. X-ray crystallography

All measurements were carried out using a Nonius KappaCCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Details of cell parameters, data collection and refinement are summarized in Table 1[link], together with a list of software employed. The structures were solved by direct methods and refined with all data on F2. A weighting scheme based on P = [F2o + 2F2c]/3 was employed in order to reduce statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]). The H atoms were isotropically refined.1

Table 1
Crystallographic data for (8)–(12)

  (8) (9)·HCl (10) (11) (12)
Crystal data
Chemical formula C20H24O7 C21H29ClNO6.5 C20H24O6S C20H24O7S C20H24O8S
Mr 376.39 434.9 392.45 408.45 424.45
Cell setting, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c Monoclinic, P21/n
a, b, c (Å) 15.3519 (4), 10.4044 (3), 11.8506 (4) 36.0403 (12), 7.8165 (2), 17.0066 (5) 8.6029 (2), 12.2965 (3), 17.6032 (4) 8.8113 (3), 12.2699 (3), 17.5640 (6) 8.7886 (2), 15.3454 (3), 15.4972 (4)
β (°) 109.607 (2) 111.7920 104.0380 103.988 (2) 106.2770
V3) 1783.11 (9) 4448.5 (2) 1806.55 (7) 1842.60 (10) 2006.25 (8)
Z 4 8 4 4 4
Dx (Mg m−3) 1.402 1.299 1.443 1.472 1.405
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 5472 52 930 10 338 14 600 21 800
θ range (°) 2.8–27.5 3.2–27.3 3.0–29.1 3.3–27.5 3.1–27.5
μ (mm−1) 0.11 0.21 0.22 0.22 0.21
Temperature (K) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2)
Crystal form, colour Plate, colourless Needle, colourless Needle, colourless Prism, colourless Prism, colourless
Crystal size (mm) 0.2 × 0.2 × 0.1 0.25 × 0.15 × 0.1 0.2 × 0.1 × 0.1 0.2 × 0.2 × 0.2 0.25 × 0.2 × 0.15
           
Data collection
Diffractometer KappaCCD KappaCCD KappaCCD KappaCCD KappaCCD
Data collection method CCD rotation images, thick slices CCD rotation images, thick slices CCD rotation images, thick slices CCD rotation images, thick slices CCD rotation images, thick slices
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements)
Tmin 0.99 0.97 0.98 0.96 0.98
Tmax 1.0 1.0 1.0 1.0 1.0
No. of measured, independent and observed reflections 9423, 2043, 1501 36 698, 4945, 3299 15 259, 2388, 2003 14 844, 2111, 1775 30 410, 4583, 3388
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.063 0.082 0.054 0.110 0.057
θmax (°) 27.5 27.3 29.1 27.5 27.5
Range of h, k, l −16 → h → 19 −45 → h → 46 −11 → h → 11 −11 → h → 11 −11 → h → 11
  −13 → k → 13 −10 → k → 10 −16 → k → 16 −15 → k → 15 −19 → k → 19
  −15 → l → 15 −21 → l → 21 −23 → l → 24 −22 → l → 22 −18 → l → 20
           
Refinement
Refinement on F2 F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.08 0.047, 0.112, 1.03 0.037, 0.099, 1.04 0.048, 0.135, 1.12 0.041, 0.104, 1.02
No. of reflections 2043 4945 2388 2111 4583
No. of parameters 172 392 172 180 359
H-atom treatment Mixture of independent and constrained refinement Mixture of independent and constrained refinement Mixture of independent and constrained refinement Mixture of independent and constrained refinement Mixture of independent and constrained refinement
Weighting scheme w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0661P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0477P)2 + 2.813P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.3323P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0619P)2 + 1.7711P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.9601P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.012 0.019 0.003 0.006 0.005
Δρmax, Δρmin (e Å−3) 0.29, −0.23 0.28, −0.29 0.32, −0.30 0.30, −0.39 0.26, −0.39
Extinction method SHELXL SHELXL SHELXL None SHELXL
Extinction coefficient 0.013 (3) 0.0017 (3) 0.0074 (13)   0.0072 (11)
Computer programs used: COLLECT (Nonius BV, 1998[Nonius BV (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Cater Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), HKL SCALEPACK (Otwinowski & Minor, 1997[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]), SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]), ORTEP3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

3. Results and discussion

3.1. Synthesis

A convenient starting point for the preparation of the bridged systems (8)–(12) is the commercially available tannin ellagic acid (13), which can be polymethylated to obtain the hexamethoxydiphenate (14) (Itoh et al., 1996[Itoh, T., Chika, J.-I., Shirakami, S., Ito, H., Yoshida, T., Kubo, Y. & Uenishi, J.-I. (1996). J. Org. Chem. 61, 3700-3705.]). The reduction of (14) to the diol (15) and subsequent acid-induced cyclization to (8) were achieved using the published methods (Insole, 1990a[Insole, J. M. (1990a). J. Chem. Res. S, pp. 378-379.],b[Insole, J. M. (1990b). J. Chem. Res. M, pp. 2831-2867.]). The preparation of (9) and (10) also followed conventional routes, the diol (15) being converted into the corresponding bis(bromomethyl)biaryl (16) which was then treated with methylamine to obtain (9) or sodium sulfide to obtain (10). Oxidation of (10) with m-chloroperbenzoic acid gave a mixture from which the sulfoxide (11) and sulfone (12) were isolated by chromatography (see Fig. 2[link]).

[Figure 2]
Figure 2
Synthesis of compounds (8)–(12). Reagents and conditions: (a) Me2SO4, Bu4NI, KOH, then NaH, DMF, MeI (38% over two steps). (b) LiAlH4, THF (91%). (c) PBr3, ether. (d), 2 M aq. HCl–THF (1:1), heat [93% (8) from (15)]. (e) MeNH2 [64% (9) over two steps via (16)]. (f) Na2S [87% (10) over two steps via (16)]. (g) mCPBA [60% (11), 26% (12)].

3.2. X -ray crystal structures

The synthesized biaryls all formed crystals which were suitable for analysis by X-ray diffraction. A numbering guide and the derived structures are shown in Figures 3–8[link][link][link][link][link][link], with selected molecular parameters provided in Tables 2[link] and 3[link]. Each system crystallized in a monoclinic space group with both enantiomeric forms in the unit cell. The azepine (9) (as the hydrochloride) crystallized with one molecule of water associated with each molecular pair. The oxepine (8), thiepine (10) and sulfoxide (11) exhibit C2 molecular symmetry, with the C1 and C2 methoxyl groups in a mutually eclipsed arrangement which is replicated at C11 and C10. In the sulfone (12) the corresponding methoxyl groups are splayed apart in arrangements which differ with respect to the aromatic rings, although the seven-membered ring effectively retains local C2 symmetry. The azepinium salt (9)·HCl differs significantly from the other structures in that not only are the methoxyl groups arranged differently in each aromatic ring, but the seven-membered ring no longer possesses local C2 symmetry and the C1–C11B aromatic ring is displaced from the expected plane. These features are discussed in detail below.

Table 2
Selected interatomic distances (Å) for (8)–(12)

Here and in other tables, standard uncertainties are given in parentheses for individual results obtained in this work; values in italics are those derived using symmetry transformations to generate equivalent atoms.

    (8) X = O (9) X = NHMe (10) X = S (11) X = SO (12) X = SO2
(1) C4A—C5 1.510 (2) 1.503 (3) 1.505 (2) 1.500 (2) 1.507 (2)
(2) C5—X6 1.440 (2) 1.512 (2) 1.827 (2) 1.829 (2) 1.789 (2)
(3) C7—X6 1.440 (2) 1.514 (3) 1.827 (2) 1.829 (2) 1.783 (2)
(4) C7—C7A 1.510 (2) 1.500 (3) 1.505 (2) 1.500 (2) 1.497 (2)
(5) C11A—C11B 1.479 (3) 1.485 (3) 1.489 (2) 1.489 (3) 1.490 (2)
(6) O6—S6       1.378 (3)  
(7) O6A—S6         1.443 (2)
(8) O6B—S6         1.447 (2)
(9) O1—O11 non-bonded 2.786 2.878 3.052 3.034 2.928
(10) C5—C7 non-bonded 2.418 2.535 2.804 2.780 2.790

Table 3
Selected bond and dihedral angles (°) for (8)–(12)

    (8) X = O (9) X = NHMe (10) X = S (11) X = SO (12) X = SO2
(1) C5—X6—C7 114.2 (2) 113.9 (2) 100.3 (1) 98.9 (2) 102.7 (1)
(2) C5—C4A—C11B—C11A 0.8 (2) 7.7 (3) 1.4 (2) 0.9 (3) 0.8 (3)
(3) C4A—C5—X6—C7 −43.6 (1) –50.4 (2) −44.5 (1) −45.0 (1) −44.6 (2)
(4) C7A—C7—X6—C5 −43.6 (1) −35.2 (2) −44.5 (1) −45.0 (1) −44.4 (2)
(5) C7—C7A—C11A—C11B 0.8 (2) −6.7 (3) 1.4 (2) 0.9 (3) −6.0 (2)
(6) C7A—C11A—C11B—C4A −49.8 (3) −51.1 (3) −59.9 (3) −58.8 (3) −54.9 (2)
(7) C11—C11A—C11B—C1 −57.0 (3) −53.6 (3) −61.9 (3) −63.6 (3) −61.4 (2)
(8) C11—C11A—C11B—C4A 126.6 (3) 121.7 (2) 119.0 (3) 118.8 (3) 122.1 (2)
(9) C7A—C11A—C11B—C1 126.6 (3) 133.6 (2) 119.0 (3) 118.8 (3) 121.5 (2)
(10) O1—C1—C2—O2 4.2 (2) 6.5 (3) 4.5 (2) 4.9 (2) 3.4 (2)
(11) O1—C1—C2—C3 179.3 (2) −175.1 (2) −178.7 (2) −179.2 (2) −177.1 (2)
(12) O1—C1—C11B—C4A 176.3 (2) 170.0 (2) 177.2 (2) 176.9 (2) 173.7 (2)
(13) O1—C1—C11B—C11A −0.1 (2) −14.8 (3) −1.9 (2) −0.7 (3) −2.8 (2)
(14) O2—C2—C3—O3 0.4 (2) 1.0 (2) −3.9 (2) −4.1 (3) 1.3 (2)
(15) O3—C3—C4—C4A 174.1 (2) 178.1 (2) −179.5 (2) −179.5 (2) –179.5 (2)
(16) O3—C3—C2—C1 −174.7 (2) −177.4 (2) 179.3 (2) −179.8 (2) −178.3 (2)
(17) O11—C11—C10—O10 4.2 (2) −1.1 (3) 4.5 (2) 4.9 (2) 0.3 (3)
(18) O10—C10—C9—O9 0.4 (2) 3.1 (3) −3.9 (2) −4.1 (3) 1.4 (3)
(19) C1—C2—C3—C4 3.6 (2) 5.2 (3) 0.4 (2) 1.6 (3) 3.6 (3)
(20) C2—C3—C4—C4A −4.0 (2) −4.7 (3) −0.7 (2) −1.1 (3) −1.6 (3)
(21) C3—C4—C4A—C11B −0.4 (2) −0.8 (3) −0.9 (2) −1.2 (3) −2.0 (3)
(22) C4—C4A—C11B—C1 5.1 (2) 5.8 (3) 2.7 (2) 2.9 (3) 3.5 (3)
(23) C4A—C11B—C1—C2 −5.5 (2) −5.3 (3) −3.1 (2) −2.4 (3) −1.5 (3)
(24) C11B—C1—C2—C3 1.2 (2) −0.1 (3) 1.5 (2) 0.1 (3) −2.1 (3)
(25) C11—C10—C9—C8 3.6 (2) 1.1 (3) 0.4 (2) 1.6 (3) –2.7 (3)
(26) C10—C9—C8—C7A −4.0 (2) −1.9 (3) −0.7 (2) −1.1 (3) 0.3 (3)
(27) C9—C8—C7A—C11A −0.4 (2) 0.1 (3) −0.9 (2) −1.2 (3) 2.5 (3)
(28) C8—C7A—C11A—C11 5.1 (2) 2.4 (3) 2.7 (2) 2.9 (3) −2.8 (3)
(29) C7A—C11A—C11—C10 −5.5 (2) −3.2 (3) −3.1 (2) −2.4 (3) 0.3 (3)
(30) C11A—C11—C10—C9 1.2 (2) 1.5 (3) 1.5 (2) 0.1 (3) 2.4 (3)
(31) C8—C7A—C11A—C11B −178.4 (2) 175.4 (2) −178.2 (1) −179.4 (2) 174.4 (2)
(32) C10—C11—C11A—C11B 178.1 (1) −176.3 (2) 177.9 (1) 180.0 (2) −176.8 (2)
(33) C4—C4A—C11B—C11A −178.4 (2) −169.6 (2) −178.2 (1) −179.4 (2) 179.9 (2)
(34) C2—C1—C11B—C11A 178.1 (1) 170.0 (2) 177.9 (1) 180.0 (2) −178.0 (2)
[Figure 3]
Figure 3
The numbering system for the structures in Figs. 4–8[link][link][link][link], which were all generated with C7A, C11A and C11B in the viewed plane and the C11A—C11B bond aligned horizontally.
[Figure 4]
Figure 4
5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]oxepine (8). Displacement ellipsoids in Figs. 4–8[link][link][link][link][link] are drawn at the 50% probability level.
[Figure 5]
Figure 5
6,7-Dihydro-1,2,3,9,10,11-hexamethoxy-6-methyl-5H-dibenzo[c,e]azepinium chloride (9)·HCl hemihydrate.
[Figure 6]
Figure 6
5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine (10).
[Figure 7]
Figure 7
5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine 6-oxide (11).
[Figure 8]
Figure 8
5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine 6,6-dioxide (12).

The structure of the sulfoxide (11) is disordered in that, while the position of the S atom is fixed, the attached O6 atom is distributed equally between the two possible locations. The 1H NMR spectrum of (11) also reflects its distinctive symmetry properties. Although the S atom is not a stereogenic centre, the combined presence of the stereogenic axis and the single O6 atom renders the C5 and C7 methylene groups non-equivalent and diastereotopic. Each of these four H atoms thus appears as an individual doublet in the 1H NMR spectrum of (11), as has been described for a related system (Fraser & Schuber, 1970[Fraser, R. R. & Schuber, F. J. (1970). Can. J. Chem. 48, 633-640.]).

For the reasons outlined above, our interest in structures (8)–(12) is centred on the helicity of the respective biaryl moieties, which is viewed in Fig. 9[link]. In each case the seven-membered ring has taken up a helical conformation in which the flexibility of the biaryl axis must be subject to upper and lower limits dictated by the geometric constraints of the three-atom bridge and the interaction of the 1- and 11-substituents, which are obliged to move towards each other if the system moves towards planarity. It is therefore pertinent to examine four sets of parameters, viz. the C—X bond lengths (Table 2[link], rows 2, 3), the O1—O11 distances (Table 2[link], row 9), the endocyclic biaryl dihedral angles (Table 3[link], row 6) and the exocyclic biaryl dihedral angles (Table 3[link], row 7). From a comparison of the C—X bond lengths with the biaryl dihedral angles through the series it is evident that the more pronounced helicity of the thiepines (10)–(12) is primarily a consequence of the seven-membered ring twisting more in order to accommodate the longer C—S bonds; the smaller C—S—C bond angles (Table 3[link], row 1) will counteract this effect slightly. The oxepine (8) and azepinium chloride (9)·HCl, with their shorter C—X bonds, exhibit degrees of twist some 10° lower than observed in the sulfur series.

[Figure 9]
Figure 9
Views of (8)–(12) along the C11A—C11B bond. The plane defined by C7A, C11A and C11B is perpendicular to the viewed plane. H atoms are omitted.

It is notable that in each of the structures (8)–(12) the endocyclic and exocyclic dihedral angles are unequal, the latter invariably exceeding the former, and that neither series runs entirely in parallel with the C—X bond length. In a non-bridged biphenyl with perfectly planar trigonal C atoms the two biaryl dihedral angles should be equal, so the difference between them in a bridged structure might be viewed as an indicator of the distortion around the biaryl axis. In the systems (8)–(12) this difference would be expected to arise from steric repulsion between the 1- and 11-methoxyl groups, which operates on the exocyclic quadrants of the biaryl axis and opposes the constraining effect of the three-atom bridge. The close proximity of these methoxyl groups is evident in the O1—O11 distance (Table 2[link], row 9), which reaches twice the van der Waals radius for oxygen, 1.52 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Bott et al., 1980[Bott, G., Field, L. D. & Sternhell, S. (1980). J. Am. Chem. Soc. 102, 5618-5626.]), only in the cases of (10) and (11). This steric compression, reinforced by the buttressing effect of the adjacent methoxyl groups (Insole, 1990a[Insole, J. M. (1990a). J. Chem. Res. S, pp. 378-379.],b[Insole, J. M. (1990b). J. Chem. Res. M, pp. 2831-2867.]; Charton, 1977[Charton, M. (1977). J. Org. Chem. 42, 2528-2529.]), is maximal in the oxepine (8) and would account, at least in part, for the relatively large (7.2°) difference between the endocyclic and exocyclic dihedral angles in this structure and for the dihedral angles of more than 5° associated with C1, C11B and C4A (Table 3[link], rows 22, 23), through which its levering effects are dissipated. By the dihedral angle criterion the thiepine (10) incorporates a much less distorted biaryl axis, consistent with the longer C—S bonds inducing a more pronounced twist in the seven-membered ring and, as a consequence, alleviating the steric interaction between O1 and O11. The structural parameters for the sulfoxide (11) are very similar to those of the thiepine (10), but the difference between the endocyclic and exocyclic dihedral angles rises from 2.0 to 4.8°. The sulfone (12) manifests rather more distortion at the biaryl axis than the other thiepine derivatives, the dihedral angle difference now being 6.5°. The reduced endocyclic dihedral angle in (12) [by 5° compared with the thiepine (10)] is consistent with its shorter C—S bonds (Table 2[link], rows 2, 3), but the flattening in the seven-membered ring is not reciprocated in the exocyclic region, where the dihedral angle remains above 61° even though the O1—O11 distance (Table 2[link], row 9) shortens significantly. The extent to which intermolecular (crystal packing) effects might contribute to these structural features of (12) is discussed later.

In the case of the azepinium salt (9)·HCl the relatively small difference between the biaryl endocyclic and exocyclic dihedral angles (2.5°) is not a useful guide to the forces operating in this region of the molecule. The C1—C2 and C4A—C4 bonds are both 10° out of alignment with the inter-aryl bond (Table 3[link], rows 33, 34), as is perceptible in Fig. 9[link]. The dihedral angles of more than 5° around C1, C11B and C4A (Table 3[link], rows 22, 23) are consistent with the effects of 1,11-methoxyl repulsion, as observed in the oxepine (8), but there is also a twisting of the seven-membered ring, unique in the series and manifested by a difference of 15° in the dihedral angles spanning the endocyclic C—N bonds (Table 3[link], rows 3, 4) and 12° in those spanning the two aryl rings (Table 3[link], rows 8, 9). The ultimate origins of the distortion in the crystal structure of (9)·HCl are obscure, although the association of the chloride ion with one face of the seven-membered ring is a potentially significant desymmetrizing factor.

To broaden this analysis, the ConQuest software (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, M. P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) was used to search the Cambridge Structural Database for substructures containing a 1,1′-biaryl with a 2,2′-bridge of the form CH2XCH2, where X = O, N or S, and most of the structures recovered are listed in Fig. 10[link] in order of increasing endocyclic dihedral angle for each heteroatom series. In the oxygen series the endocyclic biaryl dihedral angles vary over more than 18° in going from the parent system present in (17) to the bis(phosphine) (20). Throughout this series the exocyclic dihedral angle remains responsive to the steric size of the 6- and 6′-substituents, increases in the exocyclic dihedral angle being possible through bending processes, whereas the endocyclic dihedral angle is constrained by bond-length requirements.

[Figure 10]
Figure 10
Dihedral angles (°) around the aryl–aryl bond in biaryl-fused oxepines, azepines and thiepines (taken from published X-ray data). The numerical values of the exocyclic and endocyclic biaryl dihedral angles are indicated. Symbols: (*) highest of four per unit cell; (†) lowest of four per unit cell; (‡) highest of three per unit cell; (§) lowest of three per unit cell; (¶) highest of two per unit cell; (¥) lowest of two per unit cell. CSD six-letter codes: (17), DIFTAN (Engelhardt et al., 1985[Engelhardt, L. M., Lueng, W. P., Raston, C. L. & White, A. H. (1985). Aust. J. Chem. 38, 977-983.]); (18), JAFLAE (Bringmann et al., 2003[Bringmann, G., Pfeifer, R.-M., Rummey, C., Pabst, T., Leusser, D. & Stalke, D. (2003). Z. Naturforsch. Teil B, 58, 231-236.]); (19), TICTOO (Roszak et al., 1996[Roszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190-3193.]); (20), GEDYOD (Schmid et al., 1988[Schmid, R., Cereghetti, M., Heiser, B., Schönholzer, P. & Hansen, H.-J. (1988). Helv. Chim. Acta, 71, 897-929.]); (21), GAVKET (Nyburg et al., 1988[Nyburg, S. C., Prasad, L., Behnam, B. A. & Hall, D. M. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 617-623.]); (22), GAVKAP (Nyburg et al., 1988[Nyburg, S. C., Prasad, L., Behnam, B. A. & Hall, D. M. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 617-623.]); (23), NUBGOG (Mrvoš-Sermek et al., 1998[Mrvoš-Sermek, D., Loncar-Tomaskovic, L., Hergold-Brundic, A., Mintas, M. & Nagl, A. (1998). Acta Cryst. C54, 877-879.]); (24), XEBNOH (Arroyo et al., 2000[Arroyo, N., Haslinger, U., Mereiter, K. & Widhalm, M. (2000). Tetrahedron Asym. 11, 4207-4219.]); (25), WOBMIJ (Schneider et al., 2000[Schneider, M., Linden, A. & Rippert, A. J. (2000). Acta Cryst. C56, 1004-1006.]); (26), WOBMEF (Schneider et al., 2000[Schneider, M., Linden, A. & Rippert, A. J. (2000). Acta Cryst. C56, 1004-1006.]); (27), HOVGEE (Widhalm et al., 1999[Widhalm, M., Nettekoven, U. & Mereiter, K. (1999). Tetrahedron: Asym. 10, 4369-4391.]); (28), XEBNIB (Arroyo et al., 2000[Arroyo, N., Haslinger, U., Mereiter, K. & Widhalm, M. (2000). Tetrahedron Asym. 11, 4207-4219.]); (29), HOVGOO (Widhalm et al., 1999[Widhalm, M., Nettekoven, U. & Mereiter, K. (1999). Tetrahedron: Asym. 10, 4369-4391.]); (30), SIZQOH (Kiupel et al., 1998[Kiupel, B., Niederalt, C., Nieger, M., Grimme, S. & Vogtle, F. (1998). Angew. Chem. Int. Ed. 37, 3031-3034.]); (31), YIPREU01 (Miyake et al., 2002[Miyake, Y., Oyamada, A., Nishibayashi, Y. & Uemura, S. (2002). Heteroat. Chem. 13, 270-275.]); (32), YIPREU (Bandarage et al., 1995[Bandarage, U. K., Hanton, L. R. & Smith, R. A. J. (1995). Tetrahedron, 51, 787-800.]); (33), KIRPOQ (Loncar-Tomascovic et al., 2000[Loncar-Tomascovic, L., Sarac-Arneri, R., Hergold-Brundic, A., Nagl, A., Mintas, M. & Sandström, J. (2000). Helv. Chim. Acta, 83, 479-494.]); (34), KIRKOL (Loncar-Tomascovic et al., 2000[Loncar-Tomascovic, L., Sarac-Arneri, R., Hergold-Brundic, A., Nagl, A., Mintas, M. & Sandström, J. (2000). Helv. Chim. Acta, 83, 479-494.]).

A similar trend is seen in the nitrogen series, where the endocyclic dihedral angle does not exceed 55.0°, while the exocyclic dihedral angle is forced up by bulky ortho groups and reaches 67.8° in the binaphthyl (29). The underlying flexibility of the biaryl system can be seen in the variation, by 5° or more, of the respective dihedral angles in analogous molecules, e.g. (21) and (22) or (24) and (29). In the sulfur series the longer (C—S) bonds in the seven-membered ring permit larger endocyclic dihedral angles and a framework capable of accommodating larger ortho-substituents (Me, naphthyl) with minimal distortion at the axis. Axial flexibility is illustrated in the thiepine series by (30) and (31), whose respective unit cells contain three or more equivalent biaryl axes with varying dihedral angles.

The distinction between the geometry of a molecule in the crystalline state, where it is subject to intermolecular (crystal packing) forces, and its conformation in solution is of fundamental importance in the context of biological effects. The crystal structure dihedral angles for the tubulin binding agents colchicine (1) (Lessinger & Margulis, 1978[Lessinger, L. & Margulis, T. N. (1978). Acta Cryst. B34, 578-584.]) and N-acetyl­colchinol (3) (Margulis & Lessinger, 1978[Margulis, T. N. & Lessinger, L. (1978). Biochem. Biophys. Res. Commun. 83, 472-478.]) are shown in Fig. 11[link]. Although the multiple dihedral angles for (3) reveal some flexibility in its biaryl axis, each of these structures crystallizes as a hydrated system with a packing arrangement involving complex hydrogen bonding. The situation is simpler in the cases of the oxepine (8) and sulfone (12), and it was considered that computational modelling of these molecules might provide a means of estimating the contribution made by crystal packing effects to their solid-state structures. Accordingly, the structures (8) and (12) were allowed to `relax' by using semi-empirical (force field) methods to minimize their steric energies, starting from the atomic coordinates provided by X-ray crystallography. The minimized structures (8′) and (12′) indicate less distortion in the region of the biaryl axis, primarily through a reduced exocyclic biaryl dihedral angle in (8′) and an increased endocyclic dihedral angle in (12′) (Fig. 11[link]), the inference being that these parameters are particularly affected by crystal packing forces within the respective solid-state structures. However, while the geometries of the energy-minimized structures may be more representative of the dominant solution conformations of such molecules, it can be speculated that the conformational flexibility of the bridged biaryl unit, implicit in the results reported here and in the X-ray diffraction data cited, is a more significant factor in the large number of colchicine analogues that retain the tubulin-binding capability of the natural product.

[Figure 11]
Figure 11
Dihedral angles (°) around the aryl–aryl bond in (1), (3) (from published X-ray data), (8′) and (12′). To generate (8′) and (12′), models of (8) and (12) were assembled from their crystal structure atom coordinates using Quantum CAChe4.5 (Fujitsu) and their geometries optimized with the Mechanics application using an augmented MM3 force field. The structures (8′) and (12′) are assumed to be nearby (but not necessarily global) steric energy minima. The number inside the seven-membered ring is the C7A—C11A—C11B—C4A dihedral angle; the other number is the C11—C11A—C11B—C1 dihedral angle. Symbols: (¶) highest of the two per unit cell; (¥) lowest of the two per unit cell.

4. Conclusions

The biaryls (8), (9)·HCl, (10), (11) and (12), each incorporating a three-atom bridge of the form CH2X—CH2 (X = O, N or S), have been characterized by X-ray crystal structure analysis. Within this series the endocyclic and exocyclic biaryl dihedral angles vary over slightly offset but roughly parallel 10° ranges in a manner which is consistent with each structure being subject to a variable blend of intramolecular (steric, geometric) and intermolecular (crystal packing) forces of comparable strength. The results are consistent with the expectation that the major determinant of the degree of helicity in the seven-membered ring, and hence in the biaryl chromophore, is the C—X bond length. The results also suggest that there is a significant degree of conformational flexibility within the biaryl unit, despite the presence of the three-atom bridge.

Supporting information


Computing details top

For all compounds, data collection: Collect (Nonius BV, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
(oxepine) 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]oxepine top
Crystal data top
C20H24O7F(000) = 800
Mr = 376.39Dx = 1.402 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5472 reflections
a = 15.3519 (4) Åθ = 1.0–27.5°
b = 10.4044 (3) ŵ = 0.11 mm1
c = 11.8506 (4) ÅT = 150 K
β = 109.607 (2)°Plate, colourless
V = 1783.11 (9) Å30.2 × 0.2 × 0.1 mm
Z = 4
Data collection top
KappaCCD
diffractometer
2043 independent reflections
Radiation source: Enraf Nonius FR5901501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 1619
Tmin = 0.992, Tmax = 1.014k = 1313
9423 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0661P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.012
2043 reflectionsΔρmax = 0.29 e Å3
172 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C20H24O7V = 1783.11 (9) Å3
Mr = 376.39Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.3519 (4) ŵ = 0.11 mm1
b = 10.4044 (3) ÅT = 150 K
c = 11.8506 (4) Å0.2 × 0.2 × 0.1 mm
β = 109.607 (2)°
Data collection top
KappaCCD
diffractometer
2043 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
1501 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 1.014Rint = 0.063
9423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.29 e Å3
2043 reflectionsΔρmin = 0.23 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60555 (10)0.54245 (12)0.33594 (11)0.0206 (3)
C20.70119 (10)0.54458 (12)0.36558 (11)0.0218 (4)
C30.74416 (10)0.64879 (13)0.32986 (12)0.0231 (3)
C40.69164 (10)0.75234 (13)0.27117 (12)0.0238 (4)
C4A0.59581 (10)0.74971 (13)0.24088 (12)0.0223 (4)
C50.53841 (11)0.86214 (14)0.17609 (13)0.0251 (4)
C11B0.55105 (10)0.64278 (13)0.26840 (11)0.0209 (3)
C120.59447 (13)0.40214 (17)0.49088 (13)0.0299 (4)
C130.82017 (13)0.46454 (18)0.53795 (14)0.0349 (4)
C140.88365 (12)0.73873 (17)0.31678 (18)0.0355 (4)
O10.56046 (7)0.44207 (9)0.36779 (8)0.0244 (3)
O20.75238 (7)0.43965 (8)0.42204 (9)0.0255 (3)
O30.83726 (7)0.63638 (9)0.35454 (9)0.0298 (3)
O60.50.93726 (12)0.250.0262 (4)
H40.7190 (11)0.8232 (16)0.2455 (14)0.026 (4)*
H5A0.5747 (11)0.9227 (16)0.1488 (14)0.027 (4)*
H5B0.4883 (11)0.8307 (14)0.1045 (13)0.018 (3)*
H12A0.6399 (14)0.3340 (18)0.5043 (15)0.041 (5)*
H12B0.6205 (13)0.4753 (18)0.5448 (17)0.045 (5)*
H12C0.5432 (13)0.3687 (16)0.5087 (15)0.036 (5)*
H13A0.8330 (17)0.558 (3)0.554 (2)0.084 (8)*
H13B0.869 (2)0.416 (3)0.548 (3)0.113 (11)*
H13C0.7937 (16)0.451 (2)0.604 (2)0.069 (7)*
H14A0.8520 (12)0.7605 (16)0.2259 (16)0.035 (5)*
H14B0.8857 (13)0.815 (2)0.3615 (17)0.044 (5)*
H14C0.9483 (13)0.7045 (18)0.3358 (14)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (8)0.0194 (7)0.0180 (6)0.0022 (5)0.0070 (6)0.0018 (5)
C20.0252 (8)0.0199 (7)0.0194 (7)0.0024 (6)0.0063 (6)0.0020 (5)
C30.0199 (8)0.0258 (7)0.0242 (7)0.0004 (6)0.0083 (6)0.0036 (6)
C40.0270 (8)0.0219 (7)0.0233 (7)0.0024 (6)0.0095 (6)0.0000 (6)
C4A0.0248 (8)0.0225 (7)0.0193 (7)0.0003 (6)0.0072 (6)0.0009 (5)
C50.0256 (9)0.0240 (7)0.0256 (7)0.0001 (6)0.0085 (6)0.0016 (6)
C11B0.0234 (8)0.0215 (7)0.0176 (6)0.0007 (6)0.0068 (6)0.0025 (5)
C120.0349 (10)0.0312 (8)0.0231 (8)0.0028 (8)0.0093 (7)0.0050 (7)
C130.0326 (10)0.0367 (9)0.0275 (8)0.0048 (8)0.0004 (7)0.0010 (7)
C140.0252 (9)0.0301 (9)0.0524 (11)0.0046 (7)0.0147 (8)0.0015 (8)
O10.0263 (6)0.0236 (5)0.0216 (5)0.0039 (4)0.0059 (4)0.0033 (4)
O20.0248 (6)0.0229 (5)0.0256 (5)0.0043 (4)0.0042 (4)0.0003 (4)
O30.0206 (6)0.0301 (6)0.0393 (6)0.0002 (4)0.0108 (5)0.0038 (5)
O60.0284 (8)0.0189 (7)0.0321 (8)00.0115 (6)0
Geometric parameters (Å, º) top
C1—O11.3740 (16)C11B—C11Bi1.479 (3)
C1—C21.391 (2)C12—O11.4359 (17)
C1—C11B1.4074 (19)C12—H12A0.97 (2)
C2—O21.3799 (16)C12—H12B0.99 (2)
C2—C31.406 (2)C12—H12C0.947 (19)
C3—O31.3654 (18)C13—O21.4414 (18)
C3—C41.385 (2)C13—H13A1.00 (3)
C4—C4A1.393 (2)C13—H13B0.88 (3)
C4—H40.948 (17)C13—H13C1.00 (2)
C4A—C11B1.4023 (19)C14—O31.4337 (19)
C4A—C51.5101 (19)C14—H14A1.047 (17)
C5—O61.4395 (16)C14—H14B0.95 (2)
C5—H5A0.966 (17)C14—H14C1.006 (19)
C5—H5B0.990 (15)O6—C5i1.4395 (16)
O1—C1—C2121.96 (12)C1—C11B—C11Bi122.45 (10)
O1—C1—C11B117.51 (12)O1—C12—H12A112.0 (10)
C2—C1—C11B120.51 (12)O1—C12—H12B111.3 (11)
O2—C2—C1119.42 (12)H12A—C12—H12B110.2 (16)
O2—C2—C3120.51 (13)O1—C12—H12C106.7 (10)
C1—C2—C3119.89 (12)H12A—C12—H12C107.5 (15)
O3—C3—C4124.91 (13)H12B—C12—H12C109.0 (15)
O3—C3—C2115.19 (12)O2—C13—H13A112.9 (14)
C4—C3—C2119.88 (13)O2—C13—H13B109 (2)
C3—C4—C4A120.05 (13)H13A—C13—H13B116 (3)
C3—C4—H4121.3 (10)O2—C13—H13C111.4 (14)
C4A—C4—H4118.5 (10)H13A—C13—H13C95.3 (17)
C4—C4A—C11B120.88 (13)H13B—C13—H13C112 (2)
C4—C4A—C5120.10 (12)O3—C14—H14A112.0 (9)
C11B—C4A—C5119.01 (13)O3—C14—H14B112.0 (11)
O6—C5—C4A113.55 (11)H14A—C14—H14B108.0 (15)
O6—C5—H5A104.4 (9)O3—C14—H14C102.9 (10)
C4A—C5—H5A111.8 (9)H14A—C14—H14C112.9 (13)
O6—C5—H5B110.0 (9)H14B—C14—H14C109.0 (15)
C4A—C5—H5B109.4 (8)C1—O1—C12117.01 (11)
H5A—C5—H5B107.4 (12)C2—O2—C13115.57 (11)
C4A—C11B—C1118.46 (13)C3—O3—C14117.19 (12)
C4A—C11B—C11Bi119.00 (10)C5—O6—C5i114.24 (14)
O1—C1—C2—O24.15 (18)C5—C4A—C11B—C1175.72 (12)
C11B—C1—C2—O2173.97 (11)C4—C4A—C11B—C11Bi178.37 (13)
O1—C1—C2—C3179.30 (12)C5—C4A—C11B—C11Bi0.8 (2)
C11B—C1—C2—C31.19 (19)O1—C1—C11B—C4A176.34 (11)
O2—C2—C3—O30.43 (18)C2—C1—C11B—C4A5.46 (19)
C1—C2—C3—O3174.67 (11)O1—C1—C11B—C11Bi0.1 (2)
O2—C2—C3—C4178.73 (12)C2—C1—C11B—C11Bi178.10 (13)
C1—C2—C3—C43.6 (2)C2—C1—O1—C1250.03 (18)
O3—C3—C4—C4A174.07 (12)C11B—C1—O1—C12131.79 (14)
C2—C3—C4—C4A4.0 (2)C1—C2—O2—C13120.19 (14)
C3—C4—C4A—C11B0.4 (2)C3—C2—O2—C1364.69 (17)
C3—C4—C4A—C5179.56 (13)C4—C3—O3—C140.1 (2)
C4—C4A—C5—O6108.00 (14)C2—C3—O3—C14178.33 (13)
C11B—C4A—C5—O672.78 (16)C4A—C5—O6—C5i43.57 (9)
C4—C4A—C11B—C15.07 (19)
Symmetry code: (i) x+1, y, z+1/2.
(azepine) 6,7-dihydro-1,2,3,9,10,11-hexamethoxy-6-methyl-5H-dibenzo[c,e]azepinium chloride top
Crystal data top
C21H29ClNO6F(000) = 1848
Mr = 434.9Dx = 1.299 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 52930 reflections
a = 36.0403 (12) Åθ = 1.0–27.5°
b = 7.8165 (2) ŵ = 0.21 mm1
c = 17.0066 (5) ÅT = 150 K
β = 111.7920°Needle, colourless
V = 4448.5 (2) Å30.25 × 0.15 × 0.1 mm
Z = 8
Data collection top
KappaCCD
diffractometer
4945 independent reflections
Radiation source: Enraf Nonius FR5903299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
CCD rotation images, thick slices scansθmax = 27.3°, θmin = 3.2°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 4546
Tmin = 0.973, Tmax = 1.015k = 1010
36698 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0477P)2 + 2.813P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.019
4945 reflectionsΔρmax = 0.28 e Å3
392 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Crystal data top
C21H29ClNO6V = 4448.5 (2) Å3
Mr = 434.9Z = 8
Monoclinic, C2/cMo Kα radiation
a = 36.0403 (12) ŵ = 0.21 mm1
b = 7.8165 (2) ÅT = 150 K
c = 17.0066 (5) Å0.25 × 0.15 × 0.1 mm
β = 111.7920°
Data collection top
KappaCCD
diffractometer
4945 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
3299 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 1.015Rint = 0.082
36698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
4945 reflectionsΔρmin = 0.29 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.68102 (5)0.6598 (2)0.58223 (12)0.0230 (4)
C20.69278 (5)0.5570 (2)0.65436 (12)0.0238 (4)
C30.66395 (5)0.4941 (2)0.68409 (12)0.0241 (4)
C40.62380 (6)0.5223 (2)0.63852 (12)0.0248 (4)
C4A0.61219 (5)0.6240 (2)0.56628 (12)0.0235 (4)
C50.56852 (6)0.6585 (3)0.51870 (12)0.0255 (4)
C70.57796 (6)0.6216 (3)0.37918 (13)0.0255 (4)
C7A0.59552 (5)0.7981 (2)0.39492 (12)0.0244 (4)
C80.58130 (6)0.9250 (3)0.33339 (13)0.0271 (5)
C90.59851 (6)1.0858 (2)0.34706 (13)0.0280 (5)
C100.62961 (6)1.1218 (2)0.42439 (13)0.0275 (5)
C110.64324 (6)0.9960 (2)0.48552 (12)0.0266 (4)
C11A0.62726 (5)0.8304 (2)0.47142 (12)0.0235 (4)
C11B0.64053 (5)0.6998 (2)0.53969 (11)0.0226 (4)
C120.74333 (7)0.7999 (3)0.60016 (16)0.0353 (5)
C130.74706 (8)0.3788 (4)0.66441 (19)0.0457 (6)
C140.64945 (7)0.3361 (3)0.78873 (15)0.0357 (5)
C150.55478 (8)1.1886 (4)0.21296 (16)0.0434 (6)
C160.68161 (7)1.3068 (3)0.42899 (18)0.0414 (6)
C170.65697 (9)1.0696 (4)0.62684 (16)0.0429 (6)
C180.54776 (7)0.3913 (3)0.43460 (16)0.0325 (5)
O10.70720 (4)0.71479 (17)0.54644 (8)0.0273 (3)
O20.73253 (4)0.51848 (18)0.69880 (8)0.0298 (3)
O30.67858 (4)0.40029 (17)0.75722 (8)0.0276 (3)
O90.58700 (4)1.21986 (17)0.29158 (9)0.0352 (4)
O100.64468 (4)1.28628 (16)0.44066 (9)0.0320 (3)
O110.67256 (4)1.03867 (17)0.56190 (8)0.0322 (3)
O120.5145 (2)1.0434 (6)0.4664 (4)0.0887 (15)0.5
N60.55294 (5)0.5802 (2)0.43118 (10)0.0254 (4)
Cl10.467597 (15)0.70067 (8)0.36456 (3)0.04043 (18)
H40.6047 (6)0.473 (3)0.6540 (12)0.026 (5)*
H5A0.5527 (6)0.605 (2)0.5506 (12)0.020 (5)*
H5B0.5642 (6)0.778 (3)0.5122 (12)0.022 (5)*
H60.5273 (7)0.625 (3)0.4031 (14)0.034 (6)*
H7A0.5602 (6)0.608 (2)0.3220 (13)0.023 (5)*
H7B0.5999 (6)0.538 (3)0.3952 (12)0.023 (5)*
H80.5608 (6)0.898 (3)0.2829 (14)0.026 (5)*
H12A0.7646 (9)0.715 (3)0.6254 (18)0.061 (8)*
H12B0.7524 (8)0.870 (3)0.5613 (17)0.057 (8)*
H12C0.7382 (7)0.863 (3)0.6430 (16)0.046 (7)*
H12D0.493 (3)0.931 (12)0.448 (5)0.13 (3)*0.5
H12E0.5280 (19)1.036 (8)0.522 (5)0.07 (2)*0.5
H13A0.7456 (9)0.410 (4)0.606 (2)0.079 (10)*
H13B0.7313 (10)0.284 (4)0.658 (2)0.075 (10)*
H13C0.7752 (8)0.357 (3)0.7045 (17)0.056 (7)*
H14A0.6316 (7)0.254 (3)0.7481 (15)0.036 (6)*
H14B0.6349 (7)0.424 (3)0.8011 (15)0.043 (7)*
H14C0.6638 (7)0.280 (3)0.8425 (16)0.044 (6)*
H15A0.5613 (7)1.099 (4)0.1807 (17)0.052 (8)*
H15B0.5290 (8)1.146 (3)0.2186 (15)0.047 (7)*
H15C0.5498 (7)1.294 (3)0.1842 (15)0.044 (7)*
H16A0.7017 (8)1.223 (4)0.4660 (18)0.061 (8)*
H16B0.6754 (7)1.290 (3)0.3657 (18)0.052 (7)*
H16C0.6896 (7)1.422 (4)0.4455 (15)0.053 (7)*
H17A0.6451 (8)0.965 (4)0.6373 (17)0.062 (8)*
H17B0.6385 (8)1.160 (4)0.6071 (16)0.054 (8)*
H17C0.6805 (8)1.103 (3)0.6770 (16)0.050 (7)*
H18A0.5737 (7)0.342 (3)0.4657 (14)0.039 (6)*
H18B0.5364 (6)0.347 (3)0.3732 (14)0.032 (6)*
H18C0.5298 (7)0.372 (3)0.4623 (15)0.040 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0227 (9)0.0229 (10)0.0242 (10)0.0036 (8)0.0094 (8)0.0053 (8)
C20.0182 (9)0.0255 (10)0.0253 (10)0.0001 (8)0.0054 (8)0.0031 (8)
C30.0255 (10)0.0238 (10)0.0209 (10)0.0019 (8)0.0064 (8)0.0001 (8)
C40.0216 (10)0.0282 (10)0.0251 (11)0.0015 (8)0.0094 (8)0.0007 (8)
C4A0.0219 (9)0.0240 (10)0.0225 (10)0.0011 (8)0.0059 (8)0.0030 (8)
C50.0238 (10)0.0289 (11)0.0229 (10)0.0017 (9)0.0075 (8)0.0009 (8)
C70.0254 (10)0.0284 (10)0.0218 (11)0.0011 (9)0.0076 (9)0.0014 (8)
C7A0.0248 (10)0.0248 (10)0.0242 (10)0.0016 (8)0.0098 (8)0.0003 (8)
C80.0261 (10)0.0317 (11)0.0227 (11)0.0006 (9)0.0080 (9)0.0018 (9)
C90.0318 (10)0.0269 (10)0.0261 (11)0.0053 (9)0.0116 (9)0.0048 (8)
C100.0306 (10)0.0222 (10)0.0319 (12)0.0001 (8)0.0143 (9)0.0014 (8)
C110.0256 (10)0.0268 (10)0.0247 (10)0.0010 (8)0.0063 (8)0.0019 (8)
C11A0.0223 (9)0.0248 (10)0.0236 (10)0.0022 (8)0.0085 (8)0.0013 (8)
C11B0.0244 (9)0.0219 (9)0.0198 (9)0.0003 (8)0.0062 (8)0.0031 (8)
C120.0246 (11)0.0398 (13)0.0376 (13)0.0098 (10)0.0068 (10)0.0006 (11)
C130.0328 (13)0.0451 (15)0.0549 (18)0.0121 (12)0.0112 (12)0.0060 (13)
C140.0314 (11)0.0480 (14)0.0293 (13)0.0026 (11)0.0130 (10)0.0105 (11)
C150.0452 (15)0.0428 (14)0.0334 (13)0.0030 (12)0.0043 (11)0.0123 (12)
C160.0419 (13)0.0340 (13)0.0525 (17)0.0099 (11)0.0221 (12)0.0010 (12)
C170.0546 (16)0.0381 (14)0.0328 (14)0.0001 (13)0.0127 (12)0.0088 (11)
C180.0348 (12)0.0285 (11)0.0358 (13)0.0065 (10)0.0152 (11)0.0016 (9)
O10.0222 (7)0.0328 (8)0.0271 (7)0.0063 (6)0.0095 (6)0.0011 (6)
O20.0196 (7)0.0374 (8)0.0290 (8)0.0021 (6)0.0050 (6)0.0012 (6)
O30.0236 (7)0.0341 (8)0.0243 (7)0.0024 (6)0.0080 (6)0.0068 (6)
O90.0415 (8)0.0291 (8)0.0296 (8)0.0022 (6)0.0069 (7)0.0071 (6)
O100.0364 (8)0.0208 (7)0.0381 (8)0.0013 (6)0.0131 (7)0.0013 (6)
O110.0354 (8)0.0301 (7)0.0260 (8)0.0047 (6)0.0054 (6)0.0035 (6)
O120.122 (4)0.052 (3)0.094 (4)0.020 (3)0.043 (4)0.009 (3)
N60.0206 (8)0.0288 (9)0.0242 (9)0.0005 (7)0.0052 (7)0.0009 (7)
Cl10.0256 (3)0.0552 (4)0.0358 (3)0.0024 (2)0.0059 (2)0.0110 (3)
Geometric parameters (Å, º) top
C1—O11.368 (2)C12—H12A0.98 (3)
C1—C21.394 (3)C12—H12B1.00 (3)
C1—C11B1.402 (3)C12—H12C0.95 (3)
C2—O21.382 (2)C13—O21.427 (3)
C2—C31.403 (3)C13—H13A1.01 (3)
C3—O31.370 (2)C13—H13B0.91 (3)
C3—C41.382 (3)C13—H13C1.00 (3)
C4—C4A1.391 (3)C14—O31.435 (3)
C4—H40.91 (2)C14—H14A0.99 (2)
C4A—C11B1.393 (3)C14—H14B0.94 (3)
C4A—C51.503 (3)C14—H14C0.97 (3)
C5—N61.512 (2)C15—O91.429 (3)
C5—H5A1.01 (2)C15—H15A0.97 (3)
C5—H5B0.95 (2)C15—H15B1.02 (3)
C7—C7A1.500 (3)C15—H15C0.94 (3)
C7—N61.514 (3)C16—O101.426 (3)
C7—H7A0.95 (2)C16—H16A1.01 (3)
C7—H7B0.98 (2)C16—H16B1.02 (3)
C7A—C81.394 (3)C16—H16C0.96 (3)
C7A—C11A1.400 (3)C17—O111.433 (3)
C8—C91.383 (3)C17—H17A0.97 (3)
C8—H80.93 (2)C17—H17B0.94 (3)
C9—O91.367 (2)C17—H17C0.99 (3)
C9—C101.404 (3)C18—N61.492 (3)
C10—C111.382 (3)C18—H18A0.97 (2)
C10—O101.383 (2)C18—H18B1.03 (2)
C11—O111.377 (2)C18—H18C0.94 (3)
C11—C11A1.401 (3)O12—H12D1.13 (10)
C11A—C11B1.485 (3)O12—H12E0.89 (7)
C12—O11.446 (2)N6—H60.94 (2)
O1—C1—C2122.52 (16)H12A—C12—H12C111 (2)
O1—C1—C11B117.25 (16)H12B—C12—H12C115 (2)
C2—C1—C11B120.06 (17)O2—C13—H13A109.2 (18)
O2—C2—C1121.44 (17)O2—C13—H13B111 (2)
O2—C2—C3118.88 (16)H13A—C13—H13B106 (3)
C1—C2—C3119.67 (16)O2—C13—H13C106.4 (15)
O3—C3—C4124.38 (18)H13A—C13—H13C112 (2)
O3—C3—C2115.34 (15)H13B—C13—H13C112 (2)
C4—C3—C2120.23 (17)O3—C14—H14A110.1 (13)
C3—C4—C4A119.71 (19)O3—C14—H14B112.2 (15)
C3—C4—H4121.3 (12)H14A—C14—H14B111.2 (19)
C4A—C4—H4119.0 (12)O3—C14—H14C107.7 (14)
C4—C4A—C11B120.88 (17)H14A—C14—H14C110.0 (19)
C4—C4A—C5119.31 (18)H14B—C14—H14C106 (2)
C11B—C4A—C5119.75 (17)O9—C15—H15A111.7 (15)
C4A—C5—N6112.92 (16)O9—C15—H15B114.7 (14)
C4A—C5—H5A108.9 (10)H15A—C15—H15B104 (2)
N6—C5—H5A106.4 (11)O9—C15—H15C105.7 (14)
C4A—C5—H5B109.4 (12)H15A—C15—H15C112 (2)
N6—C5—H5B107.5 (12)H15B—C15—H15C109 (2)
H5A—C5—H5B111.8 (16)O10—C16—H16A109.4 (16)
C7A—C7—N6113.30 (16)O10—C16—H16B106.4 (14)
C7A—C7—H7A111.5 (12)H16A—C16—H16B114 (2)
N6—C7—H7A104.5 (12)O10—C16—H16C105.0 (15)
C7A—C7—H7B108.5 (11)H16A—C16—H16C111 (2)
N6—C7—H7B106.8 (11)H16B—C16—H16C111 (2)
H7A—C7—H7B112.0 (16)O11—C17—H17A108.8 (16)
C8—C7A—C11A121.02 (17)O11—C17—H17B106.2 (16)
C8—C7A—C7120.47 (17)H17A—C17—H17B114 (2)
C11A—C7A—C7118.47 (17)O11—C17—H17C104.6 (14)
C9—C8—C7A120.23 (18)H17A—C17—H17C111 (2)
C9—C8—H8121.3 (13)H17B—C17—H17C112 (2)
C7A—C8—H8118.4 (13)N6—C18—H18A107.8 (13)
O9—C9—C8125.35 (18)N6—C18—H18B107.7 (12)
O9—C9—C10115.15 (17)H18A—C18—H18B111.0 (18)
C8—C9—C10119.47 (18)N6—C18—H18C107.4 (14)
C11—C10—O10120.48 (17)H18A—C18—H18C112 (2)
C11—C10—C9119.97 (17)H18B—C18—H18C111.2 (18)
O10—C10—C9119.43 (17)C1—O1—C12118.14 (16)
O11—C11—C10118.14 (17)C2—O2—C13113.95 (16)
O11—C11—C11A120.52 (17)C3—O3—C14115.97 (15)
C10—C11—C11A121.33 (17)C9—O9—C15116.59 (17)
C7A—C11A—C11117.89 (17)C10—O10—C16113.22 (17)
C7A—C11A—C11B121.15 (16)C11—O11—C17112.63 (17)
C11—C11A—C11B120.58 (16)H12D—O12—H12E107 (6)
C4A—C11B—C1119.03 (17)C18—N6—C5111.63 (16)
C4A—C11B—C11A118.94 (16)C18—N6—C7110.15 (16)
C1—C11B—C11A121.86 (17)C5—N6—C7113.86 (15)
O1—C12—H12A109.9 (15)C18—N6—H6106.0 (13)
O1—C12—H12B105.9 (14)C5—N6—H6106.7 (13)
H12A—C12—H12B105 (2)C7—N6—H6108.2 (13)
O1—C12—H12C109.6 (15)
O1—C1—C2—O26.5 (3)O11—C11—C11A—C7A175.39 (17)
C11B—C1—C2—O2178.50 (16)C10—C11—C11A—C7A3.2 (3)
O1—C1—C2—C3175.10 (17)O11—C11—C11A—C11B2.4 (3)
C11B—C1—C2—C30.1 (3)C10—C11—C11A—C11B176.25 (18)
O2—C2—C3—O31.0 (2)C4—C4A—C11B—C15.8 (3)
C1—C2—C3—O3177.41 (16)C5—C4A—C11B—C1176.93 (17)
O2—C2—C3—C4176.38 (17)C4—C4A—C11B—C11A169.61 (17)
C1—C2—C3—C45.2 (3)C5—C4A—C11B—C11A7.7 (3)
O3—C3—C4—C4A178.09 (17)O1—C1—C11B—C4A169.95 (16)
C2—C3—C4—C4A4.7 (3)C2—C1—C11B—C4A5.3 (3)
C3—C4—C4A—C11B0.8 (3)O1—C1—C11B—C11A14.8 (3)
C3—C4—C4A—C5178.07 (18)C2—C1—C11B—C11A169.96 (17)
C4—C4A—C5—N6114.1 (2)C7A—C11A—C11B—C4A51.1 (3)
C11B—C4A—C5—N668.6 (2)C11—C11A—C11B—C4A121.7 (2)
N6—C7—C7A—C8109.0 (2)C7A—C11A—C11B—C1133.6 (2)
N6—C7—C7A—C11A73.1 (2)C11—C11A—C11B—C153.6 (3)
C11A—C7A—C8—C90.1 (3)C2—C1—O1—C1252.5 (2)
C7—C7A—C8—C9177.77 (19)C11B—C1—O1—C12132.34 (19)
C7A—C8—C9—O9179.75 (18)C1—C2—O2—C1383.1 (2)
C7A—C8—C9—C101.9 (3)C3—C2—O2—C1398.4 (2)
O9—C9—C10—C11179.20 (18)C4—C3—O3—C143.1 (3)
C8—C9—C10—C111.1 (3)C2—C3—O3—C14179.58 (18)
O9—C9—C10—O103.1 (3)C8—C9—O9—C150.7 (3)
C8—C9—C10—O10174.96 (18)C10—C9—O9—C15178.6 (2)
O10—C10—C11—O111.1 (3)C11—C10—O10—C1682.4 (2)
C9—C10—C11—O11177.17 (18)C9—C10—O10—C16101.5 (2)
O10—C10—C11—C11A177.52 (18)C10—C11—O11—C17100.4 (2)
C9—C10—C11—C11A1.5 (3)C11A—C11—O11—C1778.3 (2)
C8—C7A—C11A—C112.4 (3)C4A—C5—N6—C1875.0 (2)
C7—C7A—C11A—C11179.67 (18)C4A—C5—N6—C750.4 (2)
C8—C7A—C11A—C11B175.44 (18)C7A—C7—N6—C18161.48 (17)
C7—C7A—C11A—C11B6.7 (3)C7A—C7—N6—C535.2 (2)
(sulfide) 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine top
Crystal data top
C20H24O6SF(000) = 832
Mr = 392.45Dx = 1.443 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10338 reflections
a = 8.6029 (2) Åθ = 0–0°
b = 12.2965 (3) ŵ = 0.22 mm1
c = 17.6032 (4) ÅT = 150 K
β = 104.0380°Needle, colourless
V = 1806.55 (7) Å30.2 × 0.1 × 0.1 mm
Z = 4
Data collection top
KappaCCD
diffractometer
2388 independent reflections
Radiation source: Enraf Nonius FR5902003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
CCD rotation images, thick slices scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 1111
Tmin = 0.975, Tmax = 1.016k = 1616
15259 measured reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.3323P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
2388 reflectionsΔρmax = 0.32 e Å3
172 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (13)
Crystal data top
C20H24O6SV = 1806.55 (7) Å3
Mr = 392.45Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.6029 (2) ŵ = 0.22 mm1
b = 12.2965 (3) ÅT = 150 K
c = 17.6032 (4) Å0.2 × 0.1 × 0.1 mm
β = 104.0380°
Data collection top
KappaCCD
diffractometer
2388 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
2003 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 1.016Rint = 0.054
15259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
2388 reflectionsΔρmin = 0.30 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55184 (14)0.58168 (9)0.66847 (7)0.0135 (3)
C20.65913 (15)0.58284 (9)0.62049 (7)0.0142 (3)
C30.77012 (15)0.49775 (10)0.62572 (7)0.0146 (3)
C40.77115 (15)0.41306 (10)0.67830 (7)0.0146 (3)
C4A0.66397 (15)0.41269 (9)0.72640 (7)0.0138 (3)
C50.66577 (16)0.32012 (10)0.78250 (8)0.0163 (3)
C11B0.55516 (14)0.49830 (9)0.72330 (7)0.0138 (3)
C120.28299 (17)0.63325 (13)0.62107 (10)0.0263 (3)
C130.5804 (2)0.65199 (13)0.49157 (8)0.0279 (3)
C140.98301 (18)0.41644 (12)0.58250 (9)0.0251 (3)
O10.44194 (11)0.66526 (7)0.66090 (5)0.0177 (2)
O20.66061 (11)0.66986 (7)0.57123 (5)0.0178 (2)
O30.87013 (11)0.50350 (7)0.57639 (5)0.0193 (2)
S60.50.22488 (3)0.750.01952 (15)
H14B1.044 (2)0.4347 (14)0.5450 (10)0.031 (5)*
H40.847 (2)0.3561 (14)0.6814 (10)0.023 (4)*
H14A0.928 (2)0.3476 (15)0.5698 (10)0.031 (5)*
H13C0.594 (2)0.7161 (15)0.4628 (11)0.030 (5)*
H8B0.6576 (18)0.3479 (13)0.8335 (9)0.019 (4)*
H8A0.759 (2)0.2756 (13)0.7889 (9)0.020 (4)*
H14C1.058 (2)0.4178 (14)0.6363 (11)0.027 (4)*
H12A0.280 (3)0.6008 (19)0.5714 (14)0.055 (6)*
H13B0.465 (3)0.6393 (18)0.4877 (13)0.051 (6)*
H12C0.211 (3)0.6965 (17)0.6134 (11)0.043 (5)*
H13A0.629 (3)0.591 (2)0.4700 (14)0.065 (7)*
H12B0.241 (3)0.5780 (19)0.6481 (14)0.059 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0152 (6)0.0100 (5)0.0149 (5)0.0001 (4)0.0026 (5)0.0015 (4)
C20.0179 (6)0.0112 (5)0.0130 (5)0.0027 (4)0.0028 (5)0.0008 (4)
C30.0153 (6)0.0153 (6)0.0140 (5)0.0017 (4)0.0051 (5)0.0008 (4)
C40.0153 (6)0.0128 (6)0.0159 (6)0.0014 (4)0.0039 (5)0.0001 (4)
C4A0.0152 (6)0.0125 (5)0.0136 (5)0.0010 (4)0.0031 (5)0.0010 (4)
C50.0170 (6)0.0145 (6)0.0180 (6)0.0020 (5)0.0056 (5)0.0033 (5)
C11B0.0151 (6)0.0124 (5)0.0144 (6)0.0015 (4)0.0047 (5)0.0009 (4)
C120.0194 (7)0.0228 (7)0.0336 (8)0.0045 (5)0.0007 (6)0.0032 (6)
C130.0416 (9)0.0247 (7)0.0148 (6)0.0045 (6)0.0022 (6)0.0036 (5)
C140.0225 (7)0.0273 (8)0.0304 (7)0.0100 (6)0.0159 (6)0.0097 (6)
O10.0173 (5)0.0122 (4)0.0232 (5)0.0031 (3)0.0042 (4)0.0001 (3)
O20.0253 (5)0.0135 (4)0.0141 (4)0.0021 (3)0.0040 (4)0.0033 (3)
O30.0208 (5)0.0198 (5)0.0209 (5)0.0049 (4)0.0123 (4)0.0052 (4)
S60.0200 (2)0.0112 (2)0.0291 (3)00.00936 (19)0
Geometric parameters (Å, º) top
C1—O11.3809 (14)C11B—C11Bi1.489 (2)
C1—C21.3942 (17)C12—O11.4323 (17)
C1—C11B1.4037 (16)C12—H12A0.96 (2)
C2—O21.3792 (14)C12—H12C0.99 (2)
C2—C31.4044 (17)C12—H12B0.95 (2)
C3—O31.3644 (15)C13—O21.4218 (16)
C3—C41.3919 (17)C13—H13C0.960 (18)
C4—C4A1.3949 (17)C13—H13B0.99 (2)
C4—H40.947 (17)C13—H13A0.98 (3)
C4A—C11B1.4010 (17)C14—O31.4318 (16)
C4A—C51.5046 (17)C14—H14B0.967 (18)
C5—S61.8267 (13)C14—H14A0.969 (18)
C5—H8B0.980 (16)C14—H14C1.010 (18)
C5—H8A0.958 (17)S6—C5i1.8267 (13)
O1—C1—C2118.19 (10)C1—C11B—C11Bi121.63 (9)
O1—C1—C11B120.61 (11)O1—C12—H12A111.7 (14)
C2—C1—C11B121.20 (11)O1—C12—H12C110.3 (12)
O2—C2—C1119.81 (11)H12A—C12—H12C109.3 (17)
O2—C2—C3120.63 (11)O1—C12—H12B112.8 (14)
C1—C2—C3119.48 (11)H12A—C12—H12B103.4 (19)
O3—C3—C4123.97 (11)H12C—C12—H12B109.0 (18)
O3—C3—C2116.31 (11)O2—C13—H13C107.5 (11)
C4—C3—C2119.71 (11)O2—C13—H13B109.3 (13)
C3—C4—C4A120.50 (11)H13C—C13—H13B110.0 (17)
C3—C4—H4119.1 (10)O2—C13—H13A110.5 (14)
C4A—C4—H4120.4 (10)H13C—C13—H13A107.7 (18)
C4—C4A—C11B120.52 (11)H13B—C13—H13A111.8 (19)
C4—C4A—C5119.85 (11)O3—C14—H14B104.4 (11)
C11B—C4A—C5119.63 (11)O3—C14—H14A110.6 (11)
C4A—C5—S6113.36 (9)H14B—C14—H14A111.3 (15)
C4A—C5—H8B110.3 (9)O3—C14—H14C109.1 (10)
S6—C5—H8B106.6 (9)H14B—C14—H14C107.7 (14)
C4A—C5—H8A112.6 (10)H14A—C14—H14C113.4 (14)
S6—C5—H8A104.0 (10)C1—O1—C12113.13 (10)
H8B—C5—H8A109.7 (13)C2—O2—C13115.07 (10)
C4A—C11B—C1118.52 (11)C3—O3—C14115.74 (10)
C4A—C11B—C11Bi119.84 (9)C5—S6—C5i100.25 (8)
O1—C1—C2—O24.46 (17)C5—C4A—C11B—C1177.70 (11)
C11B—C1—C2—O2175.30 (11)C4—C4A—C11B—C11Bi178.19 (12)
O1—C1—C2—C3178.70 (10)C5—C4A—C11B—C11Bi1.38 (19)
C11B—C1—C2—C31.53 (18)O1—C1—C11B—C4A177.17 (10)
O2—C2—C3—O33.94 (17)C2—C1—C11B—C4A3.07 (18)
C1—C2—C3—O3179.25 (10)O1—C1—C11B—C11Bi1.89 (19)
O2—C2—C3—C4177.19 (11)C2—C1—C11B—C11Bi177.87 (12)
C1—C2—C3—C40.38 (18)C2—C1—O1—C12105.35 (13)
O3—C3—C4—C4A179.48 (11)C11B—C1—O1—C1274.88 (15)
C2—C3—C4—C4A0.70 (19)C1—C2—O2—C13101.06 (14)
C3—C4—C4A—C11B0.89 (19)C3—C2—O2—C1382.14 (15)
C3—C4—C4A—C5179.54 (11)C4—C3—O3—C141.37 (18)
C4—C4A—C5—S6104.20 (12)C2—C3—O3—C14179.81 (11)
C11B—C4A—C5—S676.23 (13)C4A—C5—S6—C5i44.52 (7)
C4—C4A—C11B—C12.73 (18)
Symmetry code: (i) x+1, y, z+3/2.
(sulfoxide) 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine 6-oxide top
Crystal data top
C20H24O7SF(000) = 864
Mr = 408.45Dx = 1.472 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 14600 reflections
a = 8.8113 (3) Åθ = 1.0–27.5°
b = 12.2699 (3) ŵ = 0.22 mm1
c = 17.5640 (6) ÅT = 150 K
β = 103.988 (2)°Prism, colourless
V = 1842.60 (10) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
KappaCCD
diffractometer
2111 independent reflections
Radiation source: Enraf Nonius FR5901775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 1111
Tmin = 0.96, Tmax = 1.033k = 1515
14844 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0619P)2 + 1.7711P]
where P = (Fo2 + 2Fc2)/3
2111 reflections(Δ/σ)max = 0.006
180 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C20H24O7SV = 1842.60 (10) Å3
Mr = 408.45Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.8113 (3) ŵ = 0.22 mm1
b = 12.2699 (3) ÅT = 150 K
c = 17.5640 (6) Å0.2 × 0.2 × 0.2 mm
β = 103.988 (2)°
Data collection top
KappaCCD
diffractometer
2111 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
1775 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 1.033Rint = 0.110
14844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.30 e Å3
2111 reflectionsΔρmin = 0.39 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1307 (2)0.16085 (14)0.33121 (10)0.0212 (4)
C20.2817 (2)0.16099 (14)0.38027 (10)0.0219 (4)
C30.3846 (2)0.24607 (15)0.37397 (10)0.0228 (4)
C40.3340 (2)0.32981 (14)0.32078 (10)0.0221 (4)
C4A0.1828 (2)0.32929 (14)0.27266 (10)0.0209 (4)
C50.1282 (2)0.42173 (14)0.21689 (11)0.0241 (4)
C11B0.08030 (19)0.24316 (14)0.27612 (10)0.0210 (4)
C120.0606 (3)0.1030 (2)0.39317 (18)0.0457 (6)
C130.3584 (3)0.0963 (2)0.51153 (12)0.0368 (5)
C140.6423 (2)0.31688 (19)0.40804 (14)0.0337 (5)
O10.03009 (15)0.07741 (10)0.33878 (7)0.0246 (3)
O20.32735 (16)0.07378 (10)0.42962 (7)0.0270 (3)
O30.53039 (14)0.24138 (11)0.42333 (7)0.0287 (3)
O60.0871 (3)0.5785 (2)0.31160 (17)0.0299 (6)0.5
S100.51860 (5)0.250.0332 (2)
H40.401 (3)0.3897 (18)0.3150 (13)0.027 (5)*
H5A0.216 (3)0.4675 (18)0.2093 (12)0.028 (5)*
H5B0.070 (3)0.3939 (18)0.1668 (13)0.028 (5)*
H12A0.127 (4)0.039 (3)0.3966 (17)0.066 (9)*
H12B0.004 (4)0.111 (3)0.441 (2)0.085 (12)*
H12C0.112 (4)0.174 (3)0.382 (2)0.082 (11)*
H13A0.265 (5)0.128 (3)0.523 (2)0.090 (12)*
H13B0.456 (4)0.149 (3)0.526 (2)0.079 (10)*
H13C0.370 (3)0.030 (2)0.5379 (15)0.040 (6)*
H14A0.748 (3)0.298 (2)0.4450 (15)0.041 (6)*
H14B0.615 (3)0.390 (2)0.4154 (16)0.049 (7)*
H14C0.651 (3)0.308 (2)0.3549 (16)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0197 (8)0.0197 (8)0.0242 (9)0.0013 (6)0.0051 (7)0.0024 (6)
C20.0229 (9)0.0203 (8)0.0216 (8)0.0026 (7)0.0038 (7)0.0003 (6)
C30.0164 (8)0.0256 (8)0.0249 (9)0.0007 (7)0.0022 (7)0.0026 (7)
C40.0185 (8)0.0218 (8)0.0256 (9)0.0013 (7)0.0047 (7)0.0011 (7)
C4A0.0176 (8)0.0224 (8)0.0223 (8)0.0017 (6)0.0042 (6)0.0002 (7)
C50.0201 (9)0.0239 (8)0.0274 (9)0.0007 (7)0.0039 (7)0.0034 (7)
C11B0.0177 (9)0.0217 (8)0.0226 (8)0.0016 (6)0.0031 (7)0.0022 (6)
C120.0459 (14)0.0396 (13)0.0619 (17)0.0165 (11)0.0332 (13)0.0159 (11)
C130.0491 (14)0.0359 (11)0.0246 (10)0.0063 (10)0.0073 (9)0.0057 (8)
C140.0175 (9)0.0410 (12)0.0398 (12)0.0031 (8)0.0014 (8)0.0095 (9)
O10.0230 (7)0.0216 (6)0.0295 (7)0.0037 (5)0.0069 (5)0.0003 (5)
O20.0307 (7)0.0224 (7)0.0247 (7)0.0024 (5)0.0003 (5)0.0027 (5)
O30.0176 (7)0.0322 (7)0.0318 (7)0.0027 (5)0.0026 (5)0.0066 (5)
O60.0215 (13)0.0262 (13)0.0417 (15)0.0076 (10)0.0070 (11)0.0150 (11)
S10.0210 (3)0.0208 (3)0.0577 (5)00.0093 (3)0
Geometric parameters (Å, º) top
C1—O11.382 (2)C12—O11.421 (3)
C1—C11B1.395 (2)C12—H12A0.99 (3)
C1—C21.399 (2)C12—H12B0.88 (4)
C2—O21.375 (2)C12—H12C0.98 (4)
C2—C31.405 (3)C13—O21.425 (2)
C3—O31.366 (2)C13—H13A0.98 (4)
C3—C41.388 (3)C13—H13B1.05 (4)
C4—C4A1.395 (2)C13—H13C0.93 (3)
C4—H40.96 (2)C14—O31.425 (2)
C4A—C11B1.401 (2)C14—H14A1.02 (3)
C4A—C51.500 (2)C14—H14B0.94 (3)
C5—S11.8289 (19)C14—H14C0.96 (3)
C5—H5A0.99 (2)O6—S11.378 (3)
C5—H5B0.97 (2)S1—O6i1.378 (3)
C11B—C11Bi1.489 (3)S1—C5i1.8289 (19)
O1—C1—C11B119.94 (15)H12A—C12—H12B104 (3)
O1—C1—C2118.59 (15)O1—C12—H12C112 (2)
C11B—C1—C2121.47 (16)H12A—C12—H12C118 (3)
O2—C2—C1118.48 (15)H12B—C12—H12C103 (3)
O2—C2—C3122.16 (16)O2—C13—H13A109 (2)
C1—C2—C3119.23 (16)O2—C13—H13B108.3 (19)
O3—C3—C4123.96 (16)H13A—C13—H13B113 (3)
O3—C3—C2116.40 (15)O2—C13—H13C107.8 (15)
C4—C3—C2119.63 (16)H13A—C13—H13C104 (3)
C3—C4—C4A120.62 (16)H13B—C13—H13C115 (3)
C3—C4—H4122.0 (13)O3—C14—H14A107.3 (14)
C4A—C4—H4117.3 (13)O3—C14—H14B112.3 (17)
C4—C4A—C11B120.56 (16)H14A—C14—H14B111 (2)
C4—C4A—C5120.05 (16)O3—C14—H14C109.2 (15)
C11B—C4A—C5119.39 (15)H14A—C14—H14C109 (2)
C4A—C5—S1114.13 (13)H14B—C14—H14C109 (2)
C4A—C5—H5A112.2 (12)C1—O1—C12112.31 (15)
S1—C5—H5A103.8 (13)C2—O2—C13116.20 (15)
C4A—C5—H5B110.1 (13)C3—O3—C14116.12 (14)
S1—C5—H5B106.5 (13)O6—S1—O6i115.5 (2)
H5A—C5—H5B109.8 (18)O6—S1—C5109.07 (13)
C1—C11B—C4A118.41 (15)O6i—S1—C5111.52 (13)
C1—C11B—C11Bi121.56 (13)O6—S1—C5i111.52 (13)
C4A—C11B—C11Bi119.99 (13)O6i—S1—C5i109.07 (13)
O1—C12—H12A107.5 (18)C5—S1—C5i98.93 (12)
O1—C12—H12B113 (3)
O1—C1—C2—O24.9 (2)O1—C1—C11B—C11Bi0.7 (3)
C11B—C1—C2—O2175.77 (15)C2—C1—C11B—C11Bi180.00 (17)
O1—C1—C2—C3179.16 (15)C4—C4A—C11B—C12.9 (3)
C11B—C1—C2—C30.1 (3)C5—C4A—C11B—C1176.77 (16)
O2—C2—C3—O34.1 (3)C4—C4A—C11B—C11Bi179.43 (17)
C1—C2—C3—O3179.84 (15)C5—C4A—C11B—C11Bi0.9 (3)
O2—C2—C3—C4177.34 (15)C11B—C1—O1—C1288.6 (2)
C1—C2—C3—C41.6 (3)C2—C1—O1—C1290.7 (2)
O3—C3—C4—C4A179.52 (16)C1—C2—O2—C13115.0 (2)
C2—C3—C4—C4A1.1 (3)C3—C2—O2—C1369.2 (2)
C3—C4—C4A—C11B1.2 (3)C4—C3—O3—C1411.7 (3)
C3—C4—C4A—C5178.45 (16)C2—C3—O3—C14169.83 (17)
C4—C4A—C5—S1102.63 (17)C4A—C5—S1—O671.57 (19)
C11B—C4A—C5—S177.04 (19)C4A—C5—S1—O6i159.66 (17)
O1—C1—C11B—C4A176.92 (15)C4A—C5—S1—C5i44.99 (11)
C2—C1—C11B—C4A2.4 (3)
Symmetry code: (i) x, y, z+1/2.
(sulfone) 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine 6,6-dioxide top
Crystal data top
C20H24O8SF(000) = 896
Mr = 424.45Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21800 reflections
a = 8.7886 (2) Åθ = 1.0–27.5°
b = 15.3454 (3) ŵ = 0.21 mm1
c = 15.4972 (4) ÅT = 150 K
β = 106.2770°Prism, colourless
V = 2006.25 (8) Å30.25 × 0.2 × 0.15 mm
Z = 4
Data collection top
KappaCCD
diffractometer
4583 independent reflections
Radiation source: Enraf Nonius FR5903388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 1111
Tmin = 0.98, Tmax = 1.014k = 1919
30410 measured reflectionsl = 1820
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.9601P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.005
4583 reflectionsΔρmax = 0.26 e Å3
359 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (11)
Crystal data top
C20H24O8SV = 2006.25 (8) Å3
Mr = 424.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7886 (2) ŵ = 0.21 mm1
b = 15.3454 (3) ÅT = 150 K
c = 15.4972 (4) Å0.25 × 0.2 × 0.15 mm
β = 106.2770°
Data collection top
KappaCCD
diffractometer
4583 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
3388 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 1.014Rint = 0.057
30410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
4583 reflectionsΔρmin = 0.39 e Å3
359 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7995 (2)0.34436 (11)0.49995 (11)0.0218 (4)
C20.9578 (2)0.36152 (11)0.54564 (12)0.0226 (4)
C31.0768 (2)0.30216 (11)0.54148 (12)0.0238 (4)
C41.0359 (2)0.22407 (11)0.49598 (12)0.0241 (4)
C4A0.8777 (2)0.20595 (11)0.45292 (11)0.0222 (4)
C50.8376 (2)0.11862 (11)0.40784 (13)0.0245 (4)
C70.6126 (2)0.11438 (12)0.50394 (12)0.0240 (4)
C7A0.5201 (2)0.16875 (11)0.42681 (12)0.0233 (4)
C80.3672 (2)0.14309 (12)0.37870 (13)0.0269 (4)
C90.2787 (2)0.19511 (12)0.30995 (13)0.0305 (4)
C0100.7574 (2)0.26612 (11)0.45174 (12)0.0225 (4)
C100.3419 (2)0.27306 (12)0.28921 (12)0.0287 (4)
C110.4969 (2)0.29688 (11)0.33510 (12)0.0254 (4)
C11A0.5891 (2)0.24470 (11)0.40486 (12)0.0234 (4)
C120.6937 (3)0.48870 (12)0.47979 (15)0.0315 (4)
C131.0371 (5)0.42582 (19)0.68788 (16)0.0565 (8)
C141.3515 (3)0.27458 (17)0.5670 (2)0.0456 (6)
C150.0835 (3)0.08715 (15)0.24673 (16)0.0404 (5)
C160.1442 (3)0.37914 (16)0.25046 (17)0.0453 (6)
C170.6114 (3)0.36332 (18)0.23188 (17)0.0478 (6)
O10.68036 (14)0.39925 (7)0.50612 (8)0.0256 (3)
O20.99568 (15)0.43757 (8)0.59425 (8)0.0286 (3)
O31.22822 (14)0.32560 (8)0.58625 (9)0.0305 (3)
O6A0.86896 (15)0.01927 (8)0.55267 (9)0.0320 (3)
O6B0.66782 (16)0.02143 (8)0.41224 (9)0.0344 (3)
O90.12642 (17)0.17617 (9)0.26091 (11)0.0463 (4)
O100.25441 (16)0.32601 (9)0.22129 (9)0.0362 (3)
O110.56027 (16)0.37245 (8)0.31174 (9)0.0318 (3)
S60.75182 (5)0.04630 (3)0.47175 (3)0.02502 (14)
H41.118 (2)0.1820 (12)0.4945 (13)0.025 (5)*
H5A0.757 (2)0.1224 (12)0.3486 (14)0.026 (5)*
H5B0.926 (3)0.0871 (13)0.4014 (13)0.030 (5)*
H7A0.543 (2)0.0736 (13)0.5257 (13)0.027 (5)*
H7B0.671 (2)0.1491 (13)0.5517 (14)0.029 (5)*
H80.322 (3)0.0888 (14)0.3948 (15)0.039 (6)*
H12A0.585 (4)0.5101 (18)0.4482 (19)0.071 (8)*
H12B0.732 (3)0.5230 (18)0.533 (2)0.069 (8)*
H12C0.764 (3)0.4942 (17)0.4404 (18)0.061 (8)*
H13A0.946 (4)0.408 (2)0.699 (2)0.081 (12)*
H13B1.061 (3)0.4816 (17)0.7175 (16)0.051 (7)*
H13C1.122 (5)0.379 (2)0.709 (3)0.111 (13)*
H14A1.351 (3)0.2169 (17)0.5937 (17)0.051 (7)*
H14B1.449 (3)0.3019 (16)0.5963 (17)0.050 (7)*
H14C1.334 (3)0.2751 (15)0.4961 (19)0.051 (7)*
H15A0.155 (4)0.0632 (19)0.210 (2)0.077 (9)*
H15B0.028 (3)0.0859 (14)0.2125 (15)0.043 (6)*
H15C0.091 (3)0.0574 (17)0.3031 (19)0.061 (8)*
H16A0.061 (4)0.342 (2)0.273 (2)0.080 (10)*
H16B0.087 (3)0.4181 (16)0.1982 (18)0.054 (7)*
H16C0.198 (3)0.4162 (17)0.3017 (18)0.054 (7)*
H17A0.697 (3)0.3171 (19)0.2422 (19)0.068 (8)*
H17B0.521 (4)0.341 (2)0.181 (2)0.080 (10)*
H17C0.659 (3)0.4188 (19)0.2214 (18)0.065 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0217 (8)0.0216 (8)0.0226 (9)0.0040 (7)0.0068 (7)0.0048 (7)
C20.0253 (9)0.0202 (8)0.0221 (9)0.0011 (7)0.0062 (7)0.0002 (7)
C30.0206 (9)0.0255 (9)0.0230 (9)0.0009 (7)0.0025 (7)0.0004 (7)
C40.0215 (9)0.0247 (9)0.0254 (9)0.0042 (7)0.0053 (7)0.0004 (7)
C4A0.0217 (9)0.0229 (8)0.0199 (9)0.0010 (7)0.0022 (7)0.0001 (7)
C50.0224 (9)0.0231 (9)0.0258 (10)0.0022 (7)0.0031 (8)0.0020 (7)
C70.0208 (9)0.0240 (9)0.0251 (9)0.0007 (7)0.0028 (8)0.0003 (7)
C7A0.0209 (9)0.0235 (8)0.0235 (9)0.0039 (7)0.0030 (7)0.0026 (7)
C80.0216 (9)0.0265 (9)0.0303 (10)0.0009 (7)0.0036 (8)0.0030 (8)
C90.0223 (9)0.0334 (10)0.0301 (10)0.0039 (8)0.0019 (8)0.0079 (8)
C0100.0214 (9)0.0231 (8)0.0213 (9)0.0019 (7)0.0030 (7)0.0038 (7)
C100.0275 (10)0.0328 (10)0.0210 (9)0.0094 (8)0.0012 (8)0.0018 (7)
C110.0274 (9)0.0236 (9)0.0242 (9)0.0046 (7)0.0057 (8)0.0009 (7)
C11A0.0209 (8)0.0247 (9)0.0225 (9)0.0036 (7)0.0026 (7)0.0031 (7)
C120.0347 (11)0.0210 (9)0.0378 (12)0.0045 (8)0.0082 (10)0.0051 (8)
C130.096 (2)0.0431 (14)0.0278 (12)0.0129 (15)0.0129 (14)0.0085 (10)
C140.0190 (10)0.0484 (14)0.0636 (17)0.0026 (10)0.0020 (10)0.0235 (13)
C150.0336 (12)0.0444 (13)0.0354 (12)0.0108 (10)0.0032 (10)0.0043 (10)
C160.0464 (14)0.0421 (13)0.0407 (13)0.0216 (11)0.0011 (11)0.0017 (11)
C170.0549 (15)0.0520 (15)0.0411 (14)0.0045 (13)0.0210 (12)0.0092 (11)
O10.0242 (6)0.0209 (6)0.0325 (7)0.0038 (5)0.0094 (5)0.0018 (5)
O20.0312 (7)0.0249 (6)0.0280 (7)0.0021 (5)0.0057 (6)0.0048 (5)
O30.0194 (6)0.0333 (7)0.0356 (8)0.0004 (5)0.0027 (6)0.0107 (6)
O6A0.0284 (7)0.0319 (7)0.0321 (7)0.0085 (6)0.0030 (6)0.0074 (6)
O6B0.0325 (7)0.0268 (7)0.0417 (8)0.0047 (6)0.0068 (6)0.0089 (6)
O90.0270 (7)0.0386 (8)0.0565 (10)0.0029 (6)0.0158 (7)0.0092 (7)
O100.0341 (8)0.0401 (8)0.0274 (7)0.0156 (6)0.0027 (6)0.0025 (6)
O110.0375 (8)0.0290 (7)0.0275 (7)0.0035 (6)0.0067 (6)0.0057 (5)
S60.0228 (2)0.0213 (2)0.0281 (3)0.00192 (17)0.00245 (18)0.00060 (17)
Geometric parameters (Å, º) top
C1—O11.368 (2)C11—C11A1.406 (2)
C1—C21.398 (2)C12—O11.446 (2)
C1—C0101.408 (2)C12—H12A1.00 (3)
C2—O21.378 (2)C12—H12B0.96 (3)
C2—C31.402 (2)C12—H12C0.98 (3)
C3—O31.365 (2)C13—O21.405 (3)
C3—C41.386 (2)C13—H13A0.91 (3)
C4—C4A1.391 (2)C13—H13B0.97 (3)
C4—H40.97 (2)C13—H13C1.02 (4)
C4A—C0101.400 (2)C14—O31.435 (2)
C4A—C51.507 (2)C14—H14A0.98 (3)
C5—S61.7886 (19)C14—H14B0.94 (3)
C5—H5A0.99 (2)C14—H14C1.07 (3)
C5—H5B0.95 (2)C15—O91.418 (3)
C7—C7A1.497 (2)C15—H15A1.02 (3)
C7—S61.7830 (18)C15—H15B0.97 (2)
C7—H7A1.00 (2)C15—H15C0.97 (3)
C7—H7B0.94 (2)C16—O101.433 (3)
C7A—C81.398 (2)C16—H16A1.05 (3)
C7A—C11A1.399 (3)C16—H16B1.02 (3)
C8—C91.383 (3)C16—H16C0.98 (3)
C8—H80.98 (2)C17—O111.437 (3)
C9—O91.372 (2)C17—H17A1.01 (3)
C9—C101.394 (3)C17—H17B1.00 (3)
C010—C11A1.490 (2)C17—H17C0.98 (3)
C10—O101.381 (2)O6A—S61.4425 (13)
C10—C111.397 (3)O6B—S61.4472 (13)
C11—O111.378 (2)
O1—C1—C2121.41 (15)O1—C12—H12A108.0 (16)
O1—C1—C010118.02 (15)O1—C12—H12B108.4 (17)
C2—C1—C010120.39 (16)H12A—C12—H12B107 (2)
O2—C2—C1119.35 (15)O1—C12—H12C111.8 (15)
O2—C2—C3120.41 (15)H12A—C12—H12C110 (2)
C1—C2—C3120.24 (15)H12B—C12—H12C111 (2)
O3—C3—C4124.29 (16)O2—C13—H13A105 (2)
O3—C3—C2116.03 (15)O2—C13—H13B109.6 (14)
C4—C3—C2119.65 (16)H13A—C13—H13B105 (3)
C3—C4—C4A119.92 (16)O2—C13—H13C112 (2)
C3—C4—H4119.8 (11)H13A—C13—H13C109 (3)
C4A—C4—H4120.2 (11)H13B—C13—H13C115 (3)
C4—C4A—C010121.60 (16)O3—C14—H14A108.3 (15)
C4—C4A—C5118.22 (16)O3—C14—H14B106.9 (15)
C010—C4A—C5120.18 (15)H14A—C14—H14B108 (2)
C4A—C5—S6112.05 (13)O3—C14—H14C108.0 (13)
C4A—C5—H5A113.0 (11)H14A—C14—H14C115 (2)
S6—C5—H5A104.1 (11)H14B—C14—H14C110 (2)
C4A—C5—H5B114.2 (12)O9—C15—H15A104.7 (17)
S6—C5—H5B103.2 (12)O9—C15—H15B106.7 (13)
H5A—C5—H5B109.4 (16)H15A—C15—H15B112 (2)
C7A—C7—S6111.40 (13)O9—C15—H15C111.4 (15)
C7A—C7—H7A112.0 (11)H15A—C15—H15C115 (2)
S6—C7—H7A105.0 (11)H15B—C15—H15C107 (2)
C7A—C7—H7B111.6 (12)O10—C16—H16A112.8 (17)
S6—C7—H7B106.6 (12)O10—C16—H16B108.0 (15)
H7A—C7—H7B110.0 (17)H16A—C16—H16B110 (2)
C8—C7A—C11A121.48 (16)O10—C16—H16C111.5 (15)
C8—C7A—C7119.63 (16)H16A—C16—H16C106 (2)
C11A—C7A—C7118.88 (15)H16B—C16—H16C109 (2)
C9—C8—C7A119.83 (18)O11—C17—H17A109.2 (16)
C9—C8—H8120.3 (13)O11—C17—H17B109.6 (18)
C7A—C8—H8119.8 (13)H17A—C17—H17B106 (2)
O9—C9—C8123.73 (18)O11—C17—H17C107.9 (17)
O9—C9—C10116.37 (17)H17A—C17—H17C108 (2)
C8—C9—C10119.87 (17)H17B—C17—H17C116 (2)
C4A—C010—C1118.05 (15)C1—O1—C12116.14 (14)
C4A—C010—C11A120.24 (15)C2—O2—C13114.13 (16)
C1—C010—C11A121.62 (15)C3—O3—C14115.84 (15)
O10—C10—C9120.51 (16)C9—O9—C15117.77 (16)
O10—C10—C11119.31 (17)C10—O10—C16112.08 (16)
C9—C10—C11120.14 (16)C11—O11—C17113.04 (17)
O11—C11—C10119.65 (16)O6A—S6—O6B117.37 (8)
O11—C11—C11A119.53 (16)O6A—S6—C7107.69 (8)
C10—C11—C11A120.82 (17)O6B—S6—C7109.37 (9)
C7A—C11A—C11117.76 (16)O6A—S6—C5110.55 (9)
C7A—C11A—C010120.25 (15)O6B—S6—C5108.15 (9)
C11—C11A—C010121.93 (16)C7—S6—C5102.71 (9)
O1—C1—C2—O23.4 (2)C9—C10—C11—O11177.56 (17)
C010—C1—C2—O2178.37 (15)O10—C10—C11—C11A179.73 (16)
O1—C1—C2—C3177.05 (16)C9—C10—C11—C11A2.4 (3)
C010—C1—C2—C32.1 (3)C8—C7A—C11A—C112.8 (3)
O2—C2—C3—O31.3 (2)C7—C7A—C11A—C11176.87 (16)
C1—C2—C3—O3178.30 (15)C8—C7A—C11A—C010174.35 (16)
O2—C2—C3—C4176.85 (16)C7—C7A—C11A—C0106.0 (2)
C1—C2—C3—C43.6 (3)O11—C11—C11A—C7A179.69 (16)
O3—C3—C4—C4A179.51 (17)C10—C11—C11A—C7A0.3 (3)
C2—C3—C4—C4A1.6 (3)O11—C11—C11A—C0103.2 (3)
C3—C4—C4A—C0102.0 (3)C10—C11—C11A—C010176.77 (17)
C3—C4—C4A—C5177.24 (16)C4A—C010—C11A—C7A54.9 (2)
C4—C4A—C5—S6104.21 (17)C1—C010—C11A—C7A121.53 (19)
C010—C4A—C5—S675.08 (19)C4A—C010—C11A—C11122.14 (19)
S6—C7—C7A—C899.79 (18)C1—C010—C11A—C1161.4 (2)
S6—C7—C7A—C11A80.52 (18)C2—C1—O1—C1257.4 (2)
C11A—C7A—C8—C92.5 (3)C010—C1—O1—C12127.54 (17)
C7—C7A—C8—C9177.14 (17)C1—C2—O2—C13106.9 (2)
C7A—C8—C9—O9178.22 (18)C3—C2—O2—C1373.5 (3)
C7A—C8—C9—C100.3 (3)C4—C3—O3—C1414.4 (3)
C4—C4A—C010—C13.5 (3)C2—C3—O3—C14167.5 (2)
C5—C4A—C010—C1175.74 (15)C8—C9—O9—C1531.5 (3)
C4—C4A—C010—C11A179.91 (16)C10—C9—O9—C15150.5 (2)
C5—C4A—C010—C11A0.8 (3)C9—C10—O10—C1681.1 (2)
O1—C1—C010—C4A173.71 (15)C11—C10—O10—C16101.1 (2)
C2—C1—C010—C4A1.5 (3)C10—C11—O11—C1778.3 (2)
O1—C1—C010—C11A2.8 (2)C11A—C11—O11—C17101.7 (2)
C2—C1—C010—C11A177.97 (16)C7A—C7—S6—O6A161.07 (12)
O9—C9—C10—O101.4 (3)C7A—C7—S6—O6B70.34 (15)
C8—C9—C10—O10179.44 (17)C7A—C7—S6—C544.36 (15)
O9—C9—C10—C11179.20 (17)C4A—C5—S6—O6A70.03 (14)
C8—C9—C10—C112.7 (3)C4A—C5—S6—O6B160.20 (12)
O10—C10—C11—O110.3 (3)C4A—C5—S6—C744.62 (15)

Experimental details

(oxepine)(azepine)(sulfide)(sulfoxide)
Crystal data
Chemical formulaC20H24O7C21H29ClNO6C20H24O6SC20H24O7S
Mr376.39434.9392.45408.45
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)150150150150
a, b, c (Å)15.3519 (4), 10.4044 (3), 11.8506 (4)36.0403 (12), 7.8165 (2), 17.0066 (5)8.6029 (2), 12.2965 (3), 17.6032 (4)8.8113 (3), 12.2699 (3), 17.5640 (6)
β (°) 109.607 (2) 111.7920 104.0380 103.988 (2)
V3)1783.11 (9)4448.5 (2)1806.55 (7)1842.60 (10)
Z4844
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.110.210.220.22
Crystal size (mm)0.2 × 0.2 × 0.10.25 × 0.15 × 0.10.2 × 0.1 × 0.10.2 × 0.2 × 0.2
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
Multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
Multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
Multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
Tmin, Tmax0.992, 1.0140.973, 1.0150.975, 1.0160.96, 1.033
No. of measured, independent and
observed [I > 2σ(I)] reflections
9423, 2043, 1501 36698, 4945, 3299 15259, 2388, 2003 14844, 2111, 1775
Rint0.0630.0820.0540.110
(sin θ/λ)max1)0.6500.6450.6850.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.09 0.047, 0.112, 1.03 0.037, 0.099, 1.04 0.048, 0.135, 1.12
No. of reflections2043494523882111
No. of parameters172392172180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.230.28, 0.290.32, 0.300.30, 0.39


(sulfone)
Crystal data
Chemical formulaC20H24O8S
Mr424.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)8.7886 (2), 15.3454 (3), 15.4972 (4)
β (°) 106.2770
V3)2006.25 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.2 × 0.15
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
Tmin, Tmax0.98, 1.014
No. of measured, independent and
observed [I > 2σ(I)] reflections
30410, 4583, 3388
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.02
No. of reflections4583
No. of parameters359
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.39

Computer programs: Collect (Nonius BV, 1997-2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: SX5028 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

We thank the Association for International Cancer Research for financial support. We also wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]) and of ORTEP3 for Windows for the generation of graphics (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArroyo, N., Haslinger, U., Mereiter, K. & Widhalm, M. (2000). Tetrahedron Asym. 11, 4207–4219.  Web of Science CSD CrossRef CAS Google Scholar
First citationBandarage, U. K., Hanton, L. R. & Smith, R. A. J. (1995). Tetrahedron, 51, 787–800.  CSD CrossRef CAS Web of Science Google Scholar
First citationBanwell, M. G., Cameron, J. M., Corbett, M., Dupuche, J. R., Hamel, E., Lambert, J. N., Lin, C. M. & Mackay, M. F. (1992). Aust. J. Chem. 45, 1967–1982.  CSD CrossRef CAS Google Scholar
First citationBerg, U. & Bladh, H. (1999). Helv. Chim. Acta, 82, 323–325.  CrossRef CAS Google Scholar
First citationBergemann, S., Brecht, R., Büttner, F., Guénard, D., Gust, R., Seitz, G., Stubbs, M. T. & Thoret, S. (2003). Bioorg. Med. Chem. 11, 1269–1281.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBott, G., Field, L. D. & Sternhell, S. (1980). J. Am. Chem. Soc. 102, 5618–5626.  CrossRef CAS Web of Science Google Scholar
First citationBoyé, O. & Brossi, A. (1992). The Alkaloids, Vol. 41, edited by A. Brossi & G. A. Cordell, ch. 3. San Diego: Academic Press.  Google Scholar
First citationBoyé, O., Getahun, Z., Grover, S., Hamel, E. & Brossi, A. (1993). J. Labelled Compd. Radiopharm. 33, 293–299.  CAS Google Scholar
First citationBoyé, O., Itoh, Y. & Brossi, A. (1989). Helv. Chim. Acta, 72, 1690–1696.  CrossRef CAS Web of Science Google Scholar
First citationBringmann, G., Pfeifer, R.-M., Rummey, C., Pabst, T., Leusser, D. & Stalke, D. (2003). Z. Naturforsch. Teil B, 58, 231–236.  CAS Google Scholar
First citationBrossi, A. (1990). J. Med. Chem. 33, 2311–2319.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrossi, A., Boyé, O., Muzaffar, A., Yeh, H. J. C., Toome, V., Wegrzynski, B. & George, C. (1990). FEBS Lett. 262, 5–7.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBrossi, A., Lee, H.-H. & Yeh, H. J. C. (1999). Helv. Chim. Acta, 82, 1223–1224.  CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, M. P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCavazza, M., Zandomeneghi, M. & Pietra, F. (2000). Tetrahedron Lett. 41, 9129–9133.  Web of Science CrossRef CAS Google Scholar
First citationCharton, M. (1977). J. Org. Chem. 42, 2528–2529.  CrossRef CAS Web of Science Google Scholar
First citationDavis, P. D., Dougherty, G. J., Blakey, D. C., Galbraith, S. M., Tozer, G. M., Holder, A. L., Naylor, M. A., Nolan, J., Stratford, M. R. L., Chaplin, D. J. & Hill, S. A. (2002). Cancer Res. 62, 7247–7253.  Web of Science PubMed CAS Google Scholar
First citationEdwards, D. J., Pritchard, R. G. & Wallace, T. W. (2003). Tetrahedron Lett. 44, 4665–4668.  Web of Science CSD CrossRef CAS Google Scholar
First citationEngelhardt, L. M., Lueng, W. P., Raston, C. L. & White, A. H. (1985). Aust. J. Chem. 38, 977–983.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationFraser, R. R. & Schuber, F. J. (1970). Can. J. Chem. 48, 633–640.  CrossRef CAS Web of Science Google Scholar
First citationHall, M. D. (1969). Progress in Stereochemistry, Vol. 4, edited by B. J. Aylett & M. M. Harris, pp. 1–42. London: Butterworths.  Google Scholar
First citationInsole, J. M. (1990a). J. Chem. Res. S, pp. 378–379.  Google Scholar
First citationInsole, J. M. (1990b). J. Chem. Res. M, pp. 2831–2867.  Google Scholar
First citationItoh, T., Chika, J.-I., Shirakami, S., Ito, H., Yoshida, T., Kubo, Y. & Uenishi, J.-I. (1996). J. Org. Chem. 61, 3700–3705.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationJanik, M. E. & Bane, S. L. (2002). Bioorg. Med. Chem. 10, 1895–1903.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKang, G. J., Getahun, Z., Muzaffar, A., Brossi, A. & Hamel, E. (1990). J. Biol. Chem. 265, 10255–10259.  CAS PubMed Web of Science Google Scholar
First citationKashiwada, Y., Huang, L., Ballas, L. M., Jiang, J. B., Janzen, W. P. & Lee, K.-H. (1994). J. Med. Chem. 37, 195–200.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKiupel, B., Niederalt, C., Nieger, M., Grimme, S. & Vogtle, F. (1998). Angew. Chem. Int. Ed. 37, 3031–3034.  Web of Science CrossRef CAS Google Scholar
First citationKochetkov, N. K., Khorlin, A. Y., Chizhov, O. S. & Sheichenko, V. I. (1962). Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) pp. 797–801.  CrossRef Google Scholar
First citationKurland, R. J., Rubin, M. B. & Wise, W. B. (1964). J. Chem. Phys. 40, 2426–2427.  CrossRef CAS Web of Science Google Scholar
First citationLe Hello, C. (2000). The Alkaloids, Vol. 53, edited by G. A. Cordell, ch. 5. San Diego: Academic Press.  Google Scholar
First citationLee, K.-H. (1999). Med. Res. Rev. 19, 569–596.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLessinger, L. & Margulis, T. N. (1978). Acta Cryst. B34, 578–584.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLoncar-Tomascovic, L., Sarac-Arneri, R., Hergold-Brundic, A., Nagl, A., Mintas, M. & Sandström, J. (2000). Helv. Chim. Acta, 83, 479–494.  CrossRef CAS Google Scholar
First citationMargulis, T. N. & Lessinger, L. (1978). Biochem. Biophys. Res. Commun. 83, 472–478.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMislow, K., Glass, M. A. W., O'Brien, R. E., Rutkin, P., Steinberg, D. H., Weiss, J. & Djerassi, C. (1962). J. Am. Chem. Soc. 84, 1455–1478.  CrossRef CAS Web of Science Google Scholar
First citationMislow, K., Glass, M. A. W., Hopps, H. B., Simon, E. & Wahl, G. H. (1964). J. Am. Chem. Soc. 86, 1710–1733.  CrossRef CAS Web of Science Google Scholar
First citationMiyake, Y., Oyamada, A., Nishibayashi, Y. & Uemura, S. (2002). Heteroat. Chem. 13, 270–275.  Web of Science CrossRef CAS Google Scholar
First citationMrvoš-Sermek, D., Loncar-Tomaskovic, L., Hergold-Brundic, A., Mintas, M. & Nagl, A. (1998). Acta Cryst. C54, 877–879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius BV (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNyburg, S. C., Prasad, L., Behnam, B. A. & Hall, D. M. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 617–623.  CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Cater Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPerrin, D. D., Armarego, W. L. F. & Perrin, D. R. (1980). Purification of Laboratory Chemicals, 2nd ed. Oxford: Pergamon Press.  Google Scholar
First citationRoszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190–3193.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchmid, R., Cereghetti, M., Heiser, B., Schönholzer, P. & Hansen, H.-J. (1988). Helv. Chim. Acta, 71, 897–929.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchneider, M., Linden, A. & Rippert, A. J. (2000). Acta Cryst. C56, 1004–1006.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationShi, Q., Chen, K., Brossi, A., Verdier-Pinard, P., Hamel, E., McPhail, A. T. & Lee, K.-H. (1998). Helv. Chim. Acta, 81, 1023–1037.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Q., Verdier-Pinard, P., Brossi, A., Hamel, E. & Lee, K.-H. (1997). Bioorg. Med. Chem. 5, 2277–2282.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStill, W. C., Kahn, M. & Mitra, A. (1978). J. Org. Chem. 43, 2923–2925.  CrossRef CAS Web of Science Google Scholar
First citationWarshawsky, A. M. & Meyers, A. I. (1990). J. Am. Chem. Soc. 112, 8090–8099.  CrossRef CAS Web of Science Google Scholar
First citationWidhalm, M., Nettekoven, U. & Mereiter, K. (1999). Tetrahedron: Asym. 10, 4369–4391.  Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds