research papers
Fine-tuning of biaryl dihedral angles: structural characterization of five homologous three-atom bridged biphenyls by X-ray crystallography
aSchool of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: tim.wallace@manchester.ac.uk
The homologous series of three-atom bridged biaryls comprising 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]oxepine, 6,7-dihydro-1,2,3,9,10,11-hexamethoxy-6-methyl-5H-dibenzo[c,e]azepinium chloride, 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine, and the 6-oxide and 6,6-dioxide derivatives of the latter have been characterized by X-ray analysis. Within this series the endocyclic and exocyclic biaryl dihedral angles vary over 10° ranges, reflecting the changing balance of intramolecular (steric, geometric) and intermolecular (crystal packing) forces, the former being potential control elements for fine-tuning the helicity of the biaryl system.
Keywords: three-atom bridged biaryls; helicity; tubulin-binding properties.
1. Introduction
Biaryls with three-atom bridges connecting the 2,2′-positions have been the subject of continuing interest since the pioneering studies by Mislow and others in the 1960s into their chiroptical properties and the features which determine their configurational stability (Mislow et al., 1962, 1964; Kurland et al., 1964; Hall, 1969); more recently their biological effects have become increasingly significant. The alkaloid (−)-colchicine (1) (Fig. 1) binds strongly to the protein tubulin, thereby disrupting microtubule-dependent cell functions (Boyé & Brossi, 1992; Brossi, 1990; Le Hello, 2000), and although the therapeutic value of (1) is compromised by its toxicity, a number of related structures such as the allocolchicine derivatives (2) and (3) have similar or enhanced tubulin-binding ability (Kang et al., 1990; Boyé et al., 1993; Shi et al., 1997, 1998; Lee, 1999). From this series a phosphate pro-drug, ZD6126, derived from (3), has been identified as a promising candidate for clinical use in targeting the vascular systems of solid tumours (Davis et al., 2002). It has been established that colchicine analogues only bind efficiently to tubulin if they possess, or can achieve, the same sense of helicity as the natural product (Brossi et al., 1990; Berg & Bladh, 1999; Brossi et al., 1999). The nature of the bridging B-ring influences the conformational mobility of the A–C axis, and in (−)-(1) the preference of the 7-substituent for an equatorial orientation effectively induces the (aR) configuration depicted. However, structures with an unsubstituted B-ring such as (4) (Banwell et al., 1992) and (5) (Boyé et al., 1989) are also efficient tubulin binders and these exist in solution as mixtures of (aR)- and (aS)-atropisomers, of which the former is the active conformation (Cavazza et al., 2000; Bergemann et al., 2003). The discovery that open-chain biaryls also bind to the colchicine binding site of tubulin has led to further speculation about the role of inter-aryl flexibility in the binding process (Janik & Bane, 2002).
Our interest in these and other aspects of biaryl conformation, in particular the principle of fine tuning the dihedral angles, led us to seek new ways of controlling this property. Using complementary kinetic and thermodynamic resolution processes we prepared the first examples, (6) and (7), of a new type of conformationally restrained bridged biaryl lactam (Edwards et al., 2003). To gain further insight into the structural characteristics of three-atom bridged biaryls, we prepared the homologous series of polymethoxylated structures (8)–(12) for analysis by X-ray crystallography. We herein describe the results of this study, which provide some direct comparison of the factors that contribute to the final three-dimensional structure of such molecules.
2. Experimental
All compounds are racemic. Melting points were determined using a Buchi 512 or an Electrothermal 9100 apparatus and are uncorrected. IR spectra were of neat thin films on NaCl plates, recorded on Perkin-Elmer 1710FT or Nicolet Nexus 670/870 spectrometers. NMR spectra were measured on Bruker DPX200 (1H at 200 MHz), DPX300 (1H at 300 MHz, 13C at 75 MHz) or DPX400 (1H at 400 MHz, 13C at 100 MHz) instruments for solutions in deuteriochloroform; J values are quoted to the nearest 0.5 Hz. NMR spectra were assigned with the aid of HMQC and DEPT-135 spectra where appropriate. Mass spectra were measured on a Micromass LCT instrument using a Waters 2790 separations module with electrospray ionization and TOF fragment detection. Starting materials and solvents were either used as supplied or purified by conventional techniques (Perrin et al., 1980) and most reactions were carried out under nitrogen or argon. Organic solutions were dried using anhydrous magnesium sulfate and concentrated by rotary evaporation. TLC was carried out using Merck silica gel 60 on aluminium plates and the chromatograms visualized using UV light (254 nm) and/or the following developing agents: ethanolic vanillin or acidified aqueous potassium permanganate. Preparative (flash) (Still et al., 1978) was carried out on 60 H silica gel (Merck 9385). Compositions of solvent mixtures are quoted as ratios of volume. `Ether' refers to diethyl ether.
2.1. Dimethyl 4,4′,5,5′,6,6′-hexamethoxy-2,2′-diphenate (±)-(14)
To a suspension of ellagic acid (13) (8.8 g, 29.1 mmol) in water (170 ml) at room temperature tetrabutylammonium iodide (537 mg, 1.45 mmol, 5 mol %) and dimethyl sulfate (29 ml, 38.66 g, 0.3 mol) were added. To the vigorously stirred suspension was slowly added a solution of KOH (28.6 g, 0.5 mol) in water (56 ml) over 3 h and the mixture was then heated under reflux for 12 h. After cooling to room temperature, the mixture was acidified with concentrated HCl and extracted with DCM (3 × 100 ml). The organic layer was dried and evaporated to give a crude solid (8 g), which was dissolved in DMF (70 ml) and treated at 273 K with NaH (4.79 g, 60% dispersion in mineral oil, 0.12 mol). After stirring for 0.5 h, iodomethane (10 ml, 22.8 g, 0.16 mol) was added and the mixture was stirred overnight at room temperature. The reaction was quenched by the addition of 2 M hydrochloric acid (20 ml) at 273 K and the mixture extracted with ether (3 × 100 ml). The combined extracts were dried and evaporated. Purification of the crude material by flash over silica gel (200 g), eluting with hexane–ethyl acetate (3:1), followed by recrystallization from ether–hexane gave the title compound (14) (5.07 g, 39%) as a colourless solid, m.p. 352–354 K, lit. 353 K (Itoh et al., 1996); δH (300 MHz, CDCl3) 7.38 (2H, s, 3 and 3′-H), 3.97 (6H, s, 2 × OMe), 3.95 (6H, s, 2 × OMe), 3.65 (12H, s, 2 × OMe and 2 × CO2Me); δC (75 MHz, CDCl3) 52.2, 56.3, 60.9, 61.2, 109.2, 125.4, 127.0, 145.8, 151.6, 152.4, 167.3.
2.2. 4,4′,5,5′,6,6′-Hexamethoxy-1,1′-biphenyl-2,2′-dimethanol (±)-(15)
To a suspension of LiAlH4 (1.14 g, 30 mmol) in dry THF (20 ml) under argon was added a solution of (14) (4.5 g, 10.0 mmol) in dry THF (20 ml) and the mixture was then heated under reflux for 3 h. After being cooled to room temperature, the mixture was cautiously acidified with concentrated hydrochloric acid (5 ml) and extracted with ether (3 × 100 ml). The combined extracts were dried and evaporated to give a crude solid (3.8 g), which was purified by flash over silica gel (200 g), eluting with hexane–ethyl acetate (1:1; Rf = 0.29), followed by recrystallization from ethyl acetate–hexane, which gave the diol (15) (3.6 g, 91%), m.p. 380–382 K, lit. 378–379 K (benzene–ether; Kochetkov et al., 1962); δH (400 MHz, CDCl3) 6.87 (2H, s, 3-H, 3′-H), 4.16 (4H, s, 2 × CH2), 3.91 (6H, s, 2 × OMe), 3.87 (6H, s, 2 × OMe), 3.65 (6H, s, 2 × OMe), 2.78 (2H, br. s, 2 × OH); δC (100 MHz, CDCl3) 56.04, 61.03, 61.05, 63.73 (CH2), 108.84 (3-H, 3′-H), 121.68, 135.77, 141.69, 151.07, 153.38, consistent with published data (Warshawsky & Meyers, 1990); νmax (cm–1) 3402, 2936, 2835, 1600, 1488, 1464, 1402, 1324, 1192, 1130, 1099, 1014, 917; m/z (ES) 347 (50%, MH+—CH2O), 377 (4%, MH+—H2O), 417 (3%, MNa+), 458 (100%, MNa2H2O+).
2.3. 5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]oxepine (±)-(8)
Concentrated hydrochloric acid (0.2 ml) was added to a solution of the diol (15) (160 mg, 0.41 mmol) in THF (3 ml) and 2 M hydrochloric acid (3 ml), and the mixture was heated under reflux for 4 h. The mixture was then cooled to room temperature, diluted with water (30 ml) and extracted with ether (3 × 30 ml). The combined extracts were dried and evaporated to give a crude solid (142 mg), which was purified by flash over silica gel (20 g), eluting with hexane–ethyl acetate (1:1; Rf = 0.33) to obtain the title compound (±)-(8) (130 mg, 85%) as colourless crystals, m.p. 417–419 K (EtOAc), lit. 420–421 K (MeOH; Kashiwada et al., 1994). Found: C 63.70, H 6.55; C20H24O7 requires C 63.82, H 6.43%; δH (200 MHz, CDCl3) 6.72 (2H, s, 4-H, 8-H), 4.38 (2H, d, J = 11 Hz, 5-HA, 7-HA), 4.05 (2H, d, J = 11 Hz, 5-HB, 7-HB), 3.92 (6H, s, 2 × OMe), 3.91 (6H, s, 2 × OMe), 3.72 (6H, s, 2 × OMe); δC (100 MHz, CDCl3) 56.16, 60.88, 61.12, 67.59 (5-C, 7-C), 107.98 (4-C, 8-C), 123.18, 130.94, 142.40, 151.36, 153.40; νmax (cm−1) 2983, 2940, 2855, 1599, 1492, 1463, 1403, 1318, 1238, 1191, 1127, 1097; m/z (ES) 347 (8%, MH+—CH2O), 377 (2%, MH+), 399 (3%, MNa+), 440 (100%, MNa2H2O+).
2.4. (±)-2,2′-Bis(bromomethyl)-5,7-dihydro-4,4′,5,5′,6,6′-hexamethoxy-1,1′-biphenyl (16)
Phosphorus tribromide (417 mg, 1.54 mmol) was added to a solution of the diol (15) (0.92 g, 2.33 mmol) in DCM (20 ml) and the mixture was stirred for 1 h. TLC indicated complete conversion and water (30 ml) was then added. The organic phase was then separated and the aqueous phase extracted with DCM (2 × 30 ml). The combined extracts were dried and evaporated in vacuo to give the crude dibromide (16), which was used without further purification.
2.5. 6,7-Dihydro-1,2,3,9,10,11-hexamethoxy-6-methyl-5H-dibenzo[c,e]azepine (±)-(9)
Methylamine hydrochloride (0.181 g, 2.68 mmol) and triethylamine (0.475 g, 4.7 mmol) were added to a solution of the dibromide (16), prepared as described above from the diol (15) (0.67 mmol), in dry DMF (2 ml) at 273 K under argon, and the mixture was stirred overnight at room temperature. Water (20 ml) was added and the mixture was extracted with ethyl acetate (3 × 20 ml). The combined organic extract was washed with brine (20 ml), dried and evaporated in vacuo. Flash of the residue over silica gel (50 g), eluting with ethyl acetate, followed by crystallization from ethyl acetate yielded the title compound (9) (166 mg, 64%) as a colourless solid, m.p. 401–402 K. Found: C 64.7, H 6.6, N 4.0; C21H27NO6 requires C 64.77, H, 6.99, N 3.60%; δH (400 MHz, CDCl3) 6.64 (2H, s, 4-H, 8-H), 3.90 (6H, s, 2 × OMe), 3.89 (6H, s, 2 × OMe), 3.69 (6H, s, 2 × OMe), 3.34 (2H, d, J = 12.5 Hz, 5-HA, 7-HA), 3.09 (2H, d, J = 12.5 Hz, 5-HB, 7-HB), 2.36 (3H, s, NMe); δC (100 MHz, CDCl3) 43.00, 56.15, 57.19 (5-C, 7-C), 60.82, 61.12, 108.21 (4-C, 8-C), 122.73, 130.03, 141.76, 151.48, 152.88; νmax (cm−1) 2940, 2835, 2788, 1596, 1487, 1464, 1410, 1363, 1320, 1243, 1130, 1107; m/z (ES) 390 (100%, MH+).
2.6. 5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine (±)-(10)
Sodium sulfide nonahydrate (0.483 g, 2.0 mmol) and triethylamine (0.204 g, 2.0 mmol) was added to a solution of the dibromide (16), prepared as described above from the diol (15) (0.67 mmol), in dry DMF (2 ml) at 273 K under argon, and the mixture stirred overnight at room temperature. Water (20 ml) was added and the mixture extracted with ethyl acetate (3 × 20 ml). The combined organic extract was washed with brine (20 ml), dried and evaporated in vacuo. Flash of the residue over silica gel (50 g), eluting with ethyl acetate, followed by crystallization from ethyl acetate yielded the title compound (10) (230 mg, 87%) as a colourless solid, m.p. 482–484 K. Found: C 61.2, H 6.1, S 8.1; C20H24O6S requires C 61.21, H 6.16, S 8.17%; δH (400 MHz, CDCl3) 6.63 (2H, s, 4-H, 8-H), 3.90 (6H, s, 2 × OMe), 3.88 (6H, s, 2 × OMe), 3.67 (6H, s, 2 × OMe), 3.40 (2H, d, J = 12.5 Hz, 5-HA, 7-HA), 3.23 (2H, d, J = 12.5 Hz, 5-HB, 7-HB); δC (100 MHz, CDCl3) 32.21 (5-C, 7-C), 56.09, 60.67, 61.10, 106.68 (4-C, 8-C), 122.01, 131.45, 141.45, 151.39, 153.62; νmax (cm−1) 2928, 1594, 1488, 1458, 1399, 1318, 1242, 1199, 1093, 1008; m/z (ES) 393 (8%, MH+), 415 (4%, MNa+), 456 (100%, MNa2H2O+).
2.7. 5,7-Dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine 6-oxide (±)-(11) and 5,7-dihydro-1,2,3,9,10,11-hexamethoxydibenzo[c,e]thiepine 6,6-dioxide (±)-(12)
m-Chloroperbenzoic acid (41 mg, purity ca 70%, 0.17 mmol) was added to a solution of (±)-(10) (66 mg, 0.17 mmol) in acetone (1 ml). The mixture was stirred at 273 K for 5 h, then cooled to room temperature, diluted with water (10 ml) and extracted with ether (3 × 10 ml). The combined extracts were dried and evaporated to give a crude solid (62 mg) which was purified by flash over silica gel (10 g), eluting initially with ethyl acetate and later with ethyl acetate–methanol (10:1). The first fractions gave the title sulfone (12) (18 mg, 25%) as colourless crystals, m.p. 497 K (EtOAc). Found: C 56.7, H 5.8, S 7.5; C20H24O8S requires C 56.59, H 5.70, S 7.55%; δH (400 MHz, CDCl3) 6.75 (2H, s, 4-H, 8-H), 3.98 (2H, d, J = 13.5 Hz, 5-HA, 7-HA), 3.92 (6H, s, 2 × OMe), 3.90 (6H, s, 2 × OMe), 3.86 (2H, d, J = 13.5 Hz, 5-HB, 7-HB), 3.71 (6H, s, 2 × OMe); δC (100 MHz, CDCl3) 56.27, 57.77 (5-C, 7-C), 61.12, 61.17, 109.08 (4-C, 8-C), 122.51, 124.12, 142.78, 152.19, 154.15; m/z (ES) 425 (31%, MH+), 447 (4%, MNa+), 488 (100%, MNa2H2O+); Rf = 0.60 (EtOAc). Later fractions afforded the title sulfoxide (11) (43 mg, 63%) as colourless crystals, m.p. 435 K (EtOAc). Found: C 58.8, H 6.0, S 7.8; C20H24O7S requires C 58.81, H 5.92, S 7.85%; δH (400 MHz, CDCl3) 6.72 (1H, s, 4-H or 8-H), 6.66 (1H, s, 8-H or 4-H), 4.13 (1H, d, J = 12.0 Hz, 5-H or 7-H), 3.93 (3H, s, OMe), 3.91 (3H, s, OMe), 3.905 (3H, s, OMe), 3.90 (3H, s, OMe), 3.74 (3H, s, OMe), 3.71 (3H, s, OMe), 3.68 (1H, d, J = 14.0 Hz, 5-H or 7-H), 3.40 (1H, d, J = 14.0 Hz, 5-H or 7-H), 3.17 (1H, d, J = 12.0 Hz, 5-H or 7-H); δC (75 MHz, CDCl3) 53.88, 55.97 (5-C, 7-C), 56.20, 56.28, 61.00, 61.03, 61.05, 61.12 (6 × OCH3), 108.45, 110.12 (4-C, 8-C), 122.28, 122.38, 123.90, 125.43 (4a-C, 7a-C, 11a-C and 11b-C), 142.52, 142.98, 151.82, 152.39, 153.23, 153.41 (6 × OCAr); νmax (cm−1) 2944, 2839, 1596, 1577, 1487, 1464, 1406, 1328, 1243, 1200, 1130, 1099, 1041; m/z (ES) 409 (34%, MH+), 431 (4%, MNa+), 472 (100%, MNa2H2O+); Rf = 0.20 (EtOAc).
2.8. X-ray crystallography
All measurements were carried out using a Nonius KappaCCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Details of cell parameters, data collection and are summarized in Table 1, together with a list of software employed. The structures were solved by and refined with all data on F2. A weighting scheme based on P = [F2o + 2F2c]/3 was employed in order to reduce statistical bias (Wilson, 1976). The H atoms were isotropically refined.1
3. Results and discussion
3.1. Synthesis
A convenient starting point for the preparation of the bridged systems (8)–(12) is the commercially available tannin ellagic acid (13), which can be polymethylated to obtain the hexamethoxydiphenate (14) (Itoh et al., 1996). The reduction of (14) to the diol (15) and subsequent acid-induced to (8) were achieved using the published methods (Insole, 1990a,b). The preparation of (9) and (10) also followed conventional routes, the diol (15) being converted into the corresponding bis(bromomethyl)biaryl (16) which was then treated with methylamine to obtain (9) or sodium sulfide to obtain (10). Oxidation of (10) with m-chloroperbenzoic acid gave a mixture from which the sulfoxide (11) and sulfone (12) were isolated by (see Fig. 2).
3.2. X -ray crystal structures
The synthesized biaryls all formed crystals which were suitable for analysis by X-ray diffraction. A numbering guide and the derived structures are shown in Figures 3–8, with selected molecular parameters provided in Tables 2 and 3. Each system crystallized in a monoclinic with both enantiomeric forms in the The azepine (9) (as the hydrochloride) crystallized with one molecule of water associated with each molecular pair. The oxepine (8), thiepine (10) and sulfoxide (11) exhibit C2 molecular symmetry, with the C1 and C2 methoxyl groups in a mutually eclipsed arrangement which is replicated at C11 and C10. In the sulfone (12) the corresponding methoxyl groups are splayed apart in arrangements which differ with respect to the aromatic rings, although the seven-membered ring effectively retains local C2 symmetry. The azepinium salt (9)·HCl differs significantly from the other structures in that not only are the methoxyl groups arranged differently in each aromatic ring, but the seven-membered ring no longer possesses local C2 symmetry and the C1–C11B aromatic ring is displaced from the expected plane. These features are discussed in detail below.
|
|
The structure of the sulfoxide (11) is disordered in that, while the position of the S atom is fixed, the attached O6 atom is distributed equally between the two possible locations. The 1H NMR spectrum of (11) also reflects its distinctive symmetry properties. Although the S atom is not a stereogenic centre, the combined presence of the stereogenic axis and the single O6 atom renders the C5 and C7 methylene groups non-equivalent and Each of these four H atoms thus appears as an individual doublet in the 1H NMR spectrum of (11), as has been described for a related system (Fraser & Schuber, 1970).
For the reasons outlined above, our interest in structures (8)–(12) is centred on the helicity of the respective biaryl moieties, which is viewed in Fig. 9. In each case the seven-membered ring has taken up a helical conformation in which the flexibility of the biaryl axis must be subject to upper and lower limits dictated by the geometric constraints of the three-atom bridge and the interaction of the 1- and 11-substituents, which are obliged to move towards each other if the system moves towards planarity. It is therefore pertinent to examine four sets of parameters, viz. the C—X bond lengths (Table 2, rows 2, 3), the O1—O11 distances (Table 2, row 9), the endocyclic biaryl dihedral angles (Table 3, row 6) and the exocyclic biaryl dihedral angles (Table 3, row 7). From a comparison of the C—X bond lengths with the biaryl dihedral angles through the series it is evident that the more pronounced helicity of the thiepines (10)–(12) is primarily a consequence of the seven-membered ring twisting more in order to accommodate the longer C—S bonds; the smaller C—S—C bond angles (Table 3, row 1) will counteract this effect slightly. The oxepine (8) and azepinium chloride (9)·HCl, with their shorter C—X bonds, exhibit degrees of twist some 10° lower than observed in the sulfur series.
It is notable that in each of the structures (8)–(12) the endocyclic and exocyclic dihedral angles are unequal, the latter invariably exceeding the former, and that neither series runs entirely in parallel with the C—X bond length. In a non-bridged biphenyl with perfectly planar trigonal C atoms the two biaryl dihedral angles should be equal, so the difference between them in a bridged structure might be viewed as an indicator of the distortion around the biaryl axis. In the systems (8)–(12) this difference would be expected to arise from steric repulsion between the 1- and 11-methoxyl groups, which operates on the exocyclic quadrants of the biaryl axis and opposes the constraining effect of the three-atom bridge. The close proximity of these methoxyl groups is evident in the O1—O11 distance (Table 2, row 9), which reaches twice the van der Waals radius for oxygen, 1.52 Å (Bondi, 1964; Bott et al., 1980), only in the cases of (10) and (11). This steric compression, reinforced by the buttressing effect of the adjacent methoxyl groups (Insole, 1990a,b; Charton, 1977), is maximal in the oxepine (8) and would account, at least in part, for the relatively large (7.2°) difference between the endocyclic and exocyclic dihedral angles in this structure and for the dihedral angles of more than 5° associated with C1, C11B and C4A (Table 3, rows 22, 23), through which its levering effects are dissipated. By the dihedral angle criterion the thiepine (10) incorporates a much less distorted biaryl axis, consistent with the longer C—S bonds inducing a more pronounced twist in the seven-membered ring and, as a consequence, alleviating the steric interaction between O1 and O11. The structural parameters for the sulfoxide (11) are very similar to those of the thiepine (10), but the difference between the endocyclic and exocyclic dihedral angles rises from 2.0 to 4.8°. The sulfone (12) manifests rather more distortion at the biaryl axis than the other thiepine derivatives, the dihedral angle difference now being 6.5°. The reduced endocyclic dihedral angle in (12) [by 5° compared with the thiepine (10)] is consistent with its shorter C—S bonds (Table 2, rows 2, 3), but the flattening in the seven-membered ring is not reciprocated in the exocyclic region, where the dihedral angle remains above 61° even though the O1—O11 distance (Table 2, row 9) shortens significantly. The extent to which intermolecular (crystal packing) effects might contribute to these structural features of (12) is discussed later.
In the case of the azepinium salt (9)·HCl the relatively small difference between the biaryl endocyclic and exocyclic dihedral angles (2.5°) is not a useful guide to the forces operating in this region of the molecule. The C1—C2 and C4A—C4 bonds are both 10° out of alignment with the inter-aryl bond (Table 3, rows 33, 34), as is perceptible in Fig. 9. The dihedral angles of more than 5° around C1, C11B and C4A (Table 3, rows 22, 23) are consistent with the effects of 1,11-methoxyl repulsion, as observed in the oxepine (8), but there is also a twisting of the seven-membered ring, unique in the series and manifested by a difference of 15° in the dihedral angles spanning the endocyclic C—N bonds (Table 3, rows 3, 4) and 12° in those spanning the two aryl rings (Table 3, rows 8, 9). The ultimate origins of the distortion in the of (9)·HCl are obscure, although the association of the chloride ion with one face of the seven-membered ring is a potentially significant desymmetrizing factor.
To broaden this analysis, the ConQuest software (Allen, 2002; Bruno et al., 2002) was used to search the Cambridge Structural Database for substructures containing a 1,1′-biaryl with a 2,2′-bridge of the form CH2XCH2, where X = O, N or S, and most of the structures recovered are listed in Fig. 10 in order of increasing endocyclic dihedral angle for each heteroatom series. In the oxygen series the endocyclic biaryl dihedral angles vary over more than 18° in going from the parent system present in (17) to the bis(phosphine) (20). Throughout this series the exocyclic dihedral angle remains responsive to the steric size of the 6- and 6′-substituents, increases in the exocyclic dihedral angle being possible through bending processes, whereas the endocyclic dihedral angle is constrained by bond-length requirements.
A similar trend is seen in the nitrogen series, where the endocyclic dihedral angle does not exceed 55.0°, while the exocyclic dihedral angle is forced up by bulky ortho groups and reaches 67.8° in the binaphthyl (29). The underlying flexibility of the biaryl system can be seen in the variation, by 5° or more, of the respective dihedral angles in analogous molecules, e.g. (21) and (22) or (24) and (29). In the sulfur series the longer (C—S) bonds in the seven-membered ring permit larger endocyclic dihedral angles and a framework capable of accommodating larger ortho-substituents (Me, naphthyl) with minimal distortion at the axis. Axial flexibility is illustrated in the thiepine series by (30) and (31), whose respective unit cells contain three or more equivalent biaryl axes with varying dihedral angles.
The distinction between the geometry of a molecule in the crystalline state, where it is subject to intermolecular (crystal packing) forces, and its conformation in solution is of fundamental importance in the context of biological effects. The ) and N-acetylcolchinol (3) (Margulis & Lessinger, 1978) are shown in Fig. 11. Although the multiple dihedral angles for (3) reveal some flexibility in its biaryl axis, each of these structures crystallizes as a hydrated system with a packing arrangement involving complex hydrogen bonding. The situation is simpler in the cases of the oxepine (8) and sulfone (12), and it was considered that computational modelling of these molecules might provide a means of estimating the contribution made by crystal packing effects to their solid-state structures. Accordingly, the structures (8) and (12) were allowed to `relax' by using semi-empirical (force field) methods to minimize their steric energies, starting from the atomic coordinates provided by X-ray crystallography. The minimized structures (8′) and (12′) indicate less distortion in the region of the biaryl axis, primarily through a reduced exocyclic biaryl dihedral angle in (8′) and an increased endocyclic dihedral angle in (12′) (Fig. 11), the inference being that these parameters are particularly affected by crystal packing forces within the respective solid-state structures. However, while the geometries of the energy-minimized structures may be more representative of the dominant solution conformations of such molecules, it can be speculated that the conformational flexibility of the bridged biaryl unit, implicit in the results reported here and in the X-ray diffraction data cited, is a more significant factor in the large number of colchicine analogues that retain the tubulin-binding capability of the natural product.
dihedral angles for the tubulin binding agents colchicine (1) (Lessinger & Margulis, 19784. Conclusions
The biaryls (8), (9)·HCl, (10), (11) and (12), each incorporating a three-atom bridge of the form CH2—X—CH2 (X = O, N or S), have been characterized by X-ray analysis. Within this series the endocyclic and exocyclic biaryl dihedral angles vary over slightly offset but roughly parallel 10° ranges in a manner which is consistent with each structure being subject to a variable blend of intramolecular (steric, geometric) and intermolecular (crystal packing) forces of comparable strength. The results are consistent with the expectation that the major determinant of the degree of helicity in the seven-membered ring, and hence in the biaryl chromophore, is the C—X bond length. The results also suggest that there is a significant degree of conformational flexibility within the biaryl unit, despite the presence of the three-atom bridge.
Supporting information
10.1107/S0108768105006713/sx5028sup1.cif
contains datablocks oxepine, azepine, sulfide, sulfoxide, sulfone. DOI:Structure factors: contains datablock . DOI: 10.1107/S0108768105006713/sx5028oxepinesup2.fcf
Structure factors: contains datablock . DOI: 10.1107/S0108768105006713/sx5028azepinesup3.fcf
Structure factors: contains datablock . DOI: 10.1107/S0108768105006713/sx5028sulfidesup4.fcf
Structure factors: contains datablock . DOI: 10.1107/S0108768105006713/sx5028sulfoxidesup5.fcf
Structure factors: contains datablock . DOI: 10.1107/S0108768105006713/sx5028sulfonesup6.fcf
Supporting information file. DOI: 10.1107/S0108768105006713/sx5028sup7.pdf
For all compounds, data collection: Collect (Nonius BV, 1997-2000); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C20H24O7 | F(000) = 800 |
Mr = 376.39 | Dx = 1.402 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5472 reflections |
a = 15.3519 (4) Å | θ = 1.0–27.5° |
b = 10.4044 (3) Å | µ = 0.11 mm−1 |
c = 11.8506 (4) Å | T = 150 K |
β = 109.607 (2)° | Plate, colourless |
V = 1783.11 (9) Å3 | 0.2 × 0.2 × 0.1 mm |
Z = 4 |
KappaCCD diffractometer | 2043 independent reflections |
Radiation source: Enraf Nonius FR590 | 1501 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 2.8° |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | h = −16→19 |
Tmin = 0.992, Tmax = 1.014 | k = −13→13 |
9423 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0661P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.012 |
2043 reflections | Δρmax = 0.29 e Å−3 |
172 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.013 (3) |
C20H24O7 | V = 1783.11 (9) Å3 |
Mr = 376.39 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.3519 (4) Å | µ = 0.11 mm−1 |
b = 10.4044 (3) Å | T = 150 K |
c = 11.8506 (4) Å | 0.2 × 0.2 × 0.1 mm |
β = 109.607 (2)° |
KappaCCD diffractometer | 2043 independent reflections |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | 1501 reflections with I > 2σ(I) |
Tmin = 0.992, Tmax = 1.014 | Rint = 0.063 |
9423 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.29 e Å−3 |
2043 reflections | Δρmin = −0.23 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.60555 (10) | 0.54245 (12) | 0.33594 (11) | 0.0206 (3) | |
C2 | 0.70119 (10) | 0.54458 (12) | 0.36558 (11) | 0.0218 (4) | |
C3 | 0.74416 (10) | 0.64879 (13) | 0.32986 (12) | 0.0231 (3) | |
C4 | 0.69164 (10) | 0.75234 (13) | 0.27117 (12) | 0.0238 (4) | |
C4A | 0.59581 (10) | 0.74971 (13) | 0.24088 (12) | 0.0223 (4) | |
C5 | 0.53841 (11) | 0.86214 (14) | 0.17609 (13) | 0.0251 (4) | |
C11B | 0.55105 (10) | 0.64278 (13) | 0.26840 (11) | 0.0209 (3) | |
C12 | 0.59447 (13) | 0.40214 (17) | 0.49088 (13) | 0.0299 (4) | |
C13 | 0.82017 (13) | 0.46454 (18) | 0.53795 (14) | 0.0349 (4) | |
C14 | 0.88365 (12) | 0.73873 (17) | 0.31678 (18) | 0.0355 (4) | |
O1 | 0.56046 (7) | 0.44207 (9) | 0.36779 (8) | 0.0244 (3) | |
O2 | 0.75238 (7) | 0.43965 (8) | 0.42204 (9) | 0.0255 (3) | |
O3 | 0.83726 (7) | 0.63638 (9) | 0.35454 (9) | 0.0298 (3) | |
O6 | 0.5 | 0.93726 (12) | 0.25 | 0.0262 (4) | |
H4 | 0.7190 (11) | 0.8232 (16) | 0.2455 (14) | 0.026 (4)* | |
H5A | 0.5747 (11) | 0.9227 (16) | 0.1488 (14) | 0.027 (4)* | |
H5B | 0.4883 (11) | 0.8307 (14) | 0.1045 (13) | 0.018 (3)* | |
H12A | 0.6399 (14) | 0.3340 (18) | 0.5043 (15) | 0.041 (5)* | |
H12B | 0.6205 (13) | 0.4753 (18) | 0.5448 (17) | 0.045 (5)* | |
H12C | 0.5432 (13) | 0.3687 (16) | 0.5087 (15) | 0.036 (5)* | |
H13A | 0.8330 (17) | 0.558 (3) | 0.554 (2) | 0.084 (8)* | |
H13B | 0.869 (2) | 0.416 (3) | 0.548 (3) | 0.113 (11)* | |
H13C | 0.7937 (16) | 0.451 (2) | 0.604 (2) | 0.069 (7)* | |
H14A | 0.8520 (12) | 0.7605 (16) | 0.2259 (16) | 0.035 (5)* | |
H14B | 0.8857 (13) | 0.815 (2) | 0.3615 (17) | 0.044 (5)* | |
H14C | 0.9483 (13) | 0.7045 (18) | 0.3358 (14) | 0.039 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0243 (8) | 0.0194 (7) | 0.0180 (6) | −0.0022 (5) | 0.0070 (6) | −0.0018 (5) |
C2 | 0.0252 (8) | 0.0199 (7) | 0.0194 (7) | 0.0024 (6) | 0.0063 (6) | −0.0020 (5) |
C3 | 0.0199 (8) | 0.0258 (7) | 0.0242 (7) | −0.0004 (6) | 0.0083 (6) | −0.0036 (6) |
C4 | 0.0270 (8) | 0.0219 (7) | 0.0233 (7) | −0.0024 (6) | 0.0095 (6) | 0.0000 (6) |
C4A | 0.0248 (8) | 0.0225 (7) | 0.0193 (7) | −0.0003 (6) | 0.0072 (6) | −0.0009 (5) |
C5 | 0.0256 (9) | 0.0240 (7) | 0.0256 (7) | −0.0001 (6) | 0.0085 (6) | 0.0016 (6) |
C11B | 0.0234 (8) | 0.0215 (7) | 0.0176 (6) | −0.0007 (6) | 0.0068 (6) | −0.0025 (5) |
C12 | 0.0349 (10) | 0.0312 (8) | 0.0231 (8) | −0.0028 (8) | 0.0093 (7) | 0.0050 (7) |
C13 | 0.0326 (10) | 0.0367 (9) | 0.0275 (8) | 0.0048 (8) | −0.0004 (7) | 0.0010 (7) |
C14 | 0.0252 (9) | 0.0301 (9) | 0.0524 (11) | −0.0046 (7) | 0.0147 (8) | −0.0015 (8) |
O1 | 0.0263 (6) | 0.0236 (5) | 0.0216 (5) | −0.0039 (4) | 0.0059 (4) | 0.0033 (4) |
O2 | 0.0248 (6) | 0.0229 (5) | 0.0256 (5) | 0.0043 (4) | 0.0042 (4) | 0.0003 (4) |
O3 | 0.0206 (6) | 0.0301 (6) | 0.0393 (6) | 0.0002 (4) | 0.0108 (5) | 0.0038 (5) |
O6 | 0.0284 (8) | 0.0189 (7) | 0.0321 (8) | 0 | 0.0115 (6) | 0 |
C1—O1 | 1.3740 (16) | C11B—C11Bi | 1.479 (3) |
C1—C2 | 1.391 (2) | C12—O1 | 1.4359 (17) |
C1—C11B | 1.4074 (19) | C12—H12A | 0.97 (2) |
C2—O2 | 1.3799 (16) | C12—H12B | 0.99 (2) |
C2—C3 | 1.406 (2) | C12—H12C | 0.947 (19) |
C3—O3 | 1.3654 (18) | C13—O2 | 1.4414 (18) |
C3—C4 | 1.385 (2) | C13—H13A | 1.00 (3) |
C4—C4A | 1.393 (2) | C13—H13B | 0.88 (3) |
C4—H4 | 0.948 (17) | C13—H13C | 1.00 (2) |
C4A—C11B | 1.4023 (19) | C14—O3 | 1.4337 (19) |
C4A—C5 | 1.5101 (19) | C14—H14A | 1.047 (17) |
C5—O6 | 1.4395 (16) | C14—H14B | 0.95 (2) |
C5—H5A | 0.966 (17) | C14—H14C | 1.006 (19) |
C5—H5B | 0.990 (15) | O6—C5i | 1.4395 (16) |
O1—C1—C2 | 121.96 (12) | C1—C11B—C11Bi | 122.45 (10) |
O1—C1—C11B | 117.51 (12) | O1—C12—H12A | 112.0 (10) |
C2—C1—C11B | 120.51 (12) | O1—C12—H12B | 111.3 (11) |
O2—C2—C1 | 119.42 (12) | H12A—C12—H12B | 110.2 (16) |
O2—C2—C3 | 120.51 (13) | O1—C12—H12C | 106.7 (10) |
C1—C2—C3 | 119.89 (12) | H12A—C12—H12C | 107.5 (15) |
O3—C3—C4 | 124.91 (13) | H12B—C12—H12C | 109.0 (15) |
O3—C3—C2 | 115.19 (12) | O2—C13—H13A | 112.9 (14) |
C4—C3—C2 | 119.88 (13) | O2—C13—H13B | 109 (2) |
C3—C4—C4A | 120.05 (13) | H13A—C13—H13B | 116 (3) |
C3—C4—H4 | 121.3 (10) | O2—C13—H13C | 111.4 (14) |
C4A—C4—H4 | 118.5 (10) | H13A—C13—H13C | 95.3 (17) |
C4—C4A—C11B | 120.88 (13) | H13B—C13—H13C | 112 (2) |
C4—C4A—C5 | 120.10 (12) | O3—C14—H14A | 112.0 (9) |
C11B—C4A—C5 | 119.01 (13) | O3—C14—H14B | 112.0 (11) |
O6—C5—C4A | 113.55 (11) | H14A—C14—H14B | 108.0 (15) |
O6—C5—H5A | 104.4 (9) | O3—C14—H14C | 102.9 (10) |
C4A—C5—H5A | 111.8 (9) | H14A—C14—H14C | 112.9 (13) |
O6—C5—H5B | 110.0 (9) | H14B—C14—H14C | 109.0 (15) |
C4A—C5—H5B | 109.4 (8) | C1—O1—C12 | 117.01 (11) |
H5A—C5—H5B | 107.4 (12) | C2—O2—C13 | 115.57 (11) |
C4A—C11B—C1 | 118.46 (13) | C3—O3—C14 | 117.19 (12) |
C4A—C11B—C11Bi | 119.00 (10) | C5—O6—C5i | 114.24 (14) |
O1—C1—C2—O2 | 4.15 (18) | C5—C4A—C11B—C1 | −175.72 (12) |
C11B—C1—C2—O2 | −173.97 (11) | C4—C4A—C11B—C11Bi | −178.37 (13) |
O1—C1—C2—C3 | 179.30 (12) | C5—C4A—C11B—C11Bi | 0.8 (2) |
C11B—C1—C2—C3 | 1.19 (19) | O1—C1—C11B—C4A | 176.34 (11) |
O2—C2—C3—O3 | 0.43 (18) | C2—C1—C11B—C4A | −5.46 (19) |
C1—C2—C3—O3 | −174.67 (11) | O1—C1—C11B—C11Bi | −0.1 (2) |
O2—C2—C3—C4 | 178.73 (12) | C2—C1—C11B—C11Bi | 178.10 (13) |
C1—C2—C3—C4 | 3.6 (2) | C2—C1—O1—C12 | 50.03 (18) |
O3—C3—C4—C4A | 174.07 (12) | C11B—C1—O1—C12 | −131.79 (14) |
C2—C3—C4—C4A | −4.0 (2) | C1—C2—O2—C13 | −120.19 (14) |
C3—C4—C4A—C11B | −0.4 (2) | C3—C2—O2—C13 | 64.69 (17) |
C3—C4—C4A—C5 | −179.56 (13) | C4—C3—O3—C14 | 0.1 (2) |
C4—C4A—C5—O6 | −108.00 (14) | C2—C3—O3—C14 | 178.33 (13) |
C11B—C4A—C5—O6 | 72.78 (16) | C4A—C5—O6—C5i | −43.57 (9) |
C4—C4A—C11B—C1 | 5.07 (19) |
Symmetry code: (i) −x+1, y, −z+1/2. |
C21H29ClNO6 | F(000) = 1848 |
Mr = 434.9 | Dx = 1.299 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 52930 reflections |
a = 36.0403 (12) Å | θ = 1.0–27.5° |
b = 7.8165 (2) Å | µ = 0.21 mm−1 |
c = 17.0066 (5) Å | T = 150 K |
β = 111.7920° | Needle, colourless |
V = 4448.5 (2) Å3 | 0.25 × 0.15 × 0.1 mm |
Z = 8 |
KappaCCD diffractometer | 4945 independent reflections |
Radiation source: Enraf Nonius FR590 | 3299 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
CCD rotation images, thick slices scans | θmax = 27.3°, θmin = 3.2° |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | h = −45→46 |
Tmin = 0.973, Tmax = 1.015 | k = −10→10 |
36698 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0477P)2 + 2.813P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.019 |
4945 reflections | Δρmax = 0.28 e Å−3 |
392 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0017 (3) |
C21H29ClNO6 | V = 4448.5 (2) Å3 |
Mr = 434.9 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 36.0403 (12) Å | µ = 0.21 mm−1 |
b = 7.8165 (2) Å | T = 150 K |
c = 17.0066 (5) Å | 0.25 × 0.15 × 0.1 mm |
β = 111.7920° |
KappaCCD diffractometer | 4945 independent reflections |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | 3299 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 1.015 | Rint = 0.082 |
36698 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.28 e Å−3 |
4945 reflections | Δρmin = −0.29 e Å−3 |
392 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.68102 (5) | 0.6598 (2) | 0.58223 (12) | 0.0230 (4) | |
C2 | 0.69278 (5) | 0.5570 (2) | 0.65436 (12) | 0.0238 (4) | |
C3 | 0.66395 (5) | 0.4941 (2) | 0.68409 (12) | 0.0241 (4) | |
C4 | 0.62380 (6) | 0.5223 (2) | 0.63852 (12) | 0.0248 (4) | |
C4A | 0.61219 (5) | 0.6240 (2) | 0.56628 (12) | 0.0235 (4) | |
C5 | 0.56852 (6) | 0.6585 (3) | 0.51870 (12) | 0.0255 (4) | |
C7 | 0.57796 (6) | 0.6216 (3) | 0.37918 (13) | 0.0255 (4) | |
C7A | 0.59552 (5) | 0.7981 (2) | 0.39492 (12) | 0.0244 (4) | |
C8 | 0.58130 (6) | 0.9250 (3) | 0.33339 (13) | 0.0271 (5) | |
C9 | 0.59851 (6) | 1.0858 (2) | 0.34706 (13) | 0.0280 (5) | |
C10 | 0.62961 (6) | 1.1218 (2) | 0.42439 (13) | 0.0275 (5) | |
C11 | 0.64324 (6) | 0.9960 (2) | 0.48552 (12) | 0.0266 (4) | |
C11A | 0.62726 (5) | 0.8304 (2) | 0.47142 (12) | 0.0235 (4) | |
C11B | 0.64053 (5) | 0.6998 (2) | 0.53969 (11) | 0.0226 (4) | |
C12 | 0.74333 (7) | 0.7999 (3) | 0.60016 (16) | 0.0353 (5) | |
C13 | 0.74706 (8) | 0.3788 (4) | 0.66441 (19) | 0.0457 (6) | |
C14 | 0.64945 (7) | 0.3361 (3) | 0.78873 (15) | 0.0357 (5) | |
C15 | 0.55478 (8) | 1.1886 (4) | 0.21296 (16) | 0.0434 (6) | |
C16 | 0.68161 (7) | 1.3068 (3) | 0.42899 (18) | 0.0414 (6) | |
C17 | 0.65697 (9) | 1.0696 (4) | 0.62684 (16) | 0.0429 (6) | |
C18 | 0.54776 (7) | 0.3913 (3) | 0.43460 (16) | 0.0325 (5) | |
O1 | 0.70720 (4) | 0.71479 (17) | 0.54644 (8) | 0.0273 (3) | |
O2 | 0.73253 (4) | 0.51848 (18) | 0.69880 (8) | 0.0298 (3) | |
O3 | 0.67858 (4) | 0.40029 (17) | 0.75722 (8) | 0.0276 (3) | |
O9 | 0.58700 (4) | 1.21986 (17) | 0.29158 (9) | 0.0352 (4) | |
O10 | 0.64468 (4) | 1.28628 (16) | 0.44066 (9) | 0.0320 (3) | |
O11 | 0.67256 (4) | 1.03867 (17) | 0.56190 (8) | 0.0322 (3) | |
O12 | 0.5145 (2) | 1.0434 (6) | 0.4664 (4) | 0.0887 (15) | 0.5 |
N6 | 0.55294 (5) | 0.5802 (2) | 0.43118 (10) | 0.0254 (4) | |
Cl1 | 0.467597 (15) | 0.70067 (8) | 0.36456 (3) | 0.04043 (18) | |
H4 | 0.6047 (6) | 0.473 (3) | 0.6540 (12) | 0.026 (5)* | |
H5A | 0.5527 (6) | 0.605 (2) | 0.5506 (12) | 0.020 (5)* | |
H5B | 0.5642 (6) | 0.778 (3) | 0.5122 (12) | 0.022 (5)* | |
H6 | 0.5273 (7) | 0.625 (3) | 0.4031 (14) | 0.034 (6)* | |
H7A | 0.5602 (6) | 0.608 (2) | 0.3220 (13) | 0.023 (5)* | |
H7B | 0.5999 (6) | 0.538 (3) | 0.3952 (12) | 0.023 (5)* | |
H8 | 0.5608 (6) | 0.898 (3) | 0.2829 (14) | 0.026 (5)* | |
H12A | 0.7646 (9) | 0.715 (3) | 0.6254 (18) | 0.061 (8)* | |
H12B | 0.7524 (8) | 0.870 (3) | 0.5613 (17) | 0.057 (8)* | |
H12C | 0.7382 (7) | 0.863 (3) | 0.6430 (16) | 0.046 (7)* | |
H12D | 0.493 (3) | 0.931 (12) | 0.448 (5) | 0.13 (3)* | 0.5 |
H12E | 0.5280 (19) | 1.036 (8) | 0.522 (5) | 0.07 (2)* | 0.5 |
H13A | 0.7456 (9) | 0.410 (4) | 0.606 (2) | 0.079 (10)* | |
H13B | 0.7313 (10) | 0.284 (4) | 0.658 (2) | 0.075 (10)* | |
H13C | 0.7752 (8) | 0.357 (3) | 0.7045 (17) | 0.056 (7)* | |
H14A | 0.6316 (7) | 0.254 (3) | 0.7481 (15) | 0.036 (6)* | |
H14B | 0.6349 (7) | 0.424 (3) | 0.8011 (15) | 0.043 (7)* | |
H14C | 0.6638 (7) | 0.280 (3) | 0.8425 (16) | 0.044 (6)* | |
H15A | 0.5613 (7) | 1.099 (4) | 0.1807 (17) | 0.052 (8)* | |
H15B | 0.5290 (8) | 1.146 (3) | 0.2186 (15) | 0.047 (7)* | |
H15C | 0.5498 (7) | 1.294 (3) | 0.1842 (15) | 0.044 (7)* | |
H16A | 0.7017 (8) | 1.223 (4) | 0.4660 (18) | 0.061 (8)* | |
H16B | 0.6754 (7) | 1.290 (3) | 0.3657 (18) | 0.052 (7)* | |
H16C | 0.6896 (7) | 1.422 (4) | 0.4455 (15) | 0.053 (7)* | |
H17A | 0.6451 (8) | 0.965 (4) | 0.6373 (17) | 0.062 (8)* | |
H17B | 0.6385 (8) | 1.160 (4) | 0.6071 (16) | 0.054 (8)* | |
H17C | 0.6805 (8) | 1.103 (3) | 0.6770 (16) | 0.050 (7)* | |
H18A | 0.5737 (7) | 0.342 (3) | 0.4657 (14) | 0.039 (6)* | |
H18B | 0.5364 (6) | 0.347 (3) | 0.3732 (14) | 0.032 (6)* | |
H18C | 0.5298 (7) | 0.372 (3) | 0.4623 (15) | 0.040 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0227 (9) | 0.0229 (10) | 0.0242 (10) | −0.0036 (8) | 0.0094 (8) | −0.0053 (8) |
C2 | 0.0182 (9) | 0.0255 (10) | 0.0253 (10) | 0.0001 (8) | 0.0054 (8) | −0.0031 (8) |
C3 | 0.0255 (10) | 0.0238 (10) | 0.0209 (10) | 0.0019 (8) | 0.0064 (8) | −0.0001 (8) |
C4 | 0.0216 (10) | 0.0282 (10) | 0.0251 (11) | −0.0015 (8) | 0.0094 (8) | −0.0007 (8) |
C4A | 0.0219 (9) | 0.0240 (10) | 0.0225 (10) | −0.0011 (8) | 0.0059 (8) | −0.0030 (8) |
C5 | 0.0238 (10) | 0.0289 (11) | 0.0229 (10) | 0.0017 (9) | 0.0075 (8) | −0.0009 (8) |
C7 | 0.0254 (10) | 0.0284 (10) | 0.0218 (11) | −0.0011 (9) | 0.0076 (9) | −0.0014 (8) |
C7A | 0.0248 (10) | 0.0248 (10) | 0.0242 (10) | 0.0016 (8) | 0.0098 (8) | −0.0003 (8) |
C8 | 0.0261 (10) | 0.0317 (11) | 0.0227 (11) | 0.0006 (9) | 0.0080 (9) | −0.0018 (9) |
C9 | 0.0318 (10) | 0.0269 (10) | 0.0261 (11) | 0.0053 (9) | 0.0116 (9) | 0.0048 (8) |
C10 | 0.0306 (10) | 0.0222 (10) | 0.0319 (12) | −0.0001 (8) | 0.0143 (9) | −0.0014 (8) |
C11 | 0.0256 (10) | 0.0268 (10) | 0.0247 (10) | −0.0010 (8) | 0.0063 (8) | −0.0019 (8) |
C11A | 0.0223 (9) | 0.0248 (10) | 0.0236 (10) | 0.0022 (8) | 0.0085 (8) | 0.0013 (8) |
C11B | 0.0244 (9) | 0.0219 (9) | 0.0198 (9) | −0.0003 (8) | 0.0062 (8) | −0.0031 (8) |
C12 | 0.0246 (11) | 0.0398 (13) | 0.0376 (13) | −0.0098 (10) | 0.0068 (10) | −0.0006 (11) |
C13 | 0.0328 (13) | 0.0451 (15) | 0.0549 (18) | 0.0121 (12) | 0.0112 (12) | −0.0060 (13) |
C14 | 0.0314 (11) | 0.0480 (14) | 0.0293 (13) | 0.0026 (11) | 0.0130 (10) | 0.0105 (11) |
C15 | 0.0452 (15) | 0.0428 (14) | 0.0334 (13) | 0.0030 (12) | 0.0043 (11) | 0.0123 (12) |
C16 | 0.0419 (13) | 0.0340 (13) | 0.0525 (17) | −0.0099 (11) | 0.0221 (12) | −0.0010 (12) |
C17 | 0.0546 (16) | 0.0381 (14) | 0.0328 (14) | −0.0001 (13) | 0.0127 (12) | −0.0088 (11) |
C18 | 0.0348 (12) | 0.0285 (11) | 0.0358 (13) | −0.0065 (10) | 0.0152 (11) | −0.0016 (9) |
O1 | 0.0222 (7) | 0.0328 (8) | 0.0271 (7) | −0.0063 (6) | 0.0095 (6) | −0.0011 (6) |
O2 | 0.0196 (7) | 0.0374 (8) | 0.0290 (8) | 0.0021 (6) | 0.0050 (6) | 0.0012 (6) |
O3 | 0.0236 (7) | 0.0341 (8) | 0.0243 (7) | 0.0024 (6) | 0.0080 (6) | 0.0068 (6) |
O9 | 0.0415 (8) | 0.0291 (8) | 0.0296 (8) | 0.0022 (6) | 0.0069 (7) | 0.0071 (6) |
O10 | 0.0364 (8) | 0.0208 (7) | 0.0381 (8) | −0.0013 (6) | 0.0131 (7) | −0.0013 (6) |
O11 | 0.0354 (8) | 0.0301 (7) | 0.0260 (8) | −0.0047 (6) | 0.0054 (6) | −0.0035 (6) |
O12 | 0.122 (4) | 0.052 (3) | 0.094 (4) | −0.020 (3) | 0.043 (4) | −0.009 (3) |
N6 | 0.0206 (8) | 0.0288 (9) | 0.0242 (9) | −0.0005 (7) | 0.0052 (7) | −0.0009 (7) |
Cl1 | 0.0256 (3) | 0.0552 (4) | 0.0358 (3) | 0.0024 (2) | 0.0059 (2) | 0.0110 (3) |
C1—O1 | 1.368 (2) | C12—H12A | 0.98 (3) |
C1—C2 | 1.394 (3) | C12—H12B | 1.00 (3) |
C1—C11B | 1.402 (3) | C12—H12C | 0.95 (3) |
C2—O2 | 1.382 (2) | C13—O2 | 1.427 (3) |
C2—C3 | 1.403 (3) | C13—H13A | 1.01 (3) |
C3—O3 | 1.370 (2) | C13—H13B | 0.91 (3) |
C3—C4 | 1.382 (3) | C13—H13C | 1.00 (3) |
C4—C4A | 1.391 (3) | C14—O3 | 1.435 (3) |
C4—H4 | 0.91 (2) | C14—H14A | 0.99 (2) |
C4A—C11B | 1.393 (3) | C14—H14B | 0.94 (3) |
C4A—C5 | 1.503 (3) | C14—H14C | 0.97 (3) |
C5—N6 | 1.512 (2) | C15—O9 | 1.429 (3) |
C5—H5A | 1.01 (2) | C15—H15A | 0.97 (3) |
C5—H5B | 0.95 (2) | C15—H15B | 1.02 (3) |
C7—C7A | 1.500 (3) | C15—H15C | 0.94 (3) |
C7—N6 | 1.514 (3) | C16—O10 | 1.426 (3) |
C7—H7A | 0.95 (2) | C16—H16A | 1.01 (3) |
C7—H7B | 0.98 (2) | C16—H16B | 1.02 (3) |
C7A—C8 | 1.394 (3) | C16—H16C | 0.96 (3) |
C7A—C11A | 1.400 (3) | C17—O11 | 1.433 (3) |
C8—C9 | 1.383 (3) | C17—H17A | 0.97 (3) |
C8—H8 | 0.93 (2) | C17—H17B | 0.94 (3) |
C9—O9 | 1.367 (2) | C17—H17C | 0.99 (3) |
C9—C10 | 1.404 (3) | C18—N6 | 1.492 (3) |
C10—C11 | 1.382 (3) | C18—H18A | 0.97 (2) |
C10—O10 | 1.383 (2) | C18—H18B | 1.03 (2) |
C11—O11 | 1.377 (2) | C18—H18C | 0.94 (3) |
C11—C11A | 1.401 (3) | O12—H12D | 1.13 (10) |
C11A—C11B | 1.485 (3) | O12—H12E | 0.89 (7) |
C12—O1 | 1.446 (2) | N6—H6 | 0.94 (2) |
O1—C1—C2 | 122.52 (16) | H12A—C12—H12C | 111 (2) |
O1—C1—C11B | 117.25 (16) | H12B—C12—H12C | 115 (2) |
C2—C1—C11B | 120.06 (17) | O2—C13—H13A | 109.2 (18) |
O2—C2—C1 | 121.44 (17) | O2—C13—H13B | 111 (2) |
O2—C2—C3 | 118.88 (16) | H13A—C13—H13B | 106 (3) |
C1—C2—C3 | 119.67 (16) | O2—C13—H13C | 106.4 (15) |
O3—C3—C4 | 124.38 (18) | H13A—C13—H13C | 112 (2) |
O3—C3—C2 | 115.34 (15) | H13B—C13—H13C | 112 (2) |
C4—C3—C2 | 120.23 (17) | O3—C14—H14A | 110.1 (13) |
C3—C4—C4A | 119.71 (19) | O3—C14—H14B | 112.2 (15) |
C3—C4—H4 | 121.3 (12) | H14A—C14—H14B | 111.2 (19) |
C4A—C4—H4 | 119.0 (12) | O3—C14—H14C | 107.7 (14) |
C4—C4A—C11B | 120.88 (17) | H14A—C14—H14C | 110.0 (19) |
C4—C4A—C5 | 119.31 (18) | H14B—C14—H14C | 106 (2) |
C11B—C4A—C5 | 119.75 (17) | O9—C15—H15A | 111.7 (15) |
C4A—C5—N6 | 112.92 (16) | O9—C15—H15B | 114.7 (14) |
C4A—C5—H5A | 108.9 (10) | H15A—C15—H15B | 104 (2) |
N6—C5—H5A | 106.4 (11) | O9—C15—H15C | 105.7 (14) |
C4A—C5—H5B | 109.4 (12) | H15A—C15—H15C | 112 (2) |
N6—C5—H5B | 107.5 (12) | H15B—C15—H15C | 109 (2) |
H5A—C5—H5B | 111.8 (16) | O10—C16—H16A | 109.4 (16) |
C7A—C7—N6 | 113.30 (16) | O10—C16—H16B | 106.4 (14) |
C7A—C7—H7A | 111.5 (12) | H16A—C16—H16B | 114 (2) |
N6—C7—H7A | 104.5 (12) | O10—C16—H16C | 105.0 (15) |
C7A—C7—H7B | 108.5 (11) | H16A—C16—H16C | 111 (2) |
N6—C7—H7B | 106.8 (11) | H16B—C16—H16C | 111 (2) |
H7A—C7—H7B | 112.0 (16) | O11—C17—H17A | 108.8 (16) |
C8—C7A—C11A | 121.02 (17) | O11—C17—H17B | 106.2 (16) |
C8—C7A—C7 | 120.47 (17) | H17A—C17—H17B | 114 (2) |
C11A—C7A—C7 | 118.47 (17) | O11—C17—H17C | 104.6 (14) |
C9—C8—C7A | 120.23 (18) | H17A—C17—H17C | 111 (2) |
C9—C8—H8 | 121.3 (13) | H17B—C17—H17C | 112 (2) |
C7A—C8—H8 | 118.4 (13) | N6—C18—H18A | 107.8 (13) |
O9—C9—C8 | 125.35 (18) | N6—C18—H18B | 107.7 (12) |
O9—C9—C10 | 115.15 (17) | H18A—C18—H18B | 111.0 (18) |
C8—C9—C10 | 119.47 (18) | N6—C18—H18C | 107.4 (14) |
C11—C10—O10 | 120.48 (17) | H18A—C18—H18C | 112 (2) |
C11—C10—C9 | 119.97 (17) | H18B—C18—H18C | 111.2 (18) |
O10—C10—C9 | 119.43 (17) | C1—O1—C12 | 118.14 (16) |
O11—C11—C10 | 118.14 (17) | C2—O2—C13 | 113.95 (16) |
O11—C11—C11A | 120.52 (17) | C3—O3—C14 | 115.97 (15) |
C10—C11—C11A | 121.33 (17) | C9—O9—C15 | 116.59 (17) |
C7A—C11A—C11 | 117.89 (17) | C10—O10—C16 | 113.22 (17) |
C7A—C11A—C11B | 121.15 (16) | C11—O11—C17 | 112.63 (17) |
C11—C11A—C11B | 120.58 (16) | H12D—O12—H12E | 107 (6) |
C4A—C11B—C1 | 119.03 (17) | C18—N6—C5 | 111.63 (16) |
C4A—C11B—C11A | 118.94 (16) | C18—N6—C7 | 110.15 (16) |
C1—C11B—C11A | 121.86 (17) | C5—N6—C7 | 113.86 (15) |
O1—C12—H12A | 109.9 (15) | C18—N6—H6 | 106.0 (13) |
O1—C12—H12B | 105.9 (14) | C5—N6—H6 | 106.7 (13) |
H12A—C12—H12B | 105 (2) | C7—N6—H6 | 108.2 (13) |
O1—C12—H12C | 109.6 (15) | ||
O1—C1—C2—O2 | 6.5 (3) | O11—C11—C11A—C7A | 175.39 (17) |
C11B—C1—C2—O2 | −178.50 (16) | C10—C11—C11A—C7A | −3.2 (3) |
O1—C1—C2—C3 | −175.10 (17) | O11—C11—C11A—C11B | 2.4 (3) |
C11B—C1—C2—C3 | −0.1 (3) | C10—C11—C11A—C11B | −176.25 (18) |
O2—C2—C3—O3 | 1.0 (2) | C4—C4A—C11B—C1 | 5.8 (3) |
C1—C2—C3—O3 | −177.41 (16) | C5—C4A—C11B—C1 | −176.93 (17) |
O2—C2—C3—C4 | −176.38 (17) | C4—C4A—C11B—C11A | −169.61 (17) |
C1—C2—C3—C4 | 5.2 (3) | C5—C4A—C11B—C11A | 7.7 (3) |
O3—C3—C4—C4A | 178.09 (17) | O1—C1—C11B—C4A | 169.95 (16) |
C2—C3—C4—C4A | −4.7 (3) | C2—C1—C11B—C4A | −5.3 (3) |
C3—C4—C4A—C11B | −0.8 (3) | O1—C1—C11B—C11A | −14.8 (3) |
C3—C4—C4A—C5 | −178.07 (18) | C2—C1—C11B—C11A | 169.96 (17) |
C4—C4A—C5—N6 | −114.1 (2) | C7A—C11A—C11B—C4A | −51.1 (3) |
C11B—C4A—C5—N6 | 68.6 (2) | C11—C11A—C11B—C4A | 121.7 (2) |
N6—C7—C7A—C8 | −109.0 (2) | C7A—C11A—C11B—C1 | 133.6 (2) |
N6—C7—C7A—C11A | 73.1 (2) | C11—C11A—C11B—C1 | −53.6 (3) |
C11A—C7A—C8—C9 | 0.1 (3) | C2—C1—O1—C12 | −52.5 (2) |
C7—C7A—C8—C9 | −177.77 (19) | C11B—C1—O1—C12 | 132.34 (19) |
C7A—C8—C9—O9 | −179.75 (18) | C1—C2—O2—C13 | −83.1 (2) |
C7A—C8—C9—C10 | −1.9 (3) | C3—C2—O2—C13 | 98.4 (2) |
O9—C9—C10—C11 | 179.20 (18) | C4—C3—O3—C14 | −3.1 (3) |
C8—C9—C10—C11 | 1.1 (3) | C2—C3—O3—C14 | 179.58 (18) |
O9—C9—C10—O10 | 3.1 (3) | C8—C9—O9—C15 | −0.7 (3) |
C8—C9—C10—O10 | −174.96 (18) | C10—C9—O9—C15 | −178.6 (2) |
O10—C10—C11—O11 | −1.1 (3) | C11—C10—O10—C16 | 82.4 (2) |
C9—C10—C11—O11 | −177.17 (18) | C9—C10—O10—C16 | −101.5 (2) |
O10—C10—C11—C11A | 177.52 (18) | C10—C11—O11—C17 | 100.4 (2) |
C9—C10—C11—C11A | 1.5 (3) | C11A—C11—O11—C17 | −78.3 (2) |
C8—C7A—C11A—C11 | 2.4 (3) | C4A—C5—N6—C18 | 75.0 (2) |
C7—C7A—C11A—C11 | −179.67 (18) | C4A—C5—N6—C7 | −50.4 (2) |
C8—C7A—C11A—C11B | 175.44 (18) | C7A—C7—N6—C18 | −161.48 (17) |
C7—C7A—C11A—C11B | −6.7 (3) | C7A—C7—N6—C5 | −35.2 (2) |
C20H24O6S | F(000) = 832 |
Mr = 392.45 | Dx = 1.443 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 10338 reflections |
a = 8.6029 (2) Å | θ = 0–0° |
b = 12.2965 (3) Å | µ = 0.22 mm−1 |
c = 17.6032 (4) Å | T = 150 K |
β = 104.0380° | Needle, colourless |
V = 1806.55 (7) Å3 | 0.2 × 0.1 × 0.1 mm |
Z = 4 |
KappaCCD diffractometer | 2388 independent reflections |
Radiation source: Enraf Nonius FR590 | 2003 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
CCD rotation images, thick slices scans | θmax = 29.1°, θmin = 3.0° |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | h = −11→11 |
Tmin = 0.975, Tmax = 1.016 | k = −16→16 |
15259 measured reflections | l = −23→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0508P)2 + 1.3323P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.003 |
2388 reflections | Δρmax = 0.32 e Å−3 |
172 parameters | Δρmin = −0.30 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0074 (13) |
C20H24O6S | V = 1806.55 (7) Å3 |
Mr = 392.45 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 8.6029 (2) Å | µ = 0.22 mm−1 |
b = 12.2965 (3) Å | T = 150 K |
c = 17.6032 (4) Å | 0.2 × 0.1 × 0.1 mm |
β = 104.0380° |
KappaCCD diffractometer | 2388 independent reflections |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | 2003 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 1.016 | Rint = 0.054 |
15259 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.32 e Å−3 |
2388 reflections | Δρmin = −0.30 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.55184 (14) | 0.58168 (9) | 0.66847 (7) | 0.0135 (3) | |
C2 | 0.65913 (15) | 0.58284 (9) | 0.62049 (7) | 0.0142 (3) | |
C3 | 0.77012 (15) | 0.49775 (10) | 0.62572 (7) | 0.0146 (3) | |
C4 | 0.77115 (15) | 0.41306 (10) | 0.67830 (7) | 0.0146 (3) | |
C4A | 0.66397 (15) | 0.41269 (9) | 0.72640 (7) | 0.0138 (3) | |
C5 | 0.66577 (16) | 0.32012 (10) | 0.78250 (8) | 0.0163 (3) | |
C11B | 0.55516 (14) | 0.49830 (9) | 0.72330 (7) | 0.0138 (3) | |
C12 | 0.28299 (17) | 0.63325 (13) | 0.62107 (10) | 0.0263 (3) | |
C13 | 0.5804 (2) | 0.65199 (13) | 0.49157 (8) | 0.0279 (3) | |
C14 | 0.98301 (18) | 0.41644 (12) | 0.58250 (9) | 0.0251 (3) | |
O1 | 0.44194 (11) | 0.66526 (7) | 0.66090 (5) | 0.0177 (2) | |
O2 | 0.66061 (11) | 0.66986 (7) | 0.57123 (5) | 0.0178 (2) | |
O3 | 0.87013 (11) | 0.50350 (7) | 0.57639 (5) | 0.0193 (2) | |
S6 | 0.5 | 0.22488 (3) | 0.75 | 0.01952 (15) | |
H14B | 1.044 (2) | 0.4347 (14) | 0.5450 (10) | 0.031 (5)* | |
H4 | 0.847 (2) | 0.3561 (14) | 0.6814 (10) | 0.023 (4)* | |
H14A | 0.928 (2) | 0.3476 (15) | 0.5698 (10) | 0.031 (5)* | |
H13C | 0.594 (2) | 0.7161 (15) | 0.4628 (11) | 0.030 (5)* | |
H8B | 0.6576 (18) | 0.3479 (13) | 0.8335 (9) | 0.019 (4)* | |
H8A | 0.759 (2) | 0.2756 (13) | 0.7889 (9) | 0.020 (4)* | |
H14C | 1.058 (2) | 0.4178 (14) | 0.6363 (11) | 0.027 (4)* | |
H12A | 0.280 (3) | 0.6008 (19) | 0.5714 (14) | 0.055 (6)* | |
H13B | 0.465 (3) | 0.6393 (18) | 0.4877 (13) | 0.051 (6)* | |
H12C | 0.211 (3) | 0.6965 (17) | 0.6134 (11) | 0.043 (5)* | |
H13A | 0.629 (3) | 0.591 (2) | 0.4700 (14) | 0.065 (7)* | |
H12B | 0.241 (3) | 0.5780 (19) | 0.6481 (14) | 0.059 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0152 (6) | 0.0100 (5) | 0.0149 (5) | 0.0001 (4) | 0.0026 (5) | −0.0015 (4) |
C2 | 0.0179 (6) | 0.0112 (5) | 0.0130 (5) | −0.0027 (4) | 0.0028 (5) | 0.0008 (4) |
C3 | 0.0153 (6) | 0.0153 (6) | 0.0140 (5) | −0.0017 (4) | 0.0051 (5) | −0.0008 (4) |
C4 | 0.0153 (6) | 0.0128 (6) | 0.0159 (6) | 0.0014 (4) | 0.0039 (5) | 0.0001 (4) |
C4A | 0.0152 (6) | 0.0125 (5) | 0.0136 (5) | −0.0010 (4) | 0.0031 (5) | 0.0010 (4) |
C5 | 0.0170 (6) | 0.0145 (6) | 0.0180 (6) | 0.0020 (5) | 0.0056 (5) | 0.0033 (5) |
C11B | 0.0151 (6) | 0.0124 (5) | 0.0144 (6) | −0.0015 (4) | 0.0047 (5) | −0.0009 (4) |
C12 | 0.0194 (7) | 0.0228 (7) | 0.0336 (8) | 0.0045 (5) | 0.0007 (6) | −0.0032 (6) |
C13 | 0.0416 (9) | 0.0247 (7) | 0.0148 (6) | −0.0045 (6) | 0.0022 (6) | 0.0036 (5) |
C14 | 0.0225 (7) | 0.0273 (8) | 0.0304 (7) | 0.0100 (6) | 0.0159 (6) | 0.0097 (6) |
O1 | 0.0173 (5) | 0.0122 (4) | 0.0232 (5) | 0.0031 (3) | 0.0042 (4) | 0.0001 (3) |
O2 | 0.0253 (5) | 0.0135 (4) | 0.0141 (4) | −0.0021 (3) | 0.0040 (4) | 0.0033 (3) |
O3 | 0.0208 (5) | 0.0198 (5) | 0.0209 (5) | 0.0049 (4) | 0.0123 (4) | 0.0052 (4) |
S6 | 0.0200 (2) | 0.0112 (2) | 0.0291 (3) | 0 | 0.00936 (19) | 0 |
C1—O1 | 1.3809 (14) | C11B—C11Bi | 1.489 (2) |
C1—C2 | 1.3942 (17) | C12—O1 | 1.4323 (17) |
C1—C11B | 1.4037 (16) | C12—H12A | 0.96 (2) |
C2—O2 | 1.3792 (14) | C12—H12C | 0.99 (2) |
C2—C3 | 1.4044 (17) | C12—H12B | 0.95 (2) |
C3—O3 | 1.3644 (15) | C13—O2 | 1.4218 (16) |
C3—C4 | 1.3919 (17) | C13—H13C | 0.960 (18) |
C4—C4A | 1.3949 (17) | C13—H13B | 0.99 (2) |
C4—H4 | 0.947 (17) | C13—H13A | 0.98 (3) |
C4A—C11B | 1.4010 (17) | C14—O3 | 1.4318 (16) |
C4A—C5 | 1.5046 (17) | C14—H14B | 0.967 (18) |
C5—S6 | 1.8267 (13) | C14—H14A | 0.969 (18) |
C5—H8B | 0.980 (16) | C14—H14C | 1.010 (18) |
C5—H8A | 0.958 (17) | S6—C5i | 1.8267 (13) |
O1—C1—C2 | 118.19 (10) | C1—C11B—C11Bi | 121.63 (9) |
O1—C1—C11B | 120.61 (11) | O1—C12—H12A | 111.7 (14) |
C2—C1—C11B | 121.20 (11) | O1—C12—H12C | 110.3 (12) |
O2—C2—C1 | 119.81 (11) | H12A—C12—H12C | 109.3 (17) |
O2—C2—C3 | 120.63 (11) | O1—C12—H12B | 112.8 (14) |
C1—C2—C3 | 119.48 (11) | H12A—C12—H12B | 103.4 (19) |
O3—C3—C4 | 123.97 (11) | H12C—C12—H12B | 109.0 (18) |
O3—C3—C2 | 116.31 (11) | O2—C13—H13C | 107.5 (11) |
C4—C3—C2 | 119.71 (11) | O2—C13—H13B | 109.3 (13) |
C3—C4—C4A | 120.50 (11) | H13C—C13—H13B | 110.0 (17) |
C3—C4—H4 | 119.1 (10) | O2—C13—H13A | 110.5 (14) |
C4A—C4—H4 | 120.4 (10) | H13C—C13—H13A | 107.7 (18) |
C4—C4A—C11B | 120.52 (11) | H13B—C13—H13A | 111.8 (19) |
C4—C4A—C5 | 119.85 (11) | O3—C14—H14B | 104.4 (11) |
C11B—C4A—C5 | 119.63 (11) | O3—C14—H14A | 110.6 (11) |
C4A—C5—S6 | 113.36 (9) | H14B—C14—H14A | 111.3 (15) |
C4A—C5—H8B | 110.3 (9) | O3—C14—H14C | 109.1 (10) |
S6—C5—H8B | 106.6 (9) | H14B—C14—H14C | 107.7 (14) |
C4A—C5—H8A | 112.6 (10) | H14A—C14—H14C | 113.4 (14) |
S6—C5—H8A | 104.0 (10) | C1—O1—C12 | 113.13 (10) |
H8B—C5—H8A | 109.7 (13) | C2—O2—C13 | 115.07 (10) |
C4A—C11B—C1 | 118.52 (11) | C3—O3—C14 | 115.74 (10) |
C4A—C11B—C11Bi | 119.84 (9) | C5—S6—C5i | 100.25 (8) |
O1—C1—C2—O2 | 4.46 (17) | C5—C4A—C11B—C1 | −177.70 (11) |
C11B—C1—C2—O2 | −175.30 (11) | C4—C4A—C11B—C11Bi | −178.19 (12) |
O1—C1—C2—C3 | −178.70 (10) | C5—C4A—C11B—C11Bi | 1.38 (19) |
C11B—C1—C2—C3 | 1.53 (18) | O1—C1—C11B—C4A | 177.17 (10) |
O2—C2—C3—O3 | −3.94 (17) | C2—C1—C11B—C4A | −3.07 (18) |
C1—C2—C3—O3 | 179.25 (10) | O1—C1—C11B—C11Bi | −1.89 (19) |
O2—C2—C3—C4 | 177.19 (11) | C2—C1—C11B—C11Bi | 177.87 (12) |
C1—C2—C3—C4 | 0.38 (18) | C2—C1—O1—C12 | 105.35 (13) |
O3—C3—C4—C4A | −179.48 (11) | C11B—C1—O1—C12 | −74.88 (15) |
C2—C3—C4—C4A | −0.70 (19) | C1—C2—O2—C13 | −101.06 (14) |
C3—C4—C4A—C11B | −0.89 (19) | C3—C2—O2—C13 | 82.14 (15) |
C3—C4—C4A—C5 | 179.54 (11) | C4—C3—O3—C14 | −1.37 (18) |
C4—C4A—C5—S6 | −104.20 (12) | C2—C3—O3—C14 | 179.81 (11) |
C11B—C4A—C5—S6 | 76.23 (13) | C4A—C5—S6—C5i | −44.52 (7) |
C4—C4A—C11B—C1 | 2.73 (18) |
Symmetry code: (i) −x+1, y, −z+3/2. |
C20H24O7S | F(000) = 864 |
Mr = 408.45 | Dx = 1.472 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 14600 reflections |
a = 8.8113 (3) Å | θ = 1.0–27.5° |
b = 12.2699 (3) Å | µ = 0.22 mm−1 |
c = 17.5640 (6) Å | T = 150 K |
β = 103.988 (2)° | Prism, colourless |
V = 1842.60 (10) Å3 | 0.2 × 0.2 × 0.2 mm |
Z = 4 |
KappaCCD diffractometer | 2111 independent reflections |
Radiation source: Enraf Nonius FR590 | 1775 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.110 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | h = −11→11 |
Tmin = 0.96, Tmax = 1.033 | k = −15→15 |
14844 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0619P)2 + 1.7711P] where P = (Fo2 + 2Fc2)/3 |
2111 reflections | (Δ/σ)max = 0.006 |
180 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C20H24O7S | V = 1842.60 (10) Å3 |
Mr = 408.45 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 8.8113 (3) Å | µ = 0.22 mm−1 |
b = 12.2699 (3) Å | T = 150 K |
c = 17.5640 (6) Å | 0.2 × 0.2 × 0.2 mm |
β = 103.988 (2)° |
KappaCCD diffractometer | 2111 independent reflections |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | 1775 reflections with I > 2σ(I) |
Tmin = 0.96, Tmax = 1.033 | Rint = 0.110 |
14844 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.30 e Å−3 |
2111 reflections | Δρmin = −0.39 e Å−3 |
180 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.1307 (2) | 0.16085 (14) | 0.33121 (10) | 0.0212 (4) | |
C2 | 0.2817 (2) | 0.16099 (14) | 0.38027 (10) | 0.0219 (4) | |
C3 | 0.3846 (2) | 0.24607 (15) | 0.37397 (10) | 0.0228 (4) | |
C4 | 0.3340 (2) | 0.32981 (14) | 0.32078 (10) | 0.0221 (4) | |
C4A | 0.1828 (2) | 0.32929 (14) | 0.27266 (10) | 0.0209 (4) | |
C5 | 0.1282 (2) | 0.42173 (14) | 0.21689 (11) | 0.0241 (4) | |
C11B | 0.08030 (19) | 0.24316 (14) | 0.27612 (10) | 0.0210 (4) | |
C12 | −0.0606 (3) | 0.1030 (2) | 0.39317 (18) | 0.0457 (6) | |
C13 | 0.3584 (3) | 0.0963 (2) | 0.51153 (12) | 0.0368 (5) | |
C14 | 0.6423 (2) | 0.31688 (19) | 0.40804 (14) | 0.0337 (5) | |
O1 | 0.03009 (15) | 0.07741 (10) | 0.33878 (7) | 0.0246 (3) | |
O2 | 0.32735 (16) | 0.07378 (10) | 0.42962 (7) | 0.0270 (3) | |
O3 | 0.53039 (14) | 0.24138 (11) | 0.42333 (7) | 0.0287 (3) | |
O6 | 0.0871 (3) | 0.5785 (2) | 0.31160 (17) | 0.0299 (6) | 0.5 |
S1 | 0 | 0.51860 (5) | 0.25 | 0.0332 (2) | |
H4 | 0.401 (3) | 0.3897 (18) | 0.3150 (13) | 0.027 (5)* | |
H5A | 0.216 (3) | 0.4675 (18) | 0.2093 (12) | 0.028 (5)* | |
H5B | 0.070 (3) | 0.3939 (18) | 0.1668 (13) | 0.028 (5)* | |
H12A | −0.127 (4) | 0.039 (3) | 0.3966 (17) | 0.066 (9)* | |
H12B | −0.004 (4) | 0.111 (3) | 0.441 (2) | 0.085 (12)* | |
H12C | −0.112 (4) | 0.174 (3) | 0.382 (2) | 0.082 (11)* | |
H13A | 0.265 (5) | 0.128 (3) | 0.523 (2) | 0.090 (12)* | |
H13B | 0.456 (4) | 0.149 (3) | 0.526 (2) | 0.079 (10)* | |
H13C | 0.370 (3) | 0.030 (2) | 0.5379 (15) | 0.040 (6)* | |
H14A | 0.748 (3) | 0.298 (2) | 0.4450 (15) | 0.041 (6)* | |
H14B | 0.615 (3) | 0.390 (2) | 0.4154 (16) | 0.049 (7)* | |
H14C | 0.651 (3) | 0.308 (2) | 0.3549 (16) | 0.038 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0197 (8) | 0.0197 (8) | 0.0242 (9) | −0.0013 (6) | 0.0051 (7) | −0.0024 (6) |
C2 | 0.0229 (9) | 0.0203 (8) | 0.0216 (8) | 0.0026 (7) | 0.0038 (7) | 0.0003 (6) |
C3 | 0.0164 (8) | 0.0256 (8) | 0.0249 (9) | 0.0007 (7) | 0.0022 (7) | −0.0026 (7) |
C4 | 0.0185 (8) | 0.0218 (8) | 0.0256 (9) | −0.0013 (7) | 0.0047 (7) | −0.0011 (7) |
C4A | 0.0176 (8) | 0.0224 (8) | 0.0223 (8) | 0.0017 (6) | 0.0042 (6) | 0.0002 (7) |
C5 | 0.0201 (9) | 0.0239 (8) | 0.0274 (9) | 0.0007 (7) | 0.0039 (7) | 0.0034 (7) |
C11B | 0.0177 (9) | 0.0217 (8) | 0.0226 (8) | 0.0016 (6) | 0.0031 (7) | −0.0022 (6) |
C12 | 0.0459 (14) | 0.0396 (13) | 0.0619 (17) | −0.0165 (11) | 0.0332 (13) | −0.0159 (11) |
C13 | 0.0491 (14) | 0.0359 (11) | 0.0246 (10) | 0.0063 (10) | 0.0073 (9) | 0.0057 (8) |
C14 | 0.0175 (9) | 0.0410 (12) | 0.0398 (12) | −0.0031 (8) | 0.0014 (8) | 0.0095 (9) |
O1 | 0.0230 (7) | 0.0216 (6) | 0.0295 (7) | −0.0037 (5) | 0.0069 (5) | −0.0003 (5) |
O2 | 0.0307 (7) | 0.0224 (7) | 0.0247 (7) | 0.0024 (5) | 0.0003 (5) | 0.0027 (5) |
O3 | 0.0176 (7) | 0.0322 (7) | 0.0318 (7) | −0.0027 (5) | −0.0026 (5) | 0.0066 (5) |
O6 | 0.0215 (13) | 0.0262 (13) | 0.0417 (15) | −0.0076 (10) | 0.0070 (11) | −0.0150 (11) |
S1 | 0.0210 (3) | 0.0208 (3) | 0.0577 (5) | 0 | 0.0093 (3) | 0 |
C1—O1 | 1.382 (2) | C12—O1 | 1.421 (3) |
C1—C11B | 1.395 (2) | C12—H12A | 0.99 (3) |
C1—C2 | 1.399 (2) | C12—H12B | 0.88 (4) |
C2—O2 | 1.375 (2) | C12—H12C | 0.98 (4) |
C2—C3 | 1.405 (3) | C13—O2 | 1.425 (2) |
C3—O3 | 1.366 (2) | C13—H13A | 0.98 (4) |
C3—C4 | 1.388 (3) | C13—H13B | 1.05 (4) |
C4—C4A | 1.395 (2) | C13—H13C | 0.93 (3) |
C4—H4 | 0.96 (2) | C14—O3 | 1.425 (2) |
C4A—C11B | 1.401 (2) | C14—H14A | 1.02 (3) |
C4A—C5 | 1.500 (2) | C14—H14B | 0.94 (3) |
C5—S1 | 1.8289 (19) | C14—H14C | 0.96 (3) |
C5—H5A | 0.99 (2) | O6—S1 | 1.378 (3) |
C5—H5B | 0.97 (2) | S1—O6i | 1.378 (3) |
C11B—C11Bi | 1.489 (3) | S1—C5i | 1.8289 (19) |
O1—C1—C11B | 119.94 (15) | H12A—C12—H12B | 104 (3) |
O1—C1—C2 | 118.59 (15) | O1—C12—H12C | 112 (2) |
C11B—C1—C2 | 121.47 (16) | H12A—C12—H12C | 118 (3) |
O2—C2—C1 | 118.48 (15) | H12B—C12—H12C | 103 (3) |
O2—C2—C3 | 122.16 (16) | O2—C13—H13A | 109 (2) |
C1—C2—C3 | 119.23 (16) | O2—C13—H13B | 108.3 (19) |
O3—C3—C4 | 123.96 (16) | H13A—C13—H13B | 113 (3) |
O3—C3—C2 | 116.40 (15) | O2—C13—H13C | 107.8 (15) |
C4—C3—C2 | 119.63 (16) | H13A—C13—H13C | 104 (3) |
C3—C4—C4A | 120.62 (16) | H13B—C13—H13C | 115 (3) |
C3—C4—H4 | 122.0 (13) | O3—C14—H14A | 107.3 (14) |
C4A—C4—H4 | 117.3 (13) | O3—C14—H14B | 112.3 (17) |
C4—C4A—C11B | 120.56 (16) | H14A—C14—H14B | 111 (2) |
C4—C4A—C5 | 120.05 (16) | O3—C14—H14C | 109.2 (15) |
C11B—C4A—C5 | 119.39 (15) | H14A—C14—H14C | 109 (2) |
C4A—C5—S1 | 114.13 (13) | H14B—C14—H14C | 109 (2) |
C4A—C5—H5A | 112.2 (12) | C1—O1—C12 | 112.31 (15) |
S1—C5—H5A | 103.8 (13) | C2—O2—C13 | 116.20 (15) |
C4A—C5—H5B | 110.1 (13) | C3—O3—C14 | 116.12 (14) |
S1—C5—H5B | 106.5 (13) | O6—S1—O6i | 115.5 (2) |
H5A—C5—H5B | 109.8 (18) | O6—S1—C5 | 109.07 (13) |
C1—C11B—C4A | 118.41 (15) | O6i—S1—C5 | 111.52 (13) |
C1—C11B—C11Bi | 121.56 (13) | O6—S1—C5i | 111.52 (13) |
C4A—C11B—C11Bi | 119.99 (13) | O6i—S1—C5i | 109.07 (13) |
O1—C12—H12A | 107.5 (18) | C5—S1—C5i | 98.93 (12) |
O1—C12—H12B | 113 (3) | ||
O1—C1—C2—O2 | 4.9 (2) | O1—C1—C11B—C11Bi | −0.7 (3) |
C11B—C1—C2—O2 | −175.77 (15) | C2—C1—C11B—C11Bi | 180.00 (17) |
O1—C1—C2—C3 | −179.16 (15) | C4—C4A—C11B—C1 | 2.9 (3) |
C11B—C1—C2—C3 | 0.1 (3) | C5—C4A—C11B—C1 | −176.77 (16) |
O2—C2—C3—O3 | −4.1 (3) | C4—C4A—C11B—C11Bi | −179.43 (17) |
C1—C2—C3—O3 | −179.84 (15) | C5—C4A—C11B—C11Bi | 0.9 (3) |
O2—C2—C3—C4 | 177.34 (15) | C11B—C1—O1—C12 | −88.6 (2) |
C1—C2—C3—C4 | 1.6 (3) | C2—C1—O1—C12 | 90.7 (2) |
O3—C3—C4—C4A | −179.52 (16) | C1—C2—O2—C13 | −115.0 (2) |
C2—C3—C4—C4A | −1.1 (3) | C3—C2—O2—C13 | 69.2 (2) |
C3—C4—C4A—C11B | −1.2 (3) | C4—C3—O3—C14 | −11.7 (3) |
C3—C4—C4A—C5 | 178.45 (16) | C2—C3—O3—C14 | 169.83 (17) |
C4—C4A—C5—S1 | −102.63 (17) | C4A—C5—S1—O6 | 71.57 (19) |
C11B—C4A—C5—S1 | 77.04 (19) | C4A—C5—S1—O6i | −159.66 (17) |
O1—C1—C11B—C4A | 176.92 (15) | C4A—C5—S1—C5i | −44.99 (11) |
C2—C1—C11B—C4A | −2.4 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
C20H24O8S | F(000) = 896 |
Mr = 424.45 | Dx = 1.405 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 21800 reflections |
a = 8.7886 (2) Å | θ = 1.0–27.5° |
b = 15.3454 (3) Å | µ = 0.21 mm−1 |
c = 15.4972 (4) Å | T = 150 K |
β = 106.2770° | Prism, colourless |
V = 2006.25 (8) Å3 | 0.25 × 0.2 × 0.15 mm |
Z = 4 |
KappaCCD diffractometer | 4583 independent reflections |
Radiation source: Enraf Nonius FR590 | 3388 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | h = −11→11 |
Tmin = 0.98, Tmax = 1.014 | k = −19→19 |
30410 measured reflections | l = −18→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0451P)2 + 0.9601P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.005 |
4583 reflections | Δρmax = 0.26 e Å−3 |
359 parameters | Δρmin = −0.39 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0072 (11) |
C20H24O8S | V = 2006.25 (8) Å3 |
Mr = 424.45 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.7886 (2) Å | µ = 0.21 mm−1 |
b = 15.3454 (3) Å | T = 150 K |
c = 15.4972 (4) Å | 0.25 × 0.2 × 0.15 mm |
β = 106.2770° |
KappaCCD diffractometer | 4583 independent reflections |
Absorption correction: multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | 3388 reflections with I > 2σ(I) |
Tmin = 0.98, Tmax = 1.014 | Rint = 0.057 |
30410 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.26 e Å−3 |
4583 reflections | Δρmin = −0.39 e Å−3 |
359 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7995 (2) | 0.34436 (11) | 0.49995 (11) | 0.0218 (4) | |
C2 | 0.9578 (2) | 0.36152 (11) | 0.54564 (12) | 0.0226 (4) | |
C3 | 1.0768 (2) | 0.30216 (11) | 0.54148 (12) | 0.0238 (4) | |
C4 | 1.0359 (2) | 0.22407 (11) | 0.49598 (12) | 0.0241 (4) | |
C4A | 0.8777 (2) | 0.20595 (11) | 0.45292 (11) | 0.0222 (4) | |
C5 | 0.8376 (2) | 0.11862 (11) | 0.40784 (13) | 0.0245 (4) | |
C7 | 0.6126 (2) | 0.11438 (12) | 0.50394 (12) | 0.0240 (4) | |
C7A | 0.5201 (2) | 0.16875 (11) | 0.42681 (12) | 0.0233 (4) | |
C8 | 0.3672 (2) | 0.14309 (12) | 0.37870 (13) | 0.0269 (4) | |
C9 | 0.2787 (2) | 0.19511 (12) | 0.30995 (13) | 0.0305 (4) | |
C010 | 0.7574 (2) | 0.26612 (11) | 0.45174 (12) | 0.0225 (4) | |
C10 | 0.3419 (2) | 0.27306 (12) | 0.28921 (12) | 0.0287 (4) | |
C11 | 0.4969 (2) | 0.29688 (11) | 0.33510 (12) | 0.0254 (4) | |
C11A | 0.5891 (2) | 0.24470 (11) | 0.40486 (12) | 0.0234 (4) | |
C12 | 0.6937 (3) | 0.48870 (12) | 0.47979 (15) | 0.0315 (4) | |
C13 | 1.0371 (5) | 0.42582 (19) | 0.68788 (16) | 0.0565 (8) | |
C14 | 1.3515 (3) | 0.27458 (17) | 0.5670 (2) | 0.0456 (6) | |
C15 | 0.0835 (3) | 0.08715 (15) | 0.24673 (16) | 0.0404 (5) | |
C16 | 0.1442 (3) | 0.37914 (16) | 0.25046 (17) | 0.0453 (6) | |
C17 | 0.6114 (3) | 0.36332 (18) | 0.23188 (17) | 0.0478 (6) | |
O1 | 0.68036 (14) | 0.39925 (7) | 0.50612 (8) | 0.0256 (3) | |
O2 | 0.99568 (15) | 0.43757 (8) | 0.59425 (8) | 0.0286 (3) | |
O3 | 1.22822 (14) | 0.32560 (8) | 0.58625 (9) | 0.0305 (3) | |
O6A | 0.86896 (15) | 0.01927 (8) | 0.55267 (9) | 0.0320 (3) | |
O6B | 0.66782 (16) | −0.02143 (8) | 0.41224 (9) | 0.0344 (3) | |
O9 | 0.12642 (17) | 0.17617 (9) | 0.26091 (11) | 0.0463 (4) | |
O10 | 0.25441 (16) | 0.32601 (9) | 0.22129 (9) | 0.0362 (3) | |
O11 | 0.56027 (16) | 0.37245 (8) | 0.31174 (9) | 0.0318 (3) | |
S6 | 0.75182 (5) | 0.04630 (3) | 0.47175 (3) | 0.02502 (14) | |
H4 | 1.118 (2) | 0.1820 (12) | 0.4945 (13) | 0.025 (5)* | |
H5A | 0.757 (2) | 0.1224 (12) | 0.3486 (14) | 0.026 (5)* | |
H5B | 0.926 (3) | 0.0871 (13) | 0.4014 (13) | 0.030 (5)* | |
H7A | 0.543 (2) | 0.0736 (13) | 0.5257 (13) | 0.027 (5)* | |
H7B | 0.671 (2) | 0.1491 (13) | 0.5517 (14) | 0.029 (5)* | |
H8 | 0.322 (3) | 0.0888 (14) | 0.3948 (15) | 0.039 (6)* | |
H12A | 0.585 (4) | 0.5101 (18) | 0.4482 (19) | 0.071 (8)* | |
H12B | 0.732 (3) | 0.5230 (18) | 0.533 (2) | 0.069 (8)* | |
H12C | 0.764 (3) | 0.4942 (17) | 0.4404 (18) | 0.061 (8)* | |
H13A | 0.946 (4) | 0.408 (2) | 0.699 (2) | 0.081 (12)* | |
H13B | 1.061 (3) | 0.4816 (17) | 0.7175 (16) | 0.051 (7)* | |
H13C | 1.122 (5) | 0.379 (2) | 0.709 (3) | 0.111 (13)* | |
H14A | 1.351 (3) | 0.2169 (17) | 0.5937 (17) | 0.051 (7)* | |
H14B | 1.449 (3) | 0.3019 (16) | 0.5963 (17) | 0.050 (7)* | |
H14C | 1.334 (3) | 0.2751 (15) | 0.4961 (19) | 0.051 (7)* | |
H15A | 0.155 (4) | 0.0632 (19) | 0.210 (2) | 0.077 (9)* | |
H15B | −0.028 (3) | 0.0859 (14) | 0.2125 (15) | 0.043 (6)* | |
H15C | 0.091 (3) | 0.0574 (17) | 0.3031 (19) | 0.061 (8)* | |
H16A | 0.061 (4) | 0.342 (2) | 0.273 (2) | 0.080 (10)* | |
H16B | 0.087 (3) | 0.4181 (16) | 0.1982 (18) | 0.054 (7)* | |
H16C | 0.198 (3) | 0.4162 (17) | 0.3017 (18) | 0.054 (7)* | |
H17A | 0.697 (3) | 0.3171 (19) | 0.2422 (19) | 0.068 (8)* | |
H17B | 0.521 (4) | 0.341 (2) | 0.181 (2) | 0.080 (10)* | |
H17C | 0.659 (3) | 0.4188 (19) | 0.2214 (18) | 0.065 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0217 (8) | 0.0216 (8) | 0.0226 (9) | 0.0040 (7) | 0.0068 (7) | 0.0048 (7) |
C2 | 0.0253 (9) | 0.0202 (8) | 0.0221 (9) | −0.0011 (7) | 0.0062 (7) | 0.0002 (7) |
C3 | 0.0206 (9) | 0.0255 (9) | 0.0230 (9) | −0.0009 (7) | 0.0025 (7) | −0.0004 (7) |
C4 | 0.0215 (9) | 0.0247 (9) | 0.0254 (9) | 0.0042 (7) | 0.0053 (7) | 0.0004 (7) |
C4A | 0.0217 (9) | 0.0229 (8) | 0.0199 (9) | 0.0010 (7) | 0.0022 (7) | 0.0001 (7) |
C5 | 0.0224 (9) | 0.0231 (9) | 0.0258 (10) | 0.0022 (7) | 0.0031 (8) | −0.0020 (7) |
C7 | 0.0208 (9) | 0.0240 (9) | 0.0251 (9) | 0.0007 (7) | 0.0028 (8) | −0.0003 (7) |
C7A | 0.0209 (9) | 0.0235 (8) | 0.0235 (9) | 0.0039 (7) | 0.0030 (7) | −0.0026 (7) |
C8 | 0.0216 (9) | 0.0265 (9) | 0.0303 (10) | 0.0009 (7) | 0.0036 (8) | −0.0030 (8) |
C9 | 0.0223 (9) | 0.0334 (10) | 0.0301 (10) | 0.0039 (8) | −0.0019 (8) | −0.0079 (8) |
C010 | 0.0214 (9) | 0.0231 (8) | 0.0213 (9) | 0.0019 (7) | 0.0030 (7) | 0.0038 (7) |
C10 | 0.0275 (10) | 0.0328 (10) | 0.0210 (9) | 0.0094 (8) | −0.0012 (8) | −0.0018 (7) |
C11 | 0.0274 (9) | 0.0236 (9) | 0.0242 (9) | 0.0046 (7) | 0.0057 (8) | −0.0009 (7) |
C11A | 0.0209 (8) | 0.0247 (9) | 0.0225 (9) | 0.0036 (7) | 0.0026 (7) | −0.0031 (7) |
C12 | 0.0347 (11) | 0.0210 (9) | 0.0378 (12) | 0.0045 (8) | 0.0082 (10) | 0.0051 (8) |
C13 | 0.096 (2) | 0.0431 (14) | 0.0278 (12) | 0.0129 (15) | 0.0129 (14) | −0.0085 (10) |
C14 | 0.0190 (10) | 0.0484 (14) | 0.0636 (17) | 0.0026 (10) | 0.0020 (10) | −0.0235 (13) |
C15 | 0.0336 (12) | 0.0444 (13) | 0.0354 (12) | −0.0108 (10) | −0.0032 (10) | 0.0043 (10) |
C16 | 0.0464 (14) | 0.0421 (13) | 0.0407 (13) | 0.0216 (11) | 0.0011 (11) | −0.0017 (11) |
C17 | 0.0549 (15) | 0.0520 (15) | 0.0411 (14) | 0.0045 (13) | 0.0210 (12) | 0.0092 (11) |
O1 | 0.0242 (6) | 0.0209 (6) | 0.0325 (7) | 0.0038 (5) | 0.0094 (5) | 0.0018 (5) |
O2 | 0.0312 (7) | 0.0249 (6) | 0.0280 (7) | −0.0021 (5) | 0.0057 (6) | −0.0048 (5) |
O3 | 0.0194 (6) | 0.0333 (7) | 0.0356 (8) | 0.0004 (5) | 0.0027 (6) | −0.0107 (6) |
O6A | 0.0284 (7) | 0.0319 (7) | 0.0321 (7) | 0.0085 (6) | 0.0030 (6) | 0.0074 (6) |
O6B | 0.0325 (7) | 0.0268 (7) | 0.0417 (8) | −0.0047 (6) | 0.0068 (6) | −0.0089 (6) |
O9 | 0.0270 (7) | 0.0386 (8) | 0.0565 (10) | 0.0029 (6) | −0.0158 (7) | −0.0092 (7) |
O10 | 0.0341 (8) | 0.0401 (8) | 0.0274 (7) | 0.0156 (6) | −0.0027 (6) | 0.0025 (6) |
O11 | 0.0375 (8) | 0.0290 (7) | 0.0275 (7) | 0.0035 (6) | 0.0067 (6) | 0.0057 (5) |
S6 | 0.0228 (2) | 0.0213 (2) | 0.0281 (3) | 0.00192 (17) | 0.00245 (18) | −0.00060 (17) |
C1—O1 | 1.368 (2) | C11—C11A | 1.406 (2) |
C1—C2 | 1.398 (2) | C12—O1 | 1.446 (2) |
C1—C010 | 1.408 (2) | C12—H12A | 1.00 (3) |
C2—O2 | 1.378 (2) | C12—H12B | 0.96 (3) |
C2—C3 | 1.402 (2) | C12—H12C | 0.98 (3) |
C3—O3 | 1.365 (2) | C13—O2 | 1.405 (3) |
C3—C4 | 1.386 (2) | C13—H13A | 0.91 (3) |
C4—C4A | 1.391 (2) | C13—H13B | 0.97 (3) |
C4—H4 | 0.97 (2) | C13—H13C | 1.02 (4) |
C4A—C010 | 1.400 (2) | C14—O3 | 1.435 (2) |
C4A—C5 | 1.507 (2) | C14—H14A | 0.98 (3) |
C5—S6 | 1.7886 (19) | C14—H14B | 0.94 (3) |
C5—H5A | 0.99 (2) | C14—H14C | 1.07 (3) |
C5—H5B | 0.95 (2) | C15—O9 | 1.418 (3) |
C7—C7A | 1.497 (2) | C15—H15A | 1.02 (3) |
C7—S6 | 1.7830 (18) | C15—H15B | 0.97 (2) |
C7—H7A | 1.00 (2) | C15—H15C | 0.97 (3) |
C7—H7B | 0.94 (2) | C16—O10 | 1.433 (3) |
C7A—C8 | 1.398 (2) | C16—H16A | 1.05 (3) |
C7A—C11A | 1.399 (3) | C16—H16B | 1.02 (3) |
C8—C9 | 1.383 (3) | C16—H16C | 0.98 (3) |
C8—H8 | 0.98 (2) | C17—O11 | 1.437 (3) |
C9—O9 | 1.372 (2) | C17—H17A | 1.01 (3) |
C9—C10 | 1.394 (3) | C17—H17B | 1.00 (3) |
C010—C11A | 1.490 (2) | C17—H17C | 0.98 (3) |
C10—O10 | 1.381 (2) | O6A—S6 | 1.4425 (13) |
C10—C11 | 1.397 (3) | O6B—S6 | 1.4472 (13) |
C11—O11 | 1.378 (2) | ||
O1—C1—C2 | 121.41 (15) | O1—C12—H12A | 108.0 (16) |
O1—C1—C010 | 118.02 (15) | O1—C12—H12B | 108.4 (17) |
C2—C1—C010 | 120.39 (16) | H12A—C12—H12B | 107 (2) |
O2—C2—C1 | 119.35 (15) | O1—C12—H12C | 111.8 (15) |
O2—C2—C3 | 120.41 (15) | H12A—C12—H12C | 110 (2) |
C1—C2—C3 | 120.24 (15) | H12B—C12—H12C | 111 (2) |
O3—C3—C4 | 124.29 (16) | O2—C13—H13A | 105 (2) |
O3—C3—C2 | 116.03 (15) | O2—C13—H13B | 109.6 (14) |
C4—C3—C2 | 119.65 (16) | H13A—C13—H13B | 105 (3) |
C3—C4—C4A | 119.92 (16) | O2—C13—H13C | 112 (2) |
C3—C4—H4 | 119.8 (11) | H13A—C13—H13C | 109 (3) |
C4A—C4—H4 | 120.2 (11) | H13B—C13—H13C | 115 (3) |
C4—C4A—C010 | 121.60 (16) | O3—C14—H14A | 108.3 (15) |
C4—C4A—C5 | 118.22 (16) | O3—C14—H14B | 106.9 (15) |
C010—C4A—C5 | 120.18 (15) | H14A—C14—H14B | 108 (2) |
C4A—C5—S6 | 112.05 (13) | O3—C14—H14C | 108.0 (13) |
C4A—C5—H5A | 113.0 (11) | H14A—C14—H14C | 115 (2) |
S6—C5—H5A | 104.1 (11) | H14B—C14—H14C | 110 (2) |
C4A—C5—H5B | 114.2 (12) | O9—C15—H15A | 104.7 (17) |
S6—C5—H5B | 103.2 (12) | O9—C15—H15B | 106.7 (13) |
H5A—C5—H5B | 109.4 (16) | H15A—C15—H15B | 112 (2) |
C7A—C7—S6 | 111.40 (13) | O9—C15—H15C | 111.4 (15) |
C7A—C7—H7A | 112.0 (11) | H15A—C15—H15C | 115 (2) |
S6—C7—H7A | 105.0 (11) | H15B—C15—H15C | 107 (2) |
C7A—C7—H7B | 111.6 (12) | O10—C16—H16A | 112.8 (17) |
S6—C7—H7B | 106.6 (12) | O10—C16—H16B | 108.0 (15) |
H7A—C7—H7B | 110.0 (17) | H16A—C16—H16B | 110 (2) |
C8—C7A—C11A | 121.48 (16) | O10—C16—H16C | 111.5 (15) |
C8—C7A—C7 | 119.63 (16) | H16A—C16—H16C | 106 (2) |
C11A—C7A—C7 | 118.88 (15) | H16B—C16—H16C | 109 (2) |
C9—C8—C7A | 119.83 (18) | O11—C17—H17A | 109.2 (16) |
C9—C8—H8 | 120.3 (13) | O11—C17—H17B | 109.6 (18) |
C7A—C8—H8 | 119.8 (13) | H17A—C17—H17B | 106 (2) |
O9—C9—C8 | 123.73 (18) | O11—C17—H17C | 107.9 (17) |
O9—C9—C10 | 116.37 (17) | H17A—C17—H17C | 108 (2) |
C8—C9—C10 | 119.87 (17) | H17B—C17—H17C | 116 (2) |
C4A—C010—C1 | 118.05 (15) | C1—O1—C12 | 116.14 (14) |
C4A—C010—C11A | 120.24 (15) | C2—O2—C13 | 114.13 (16) |
C1—C010—C11A | 121.62 (15) | C3—O3—C14 | 115.84 (15) |
O10—C10—C9 | 120.51 (16) | C9—O9—C15 | 117.77 (16) |
O10—C10—C11 | 119.31 (17) | C10—O10—C16 | 112.08 (16) |
C9—C10—C11 | 120.14 (16) | C11—O11—C17 | 113.04 (17) |
O11—C11—C10 | 119.65 (16) | O6A—S6—O6B | 117.37 (8) |
O11—C11—C11A | 119.53 (16) | O6A—S6—C7 | 107.69 (8) |
C10—C11—C11A | 120.82 (17) | O6B—S6—C7 | 109.37 (9) |
C7A—C11A—C11 | 117.76 (16) | O6A—S6—C5 | 110.55 (9) |
C7A—C11A—C010 | 120.25 (15) | O6B—S6—C5 | 108.15 (9) |
C11—C11A—C010 | 121.93 (16) | C7—S6—C5 | 102.71 (9) |
O1—C1—C2—O2 | −3.4 (2) | C9—C10—C11—O11 | 177.56 (17) |
C010—C1—C2—O2 | −178.37 (15) | O10—C10—C11—C11A | 179.73 (16) |
O1—C1—C2—C3 | 177.05 (16) | C9—C10—C11—C11A | −2.4 (3) |
C010—C1—C2—C3 | 2.1 (3) | C8—C7A—C11A—C11 | 2.8 (3) |
O2—C2—C3—O3 | −1.3 (2) | C7—C7A—C11A—C11 | −176.87 (16) |
C1—C2—C3—O3 | 178.30 (15) | C8—C7A—C11A—C010 | −174.35 (16) |
O2—C2—C3—C4 | 176.85 (16) | C7—C7A—C11A—C010 | 6.0 (2) |
C1—C2—C3—C4 | −3.6 (3) | O11—C11—C11A—C7A | 179.69 (16) |
O3—C3—C4—C4A | 179.51 (17) | C10—C11—C11A—C7A | −0.3 (3) |
C2—C3—C4—C4A | 1.6 (3) | O11—C11—C11A—C010 | −3.2 (3) |
C3—C4—C4A—C010 | 2.0 (3) | C10—C11—C11A—C010 | 176.77 (17) |
C3—C4—C4A—C5 | −177.24 (16) | C4A—C010—C11A—C7A | 54.9 (2) |
C4—C4A—C5—S6 | 104.21 (17) | C1—C010—C11A—C7A | −121.53 (19) |
C010—C4A—C5—S6 | −75.08 (19) | C4A—C010—C11A—C11 | −122.14 (19) |
S6—C7—C7A—C8 | 99.79 (18) | C1—C010—C11A—C11 | 61.4 (2) |
S6—C7—C7A—C11A | −80.52 (18) | C2—C1—O1—C12 | 57.4 (2) |
C11A—C7A—C8—C9 | −2.5 (3) | C010—C1—O1—C12 | −127.54 (17) |
C7—C7A—C8—C9 | 177.14 (17) | C1—C2—O2—C13 | 106.9 (2) |
C7A—C8—C9—O9 | −178.22 (18) | C3—C2—O2—C13 | −73.5 (3) |
C7A—C8—C9—C10 | −0.3 (3) | C4—C3—O3—C14 | 14.4 (3) |
C4—C4A—C010—C1 | −3.5 (3) | C2—C3—O3—C14 | −167.5 (2) |
C5—C4A—C010—C1 | 175.74 (15) | C8—C9—O9—C15 | −31.5 (3) |
C4—C4A—C010—C11A | 179.91 (16) | C10—C9—O9—C15 | 150.5 (2) |
C5—C4A—C010—C11A | −0.8 (3) | C9—C10—O10—C16 | 81.1 (2) |
O1—C1—C010—C4A | −173.71 (15) | C11—C10—O10—C16 | −101.1 (2) |
C2—C1—C010—C4A | 1.5 (3) | C10—C11—O11—C17 | −78.3 (2) |
O1—C1—C010—C11A | 2.8 (2) | C11A—C11—O11—C17 | 101.7 (2) |
C2—C1—C010—C11A | 177.97 (16) | C7A—C7—S6—O6A | 161.07 (12) |
O9—C9—C10—O10 | −1.4 (3) | C7A—C7—S6—O6B | −70.34 (15) |
C8—C9—C10—O10 | −179.44 (17) | C7A—C7—S6—C5 | 44.36 (15) |
O9—C9—C10—C11 | −179.20 (17) | C4A—C5—S6—O6A | −70.03 (14) |
C8—C9—C10—C11 | 2.7 (3) | C4A—C5—S6—O6B | 160.20 (12) |
O10—C10—C11—O11 | −0.3 (3) | C4A—C5—S6—C7 | 44.62 (15) |
Experimental details
(oxepine) | (azepine) | (sulfide) | (sulfoxide) | |
Crystal data | ||||
Chemical formula | C20H24O7 | C21H29ClNO6 | C20H24O6S | C20H24O7S |
Mr | 376.39 | 434.9 | 392.45 | 408.45 |
Crystal system, space group | Monoclinic, C2/c | Monoclinic, C2/c | Monoclinic, C2/c | Monoclinic, C2/c |
Temperature (K) | 150 | 150 | 150 | 150 |
a, b, c (Å) | 15.3519 (4), 10.4044 (3), 11.8506 (4) | 36.0403 (12), 7.8165 (2), 17.0066 (5) | 8.6029 (2), 12.2965 (3), 17.6032 (4) | 8.8113 (3), 12.2699 (3), 17.5640 (6) |
β (°) | 109.607 (2) | 111.7920 | 104.0380 | 103.988 (2) |
V (Å3) | 1783.11 (9) | 4448.5 (2) | 1806.55 (7) | 1842.60 (10) |
Z | 4 | 8 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.11 | 0.21 | 0.22 | 0.22 |
Crystal size (mm) | 0.2 × 0.2 × 0.1 | 0.25 × 0.15 × 0.1 | 0.2 × 0.1 × 0.1 | 0.2 × 0.2 × 0.2 |
Data collection | ||||
Diffractometer | KappaCCD diffractometer | KappaCCD diffractometer | KappaCCD diffractometer | KappaCCD diffractometer |
Absorption correction | Multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | Multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | Multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 | Multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 |
Tmin, Tmax | 0.992, 1.014 | 0.973, 1.015 | 0.975, 1.016 | 0.96, 1.033 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9423, 2043, 1501 | 36698, 4945, 3299 | 15259, 2388, 2003 | 14844, 2111, 1775 |
Rint | 0.063 | 0.082 | 0.054 | 0.110 |
(sin θ/λ)max (Å−1) | 0.650 | 0.645 | 0.685 | 0.651 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.125, 1.09 | 0.047, 0.112, 1.03 | 0.037, 0.099, 1.04 | 0.048, 0.135, 1.12 |
No. of reflections | 2043 | 4945 | 2388 | 2111 |
No. of parameters | 172 | 392 | 172 | 180 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.23 | 0.28, −0.29 | 0.32, −0.30 | 0.30, −0.39 |
(sulfone) | |
Crystal data | |
Chemical formula | C20H24O8S |
Mr | 424.45 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 8.7886 (2), 15.3454 (3), 15.4972 (4) |
β (°) | 106.2770 |
V (Å3) | 2006.25 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.25 × 0.2 × 0.15 |
Data collection | |
Diffractometer | KappaCCD diffractometer |
Absorption correction | Multi-scan R.H. Blessing, Acta Cryst. (1995), A51, 33-38 |
Tmin, Tmax | 0.98, 1.014 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30410, 4583, 3388 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.104, 1.02 |
No. of reflections | 4583 |
No. of parameters | 359 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.39 |
Computer programs: Collect (Nonius BV, 1997-2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
Acknowledgements
We thank the Association for International Cancer Research for financial support. We also wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996) and of ORTEP3 for Windows for the generation of graphics (Farrugia, 1997).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arroyo, N., Haslinger, U., Mereiter, K. & Widhalm, M. (2000). Tetrahedron Asym. 11, 4207–4219. Web of Science CSD CrossRef CAS Google Scholar
Bandarage, U. K., Hanton, L. R. & Smith, R. A. J. (1995). Tetrahedron, 51, 787–800. CSD CrossRef CAS Web of Science Google Scholar
Banwell, M. G., Cameron, J. M., Corbett, M., Dupuche, J. R., Hamel, E., Lambert, J. N., Lin, C. M. & Mackay, M. F. (1992). Aust. J. Chem. 45, 1967–1982. CSD CrossRef CAS Google Scholar
Berg, U. & Bladh, H. (1999). Helv. Chim. Acta, 82, 323–325. CrossRef CAS Google Scholar
Bergemann, S., Brecht, R., Büttner, F., Guénard, D., Gust, R., Seitz, G., Stubbs, M. T. & Thoret, S. (2003). Bioorg. Med. Chem. 11, 1269–1281. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bott, G., Field, L. D. & Sternhell, S. (1980). J. Am. Chem. Soc. 102, 5618–5626. CrossRef CAS Web of Science Google Scholar
Boyé, O. & Brossi, A. (1992). The Alkaloids, Vol. 41, edited by A. Brossi & G. A. Cordell, ch. 3. San Diego: Academic Press. Google Scholar
Boyé, O., Getahun, Z., Grover, S., Hamel, E. & Brossi, A. (1993). J. Labelled Compd. Radiopharm. 33, 293–299. CAS Google Scholar
Boyé, O., Itoh, Y. & Brossi, A. (1989). Helv. Chim. Acta, 72, 1690–1696. CrossRef CAS Web of Science Google Scholar
Bringmann, G., Pfeifer, R.-M., Rummey, C., Pabst, T., Leusser, D. & Stalke, D. (2003). Z. Naturforsch. Teil B, 58, 231–236. CAS Google Scholar
Brossi, A. (1990). J. Med. Chem. 33, 2311–2319. CrossRef CAS PubMed Web of Science Google Scholar
Brossi, A., Boyé, O., Muzaffar, A., Yeh, H. J. C., Toome, V., Wegrzynski, B. & George, C. (1990). FEBS Lett. 262, 5–7. CSD CrossRef CAS PubMed Web of Science Google Scholar
Brossi, A., Lee, H.-H. & Yeh, H. J. C. (1999). Helv. Chim. Acta, 82, 1223–1224. CrossRef CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, M. P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cavazza, M., Zandomeneghi, M. & Pietra, F. (2000). Tetrahedron Lett. 41, 9129–9133. Web of Science CrossRef CAS Google Scholar
Charton, M. (1977). J. Org. Chem. 42, 2528–2529. CrossRef CAS Web of Science Google Scholar
Davis, P. D., Dougherty, G. J., Blakey, D. C., Galbraith, S. M., Tozer, G. M., Holder, A. L., Naylor, M. A., Nolan, J., Stratford, M. R. L., Chaplin, D. J. & Hill, S. A. (2002). Cancer Res. 62, 7247–7253. Web of Science PubMed CAS Google Scholar
Edwards, D. J., Pritchard, R. G. & Wallace, T. W. (2003). Tetrahedron Lett. 44, 4665–4668. Web of Science CSD CrossRef CAS Google Scholar
Engelhardt, L. M., Lueng, W. P., Raston, C. L. & White, A. H. (1985). Aust. J. Chem. 38, 977–983. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749. CrossRef CAS Web of Science Google Scholar
Fraser, R. R. & Schuber, F. J. (1970). Can. J. Chem. 48, 633–640. CrossRef CAS Web of Science Google Scholar
Hall, M. D. (1969). Progress in Stereochemistry, Vol. 4, edited by B. J. Aylett & M. M. Harris, pp. 1–42. London: Butterworths. Google Scholar
Insole, J. M. (1990a). J. Chem. Res. S, pp. 378–379. Google Scholar
Insole, J. M. (1990b). J. Chem. Res. M, pp. 2831–2867. Google Scholar
Itoh, T., Chika, J.-I., Shirakami, S., Ito, H., Yoshida, T., Kubo, Y. & Uenishi, J.-I. (1996). J. Org. Chem. 61, 3700–3705. CSD CrossRef PubMed CAS Web of Science Google Scholar
Janik, M. E. & Bane, S. L. (2002). Bioorg. Med. Chem. 10, 1895–1903. Web of Science CrossRef PubMed CAS Google Scholar
Kang, G. J., Getahun, Z., Muzaffar, A., Brossi, A. & Hamel, E. (1990). J. Biol. Chem. 265, 10255–10259. CAS PubMed Web of Science Google Scholar
Kashiwada, Y., Huang, L., Ballas, L. M., Jiang, J. B., Janzen, W. P. & Lee, K.-H. (1994). J. Med. Chem. 37, 195–200. CrossRef CAS PubMed Web of Science Google Scholar
Kiupel, B., Niederalt, C., Nieger, M., Grimme, S. & Vogtle, F. (1998). Angew. Chem. Int. Ed. 37, 3031–3034. Web of Science CrossRef CAS Google Scholar
Kochetkov, N. K., Khorlin, A. Y., Chizhov, O. S. & Sheichenko, V. I. (1962). Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) pp. 797–801. CrossRef Google Scholar
Kurland, R. J., Rubin, M. B. & Wise, W. B. (1964). J. Chem. Phys. 40, 2426–2427. CrossRef CAS Web of Science Google Scholar
Le Hello, C. (2000). The Alkaloids, Vol. 53, edited by G. A. Cordell, ch. 5. San Diego: Academic Press. Google Scholar
Lee, K.-H. (1999). Med. Res. Rev. 19, 569–596. Web of Science CrossRef PubMed CAS Google Scholar
Lessinger, L. & Margulis, T. N. (1978). Acta Cryst. B34, 578–584. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Loncar-Tomascovic, L., Sarac-Arneri, R., Hergold-Brundic, A., Nagl, A., Mintas, M. & Sandström, J. (2000). Helv. Chim. Acta, 83, 479–494. CrossRef CAS Google Scholar
Margulis, T. N. & Lessinger, L. (1978). Biochem. Biophys. Res. Commun. 83, 472–478. CSD CrossRef CAS PubMed Web of Science Google Scholar
Mislow, K., Glass, M. A. W., O'Brien, R. E., Rutkin, P., Steinberg, D. H., Weiss, J. & Djerassi, C. (1962). J. Am. Chem. Soc. 84, 1455–1478. CrossRef CAS Web of Science Google Scholar
Mislow, K., Glass, M. A. W., Hopps, H. B., Simon, E. & Wahl, G. H. (1964). J. Am. Chem. Soc. 86, 1710–1733. CrossRef CAS Web of Science Google Scholar
Miyake, Y., Oyamada, A., Nishibayashi, Y. & Uemura, S. (2002). Heteroat. Chem. 13, 270–275. Web of Science CrossRef CAS Google Scholar
Mrvoš-Sermek, D., Loncar-Tomaskovic, L., Hergold-Brundic, A., Mintas, M. & Nagl, A. (1998). Acta Cryst. C54, 877–879. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius BV (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Nyburg, S. C., Prasad, L., Behnam, B. A. & Hall, D. M. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 617–623. CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Cater Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Perrin, D. D., Armarego, W. L. F. & Perrin, D. R. (1980). Purification of Laboratory Chemicals, 2nd ed. Oxford: Pergamon Press. Google Scholar
Roszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190–3193. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Schmid, R., Cereghetti, M., Heiser, B., Schönholzer, P. & Hansen, H.-J. (1988). Helv. Chim. Acta, 71, 897–929. CSD CrossRef CAS Web of Science Google Scholar
Schneider, M., Linden, A. & Rippert, A. J. (2000). Acta Cryst. C56, 1004–1006. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Shi, Q., Chen, K., Brossi, A., Verdier-Pinard, P., Hamel, E., McPhail, A. T. & Lee, K.-H. (1998). Helv. Chim. Acta, 81, 1023–1037. Web of Science CSD CrossRef CAS Google Scholar
Shi, Q., Verdier-Pinard, P., Brossi, A., Hamel, E. & Lee, K.-H. (1997). Bioorg. Med. Chem. 5, 2277–2282. Web of Science CrossRef CAS PubMed Google Scholar
Still, W. C., Kahn, M. & Mitra, A. (1978). J. Org. Chem. 43, 2923–2925. CrossRef CAS Web of Science Google Scholar
Warshawsky, A. M. & Meyers, A. I. (1990). J. Am. Chem. Soc. 112, 8090–8099. CrossRef CAS Web of Science Google Scholar
Widhalm, M., Nettekoven, U. & Mereiter, K. (1999). Tetrahedron: Asym. 10, 4369–4391. Google Scholar
Wilson, A. J. C. (1976). Acta Cryst. A32, 994–996. CrossRef IUCr Journals Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.