metal-organic compounds
A compound of a novel tetraaza-macrocycle with trinuclear tetracyanonickelate-bridged cations
aSchool of Chemical and Physical Sciences, Victoria University of Wellington, Box 600, Wellington, New Zealand, and bDurham University Chemical Crystallography Group, Durham DH1 3LE, England
*Correspondence e-mail: neil.curtis@vuw.ac.nz
The cation of the title compound, [Cu(L)]2+, is formed by Michael condensation of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) with methanal and nitropropane. This cation forms a tetracyanonickelate(II) compound, the of which contains two centrosymmetric tetracyanonickelate(II)-bridged trinuclear cations, namely diaqua-1,3κ2O-di-μ-cyano-1:2κ2C:N;1:3κ2C:N-dicyano-1κ2C-bis(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-2κ4N1,N4,N8,N11;3κ4N1,N4,N8,N11-dicopper(II)nickel(II) di-μ-cyano-1:2κ2C:N;1:3κ2C:N-dicyano-1κ2C-bis(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-2κ4N1,N4,N8,N11;3κ4N1,N4,N8,N11-dicopper(II)nickel(II) bis[tetracyanonickelate(II)] octahydrate, [Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2][Ni(CN)4]2·8H2O. One cation, [(L)Cu–NC–Ni(CN)2–CN–Cu(L)]2+, has an axially coordinated bridging [Ni(CN)4]2− ion, with a Cu—N distance of 2.226 (3) Å and a Cu—N—C angle of 168.2 (3)°. The other cation, [(H2O)(L)Cu–NC–Ni(CN)2–CN–Cu(L)(OH2)]2+, has water axially coordinated trans to a weakly bound bridging [Ni(CN)4]2− ion, with a Cu—O distance of 2.396 (3) Å, a Cu—N distance of 2.677 (4) Å, an O—Cu—N angle of 168.7 (1)° and a Cu—N—C angle of 137.7 (3)°. These cations, plus independent [Ni(CN)4]2− ions and water molecules, are linked into a hydrogen-bonded network. All [Ni(CN)4]2− ions are on centres of symmetry.
Comment
Michael condensations of (polyamine)metal complexes with methanal and nitroalkanes form nitroalkyl-substituted cyclic amine complexes (Lawrance, Lye et al., 1993; Lawrance, Maeder et al., 1993; Comba et al., 1986), such as 6-methyl-6-nitro-1,4,8,11-tetraazacyclotetradecane)copper(II), which is formed from (3,7-diazanonane-1,9-diamine)metal compounds, methanal and nitroethane (Comba et al., 1988a,b). The (tetraaza-macrocycle)copper(II) cation, [Cu(L)]2+, present in the title compound, formed by an analogous reaction of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) with methanal and nitropropane, differs by the presence of the imine function, the introduction of the 5,7,7-trimethyl substituents and the substitution of a 6-ethyl substituent for 6-methyl.
Structures of a number of methyl/nitro-substituted aza-macrocycle compounds obtained by reaction of (amine)metal compounds with nitroethane and methanal have been reported, but this is the first for an ethyl/nitro-substituted analogue derived from nitropropane.
The structures of many compounds of (amine)metal cations with cyanometallate anions have been reported, often with oligo- or polymeric structures with bridging cyanometallate ions (Cernak et al., 2002).
The title compound, (I), which crystallizes from aqueous solutions containing [Ni(CN)4]2− and [Cu(L)]2+, has the formal composition [Cu(L)][Ni(CN)4]·2.5H2O, but has two structurally distinct centrosymmetric tetracyanonickelate(II)-bridged (aza-macrocycle)copper(II) trinuclear cations, two independent tetracyanonickelate(II) anions, and one coordinated and four uncoordinated water molecules (see Fig. 1 and Table 1).
Atom Cu1A is in a square-planar coordination environment formed by the three secondary amine atoms, viz. N1A, N8A and N11A, and imine atom N4A of macrocycle La, with atom N55 of the [Ni5(CN)4]2− tetracyanonickelate(II) ion coordinated axially; the result is a centrosymmetric trinuclear cation, [(La)Cu–NC–Ni(CN)2–CN–Cu(La)]2+, with a Cu⋯Cu separation of 10.426 (5) Å (see Fig. 2).
Atom Cu1B is in a square-planar coordination environment formed by the four N atoms, viz. N1B, N4B, N8B and N11B, of macrocycle Lb, with weaker axial interactions with water atom O10 and atom N65 of the [Ni6(CN)4]2− ion forming a weakly bound centrosymmetric trinuclear cation, [(H2O)(Lb)Cu–NC–Ni(CN)2–CN–Cu(Lb)(OH2)]2+, with a Cu⋯Cu separation of 10.599 (5) Å (see Fig. 3).
For the two (aza-macrocycle)copper(II) cations, the Cu—Nring distances are similar (with the Cu—Nimine distance ca 0.03 Å shorter than the mean Cu—Namine distance), the configuration is the same (1S,8R,11R; Spek, 2002) and the conformations are similar. The nitro group and the C72 methyl component of the gem-dimethyl group are axially oriented on the same side of the N4 macrocycle coordination plane as the N1—H1 and N11—H11 groups, with the N8—H8 group and the axial ligand (N55 for Cu1A and O10 for Cu1B) on the other side. The N4 plane is less tetrahedrally twisted and the Cu atom is further displaced from this plane for the [Cu1A(La)]2+ ion [0.017 (2) and 0.246 (2) Å] than for the [Cu1B(Lb)]2+ ion [0.067 (2) and 0.088 (2) Å]; these planes are inclined at 30.9 (2)°. The C15 methylene substituents of both macrocycles are equatorially oriented, with the terminal methyl group, C16A, of the [Cu(La)]2+ ion further equatorially extended and closer to atom O18A, while the C16B group is axially oriented on the same side as axial water ligand O10.
The coordinated isocyano atom N55 is close to the square-pyramidal axis of the [Cu1A(La)]2+ ion, with Nring—Cu1A—N55 angles of between 95.1 (1) and 99.3 (1)°. The non-bridging N56—C56—Ni5 group is approximately aligned with the C7A⋯C14A axis [N56⋯Ni5⋯Cu1A—C7A = −1.4 (2)°]. The ion is tilted with respect to the N4 coordination plane so that the N8A⋯N56 distance [6.250 (5) Å] is longer than the N1A⋯N56(−x, 2 − y, −z) distance [4.998 (5) Å].
For [Cu1B(Lb)]2+, the coordinated water O and isocyano N atoms are displaced from the square-bipyramidal axis, with Nring—Cu1B—O10 angles of 87.1 (1)–101.8 (1)° and Nring—Cu1B—N65 angles of 81.9 (1)–96.8 (1)°.
The dimensions of the coordinated and non-coordinated [Ni(CN)4]2− ions, all centrosymmetric, do not differ significantly. The two tetracyanonickelate(II) anions including atoms Ni7 and Ni8, and the water molecules including atoms O11, O12, O13 and O14 have no direct interaction with the copper(II) cations, though all are linked into a hydrogen-bonding network (see Table 2).
Chain polymeric structures are present for bis(ethane-1,2-diamine)copper(II) tetracyanonickelate(II), [–Cu(en)2–NC–Ni(CN)2–CN–Cu(en)2–] (Luo et al., 2000; Lokaj et al., 1991), and for analogous cyanometallate compounds of other (tetraamine)copper(II) cations, including the meso-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)copper(II), [Cu(L1)]2+, compounds with [Fe(CN)6]3− (Zou et al., 1998) and [Cr(CN)6]3− (El Fallah et al., 2001). The [Ni(CN)4]2− compounds formed by [Ni(L1)]2+ (Gainsford & Curtis, 1984) and (3,10-diethyl-1,3,5,8,10,12-hexaazacyclotetradecane)nickel(II) (Kou et al., 2000) have similar structures, but with the Ni—Ncyano distances longer than Cu—Ncyano. The two faces of these (aza-macrocycle)metal(II) cations are equivalent, favouring the symmetrical structures observed. The two faces of the [Cu(L)]2+ cation are inherently different, the configuration observed having the axial nitro and methyl groups on the same side, which minimizes the interaction with an axial substituent coordinated on the other side. For the [Cu(La)]2+ ion, the isocyano N atom is coordinated on this less congested side, while for the [Cu(Lb)]2+ ion, water is bound on this side and the isocyano group is bound more weakly on the other side.
Experimental
Aqua(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)copper(II) bis(perchlorate), [Cu(L)(H2O)](ClO4)2, was prepared by condensation of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) perchlorate (Blight & Curtis, 1962; Curtis, 1972; Curtis et al., 2003), methanal and nitropropane in water, with NaHCO3 as base. The mauve-coloured tetracyanonickelate(II) compound precipitated when aqueous solutions containing [Ni(CN)4]2− and [Cu(L)]2+ were mixed. The sparingly soluble compound was recrystallized by evaporation of an aqueous solution.
Crystal data
|
Data collection
Refinement
|
|
C- and N-bound H atoms were placed in calculated positions and treated as riding. Water H atoms were located from difference syntheses, and their positions were refined with restrained O—H distances [0.82 (2) Å] and H—O—H angles [H⋯H = 1.35 (2) Å].
Data collection: SMART (Bruker, 1997); cell SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S0108270104015483/na1674sup1.cif
contains datablocks I, global_NA1674. DOI:Structure factors: contains datablock I. DOI: 10.1107/S0108270104015483/na1674Isup2.hkl
Aqua-(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec- 4-ene)copper(II) perchlorate, [Cu(L)(H2O)](ClO4)2, was prepared by condensation of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) perchlorate, (Blight & Curtis, 1962; Curtis, 1972; Curtis et al., 2003) methanal and nitropropane in water, with NaHCO3 as base. The mauve-coloured tetracyanonickelate(II) compound precipitated when aqueous solutions containing [Ni(CN)4]2− and [Cu(L)]2+ were mixed. The sparingly soluble compound was recrystallized by evaporation of an aqueous solution.
C– and N-bound H atoms were placed in calculated positions and treated as riding. Water H atoms were located from difference syntheses, and their positions were refined with restrained O—H distances [0.82 (2) Å] and H—O—H angles [H···H = 1.35 (s.u.?) Å].
Data collection: SMART (Bruker, 1997); cell
SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.Fig. 1. The structure of the title compound, drawn with displacement ellipsoids at the 50% confidence level for non-H atoms, showing the asymmetric unit (labelled atoms and atoms of associated macrocycles), with additional atoms generated by symmetry operations to complete the tetracyanonickelate(II) anions and trinuclear cations. | |
Fig. 2. The [(La)Cu—NC—Ni(CN)2—CN—Cu(La)]2+ cation, drawn with displacement ellipsoids at the 50% confidence level. | |
Fig. 3. The [(H2O)(La)Cu—NC—Ni(CN)2—CN—Cu(Lb)(OH2)]2+ cation, drawn with displacement ellipsoids at the 50% confidence level. |
[Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2] [Ni(CN)4]2·8H2O | Z = 1 |
Mr = 2339.23 | F(000) = 1220 |
Triclinic, P1 | Dx = 1.431 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7497 (2) Å | Cell parameters from 7862 reflections |
b = 14.0540 (3) Å | θ = 2.3–29.3° |
c = 17.9014 (4) Å | µ = 1.52 mm−1 |
α = 70.154 (1)° | T = 120 K |
β = 78.165 (1)° | Plate, purple |
γ = 81.290 (1)° | 0.35 × 0.35 × 0.08 mm |
V = 2710.6 (1) Å3 |
SMART 1K CCD area detector diffractometer | 14372 independent reflections |
Radiation source: fine-focus sealed tube | 9857 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 8 pixels mm-1 | θmax = 29.1°, θmin = 1.2° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) R(int)=0.0470 before correction | k = −19→19 |
Tmin = 0.538, Tmax = 0.885 | l = −24→23 |
22241 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0668P)2 + 5.1175P] where P = (Fo2 + 2Fc2)/3 |
14372 reflections | (Δ/σ)max = 0.006 |
666 parameters | Δρmax = 1.41 e Å−3 |
15 restraints | Δρmin = −0.73 e Å−3 |
[Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2] [Ni(CN)4]2·8H2O | γ = 81.290 (1)° |
Mr = 2339.23 | V = 2710.6 (1) Å3 |
Triclinic, P1 | Z = 1 |
a = 11.7497 (2) Å | Mo Kα radiation |
b = 14.0540 (3) Å | µ = 1.52 mm−1 |
c = 17.9014 (4) Å | T = 120 K |
α = 70.154 (1)° | 0.35 × 0.35 × 0.08 mm |
β = 78.165 (1)° |
SMART 1K CCD area detector diffractometer | 14372 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) R(int)=0.0470 before correction | 9857 reflections with I > 2σ(I) |
Tmin = 0.538, Tmax = 0.885 | Rint = 0.034 |
22241 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 15 restraints |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 1.41 e Å−3 |
14372 reflections | Δρmin = −0.73 e Å−3 |
666 parameters |
Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 5 sets of ω scans; each set at different ϕ and/or 2θ angles and each scan (10 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.95 cm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1A | 0.51585 (4) | 0.65895 (3) | 0.23611 (3) | 0.02303 (11) | |
N1A | 0.3381 (3) | 0.6770 (2) | 0.2623 (2) | 0.0259 (7) | |
H1A | 0.3127 | 0.6170 | 0.2967 | 0.031* | |
N4A | 0.5137 (3) | 0.7137 (3) | 0.3259 (2) | 0.0355 (8) | |
N8A | 0.6877 (3) | 0.6078 (3) | 0.2270 (2) | 0.0316 (8) | |
H8A | 0.7206 | 0.6564 | 0.1829 | 0.038* | |
N11A | 0.5031 (3) | 0.5711 (2) | 0.17031 (19) | 0.0232 (6) | |
H11A | 0.4750 | 0.5125 | 0.2054 | 0.028* | |
N17A | 0.2472 (3) | 0.5344 (3) | 0.1980 (2) | 0.0303 (7) | |
C2A | 0.3118 (4) | 0.7529 (3) | 0.3059 (3) | 0.0360 (10) | |
H2A | 0.2310 | 0.7525 | 0.3324 | 0.043* | |
H2B | 0.3238 | 0.8204 | 0.2682 | 0.043* | |
C3A | 0.3928 (4) | 0.7256 (4) | 0.3681 (3) | 0.0400 (11) | |
H3A | 0.3850 | 0.7788 | 0.3923 | 0.048* | |
H3B | 0.3732 | 0.6627 | 0.4103 | 0.048* | |
C5A | 0.6043 (5) | 0.7166 (4) | 0.3564 (3) | 0.0481 (12) | |
C6A | 0.7245 (4) | 0.7033 (4) | 0.3093 (3) | 0.0468 (12) | |
H6A | 0.7818 | 0.7063 | 0.3404 | 0.056* | |
H6B | 0.7331 | 0.7602 | 0.2599 | 0.056* | |
C7A | 0.7534 (5) | 0.6051 (5) | 0.2876 (4) | 0.0521 (14) | |
C9A | 0.7008 (4) | 0.5189 (3) | 0.1980 (3) | 0.0316 (9) | |
H9A | 0.6769 | 0.4591 | 0.2422 | 0.038* | |
H9B | 0.7817 | 0.5055 | 0.1755 | 0.038* | |
C10A | 0.6247 (3) | 0.5438 (3) | 0.1343 (3) | 0.0313 (9) | |
H10A | 0.6526 | 0.6003 | 0.0883 | 0.038* | |
H10B | 0.6266 | 0.4856 | 0.1164 | 0.038* | |
C12A | 0.4256 (3) | 0.6120 (3) | 0.1093 (2) | 0.0272 (8) | |
H12A | 0.4295 | 0.5636 | 0.0808 | 0.033* | |
H12B | 0.4544 | 0.6741 | 0.0704 | 0.033* | |
C13A | 0.2975 (3) | 0.6348 (3) | 0.1435 (2) | 0.0272 (8) | |
C14A | 0.2764 (3) | 0.7086 (3) | 0.1926 (3) | 0.0293 (9) | |
H14A | 0.3002 | 0.7743 | 0.1571 | 0.035* | |
H14B | 0.1933 | 0.7172 | 0.2117 | 0.035* | |
C51A | 0.5990 (6) | 0.7505 (6) | 0.4274 (4) | 0.074 (2) | |
H51A | 0.5207 | 0.7493 | 0.4566 | 0.111* | |
H51B | 0.6222 | 0.8183 | 0.4096 | 0.111* | |
H51C | 0.6508 | 0.7057 | 0.4619 | 0.111* | |
C71A | 0.8848 (5) | 0.5850 (6) | 0.2652 (4) | 0.0654 (18) | |
H71A | 0.9014 | 0.5263 | 0.2474 | 0.098* | |
H71B | 0.9211 | 0.5730 | 0.3114 | 0.098* | |
H71C | 0.9148 | 0.6428 | 0.2227 | 0.098* | |
C72A | 0.7108 (8) | 0.5134 (6) | 0.3658 (4) | 0.090 (3) | |
H72A | 0.6275 | 0.5225 | 0.3805 | 0.136* | |
H72B | 0.7473 | 0.5122 | 0.4095 | 0.136* | |
H72C | 0.7319 | 0.4504 | 0.3545 | 0.136* | |
C15A | 0.2225 (4) | 0.6784 (3) | 0.0753 (3) | 0.0347 (9) | |
H15A | 0.1409 | 0.6809 | 0.0998 | 0.042* | |
H15B | 0.2407 | 0.7477 | 0.0457 | 0.042* | |
C16A | 0.2383 (4) | 0.6202 (4) | 0.0155 (3) | 0.0398 (11) | |
H16A | 0.3143 | 0.6283 | −0.0169 | 0.060* | |
H16B | 0.1798 | 0.6460 | −0.0185 | 0.060* | |
H16C | 0.2308 | 0.5494 | 0.0442 | 0.060* | |
O18A | 0.1574 (3) | 0.5370 (3) | 0.2445 (2) | 0.0469 (9) | |
O19A | 0.3001 (3) | 0.4555 (2) | 0.1910 (3) | 0.0598 (11) | |
Ni5 | 0.5000 | 1.0000 | 0.0000 | 0.02336 (15) | |
N55 | 0.5351 (3) | 0.8009 (2) | 0.1318 (2) | 0.0311 (8) | |
N56 | 0.7477 (3) | 1.0469 (3) | −0.0123 (3) | 0.0437 (10) | |
C55 | 0.5245 (3) | 0.8761 (3) | 0.0810 (2) | 0.0258 (8) | |
C56 | 0.6528 (4) | 1.0292 (3) | −0.0074 (2) | 0.0297 (9) | |
Cu1B | 0.09397 (4) | 0.18678 (4) | 0.25244 (3) | 0.02937 (13) | |
N1B | 0.2299 (3) | 0.2477 (3) | 0.2668 (2) | 0.0289 (7) | |
H1B | 0.2285 | 0.3131 | 0.2334 | 0.035* | |
N4B | 0.0107 (4) | 0.2139 (3) | 0.3526 (2) | 0.0388 (9) | |
N8B | −0.0399 (3) | 0.1284 (3) | 0.2332 (2) | 0.0373 (8) | |
H8B | −0.0212 | 0.0602 | 0.2525 | 0.045* | |
N11B | 0.1758 (3) | 0.1839 (3) | 0.1419 (2) | 0.0300 (7) | |
H11B | 0.1701 | 0.2487 | 0.1077 | 0.036* | |
C2B | 0.2048 (4) | 0.2517 (3) | 0.3513 (3) | 0.0341 (9) | |
H2C | 0.2504 | 0.3009 | 0.3559 | 0.041* | |
H2D | 0.2258 | 0.1858 | 0.3884 | 0.041* | |
C3B | 0.0763 (4) | 0.2817 (4) | 0.3717 (3) | 0.0417 (11) | |
H3C | 0.0558 | 0.2752 | 0.4285 | 0.050* | |
H3D | 0.0575 | 0.3518 | 0.3406 | 0.050* | |
C5B | −0.0948 (4) | 0.1919 (4) | 0.3884 (3) | 0.0422 (11) | |
C6B | −0.1509 (5) | 0.1167 (4) | 0.3657 (3) | 0.0489 (13) | |
H6C | −0.2295 | 0.1106 | 0.3960 | 0.059* | |
H6D | −0.1077 | 0.0508 | 0.3834 | 0.059* | |
C7B | −0.1583 (4) | 0.1412 (4) | 0.2763 (3) | 0.0456 (12) | |
C9B | −0.0222 (4) | 0.1486 (4) | 0.1444 (3) | 0.0387 (10) | |
H9C | −0.0692 | 0.1068 | 0.1318 | 0.046* | |
H9D | −0.0449 | 0.2193 | 0.1173 | 0.046* | |
C10B | 0.1040 (4) | 0.1237 (3) | 0.1175 (3) | 0.0339 (9) | |
H10C | 0.1196 | 0.1394 | 0.0595 | 0.041* | |
H10D | 0.1247 | 0.0517 | 0.1417 | 0.041* | |
C12B | 0.2997 (4) | 0.1465 (3) | 0.1334 (3) | 0.0336 (9) | |
H12C | 0.3280 | 0.1557 | 0.0767 | 0.040* | |
H12D | 0.3051 | 0.0740 | 0.1615 | 0.040* | |
C13B | 0.3825 (4) | 0.1929 (3) | 0.1630 (3) | 0.0313 (9) | |
C14B | 0.3471 (4) | 0.1995 (3) | 0.2486 (3) | 0.0316 (9) | |
H14C | 0.3524 | 0.1312 | 0.2864 | 0.038* | |
H14D | 0.4032 | 0.2368 | 0.2576 | 0.038* | |
C15B | 0.5068 (4) | 0.1368 (4) | 0.1545 (3) | 0.0447 (11) | |
H15F | 0.5320 | 0.1397 | 0.0987 | 0.054* | |
H15G | 0.5603 | 0.1725 | 0.1677 | 0.054* | |
C16B | 0.5147 (5) | 0.0253 (4) | 0.2079 (4) | 0.0500 (13) | |
H16D | 0.4573 | −0.0094 | 0.1986 | 0.075* | |
H16E | 0.5005 | 0.0220 | 0.2635 | 0.075* | |
H16F | 0.5912 | −0.0063 | 0.1951 | 0.075* | |
C51B | −0.1626 (5) | 0.2302 (5) | 0.4549 (4) | 0.0696 (19) | |
H51D | −0.1264 | 0.2860 | 0.4566 | 0.104* | |
H51E | −0.1637 | 0.1766 | 0.5054 | 0.104* | |
H51F | −0.2412 | 0.2524 | 0.4452 | 0.104* | |
C71B | −0.2370 (5) | 0.0675 (4) | 0.2707 (4) | 0.0538 (14) | |
H71D | −0.2042 | −0.0010 | 0.2926 | 0.081* | |
H71E | −0.2430 | 0.0806 | 0.2154 | 0.081* | |
H71F | −0.3132 | 0.0765 | 0.3008 | 0.081* | |
C72B | −0.2114 (5) | 0.2517 (4) | 0.2413 (4) | 0.0613 (15) | |
H72D | −0.2231 | 0.2635 | 0.1873 | 0.092* | |
H72E | −0.1590 | 0.2981 | 0.2411 | 0.092* | |
H72F | −0.2849 | 0.2621 | 0.2739 | 0.092* | |
N17B | 0.3986 (3) | 0.3035 (3) | 0.1073 (2) | 0.0364 (8) | |
O19B | 0.3262 (4) | 0.3450 (3) | 0.0628 (2) | 0.0553 (10) | |
O18B | 0.4805 (3) | 0.3460 (3) | 0.1104 (2) | 0.0518 (9) | |
O10 | 0.1759 (3) | 0.0153 (3) | 0.3044 (2) | 0.0500 (9) | |
H10E | 0.215 (4) | −0.006 (4) | 0.342 (3) | 0.060* | |
H10F | 0.127 (4) | −0.029 (3) | 0.317 (3) | 0.060* | |
Ni6 | 0.0000 | 0.5000 | 0.0000 | 0.02634 (16) | |
N65 | 0.0374 (4) | 0.3807 (3) | 0.1702 (2) | 0.0395 (9) | |
N66 | 0.1233 (3) | 0.3209 (3) | −0.0505 (2) | 0.0380 (9) | |
C65 | 0.0219 (4) | 0.4272 (3) | 0.1060 (3) | 0.0296 (8) | |
C66 | 0.0769 (4) | 0.3893 (3) | −0.0320 (3) | 0.0300 (9) | |
Ni7 | 1.5000 | 0.0000 | 0.5000 | 0.02809 (17) | |
N75 | 1.3252 (5) | −0.0362 (4) | 0.4144 (3) | 0.0727 (17) | |
N76 | 1.5201 (4) | 0.2129 (3) | 0.3831 (2) | 0.0404 (9) | |
C75 | 1.3917 (5) | −0.0218 (3) | 0.4474 (3) | 0.0455 (12) | |
C76 | 1.5120 (4) | 0.1317 (3) | 0.4271 (3) | 0.0335 (9) | |
Ni8 | 0.0000 | −0.5000 | 0.5000 | 0.03084 (18) | |
N85 | 0.2488 (4) | −0.5019 (3) | 0.4135 (3) | 0.0525 (11) | |
N86 | −0.0354 (4) | −0.2762 (3) | 0.4102 (3) | 0.0512 (11) | |
C85 | 0.1545 (4) | −0.5016 (4) | 0.4466 (3) | 0.0377 (10) | |
C86 | −0.0221 (4) | −0.3605 (4) | 0.4439 (3) | 0.0381 (10) | |
O11 | 0.8374 (3) | 0.8482 (3) | 0.1108 (2) | 0.0472 (8) | |
H11E | 0.841 (5) | 0.797 (2) | 0.096 (3) | 0.057* | |
H11F | 0.808 (5) | 0.899 (3) | 0.078 (3) | 0.057* | |
O12 | 0.0259 (4) | −0.0996 (3) | 0.2857 (2) | 0.0486 (9) | |
H12E | 0.025 (5) | −0.108 (4) | 0.2417 (17) | 0.058* | |
H12F | −0.001 (5) | −0.147 (3) | 0.325 (2) | 0.058* | |
O13 | 0.0452 (3) | −0.1146 (3) | 0.1370 (2) | 0.0549 (10) | |
H13E | −0.015 (3) | −0.113 (5) | 0.118 (3) | 0.066* | |
H13F | 0.098 (3) | −0.096 (5) | 0.098 (2) | 0.066* | |
O14 | 0.4609 (4) | 0.4265 (3) | 0.3287 (3) | 0.0643 (12) | |
H14E | 0.482 (5) | 0.3659 (19) | 0.345 (4) | 0.077* | |
H14F | 0.395 (3) | 0.433 (4) | 0.353 (4) | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1A | 0.0241 (2) | 0.0199 (2) | 0.0228 (2) | 0.00072 (17) | −0.00397 (18) | −0.00506 (17) |
N1A | 0.0251 (16) | 0.0198 (15) | 0.0314 (17) | −0.0009 (12) | −0.0009 (13) | −0.0089 (13) |
N4A | 0.034 (2) | 0.044 (2) | 0.0325 (19) | −0.0004 (16) | −0.0062 (16) | −0.0184 (17) |
N8A | 0.0308 (18) | 0.0321 (18) | 0.0337 (19) | 0.0069 (14) | −0.0137 (15) | −0.0121 (15) |
N11A | 0.0218 (15) | 0.0192 (15) | 0.0245 (16) | −0.0018 (12) | −0.0025 (12) | −0.0024 (12) |
N17A | 0.0271 (18) | 0.0245 (17) | 0.0378 (19) | −0.0071 (14) | −0.0061 (15) | −0.0055 (14) |
C2A | 0.029 (2) | 0.034 (2) | 0.050 (3) | −0.0006 (17) | −0.0005 (19) | −0.024 (2) |
C3A | 0.036 (2) | 0.048 (3) | 0.043 (3) | −0.005 (2) | 0.003 (2) | −0.030 (2) |
C5A | 0.046 (3) | 0.062 (3) | 0.048 (3) | 0.001 (2) | −0.010 (2) | −0.034 (3) |
C6A | 0.037 (3) | 0.069 (3) | 0.050 (3) | 0.005 (2) | −0.018 (2) | −0.037 (3) |
C7A | 0.041 (3) | 0.069 (4) | 0.059 (3) | 0.018 (3) | −0.019 (2) | −0.040 (3) |
C9A | 0.028 (2) | 0.030 (2) | 0.032 (2) | 0.0047 (16) | −0.0019 (17) | −0.0081 (17) |
C10A | 0.024 (2) | 0.037 (2) | 0.032 (2) | 0.0014 (17) | −0.0007 (16) | −0.0148 (18) |
C12A | 0.029 (2) | 0.0234 (19) | 0.029 (2) | −0.0060 (15) | −0.0076 (16) | −0.0044 (15) |
C13A | 0.028 (2) | 0.0204 (18) | 0.030 (2) | −0.0044 (15) | −0.0038 (16) | −0.0032 (15) |
C14A | 0.0238 (19) | 0.0200 (18) | 0.042 (2) | −0.0008 (15) | −0.0061 (17) | −0.0075 (17) |
C51A | 0.062 (4) | 0.117 (6) | 0.072 (4) | 0.016 (4) | −0.024 (3) | −0.070 (4) |
C71A | 0.040 (3) | 0.112 (5) | 0.064 (4) | 0.029 (3) | −0.030 (3) | −0.056 (4) |
C72A | 0.129 (7) | 0.085 (5) | 0.054 (4) | 0.035 (5) | −0.038 (4) | −0.023 (4) |
C15A | 0.033 (2) | 0.031 (2) | 0.038 (2) | −0.0042 (17) | −0.0109 (18) | −0.0038 (18) |
C16A | 0.037 (2) | 0.045 (3) | 0.042 (3) | −0.008 (2) | −0.014 (2) | −0.013 (2) |
O18A | 0.0382 (18) | 0.0399 (18) | 0.059 (2) | −0.0161 (15) | 0.0117 (16) | −0.0170 (16) |
O19A | 0.045 (2) | 0.0256 (17) | 0.095 (3) | −0.0104 (15) | 0.013 (2) | −0.0122 (18) |
Ni5 | 0.0273 (4) | 0.0142 (3) | 0.0243 (3) | −0.0034 (3) | −0.0017 (3) | −0.0014 (3) |
N55 | 0.0341 (19) | 0.0213 (16) | 0.0354 (19) | −0.0087 (14) | −0.0093 (15) | −0.0012 (14) |
N56 | 0.035 (2) | 0.0290 (19) | 0.061 (3) | −0.0063 (16) | −0.0079 (19) | −0.0048 (18) |
C55 | 0.0242 (19) | 0.0217 (18) | 0.031 (2) | −0.0058 (14) | −0.0044 (16) | −0.0058 (16) |
C56 | 0.038 (2) | 0.0155 (18) | 0.030 (2) | −0.0008 (16) | −0.0045 (17) | −0.0006 (15) |
Cu1B | 0.0320 (3) | 0.0313 (3) | 0.0269 (3) | −0.0058 (2) | −0.0053 (2) | −0.0105 (2) |
N1B | 0.0351 (19) | 0.0270 (17) | 0.0238 (17) | −0.0070 (14) | −0.0025 (14) | −0.0065 (14) |
N4B | 0.044 (2) | 0.042 (2) | 0.034 (2) | −0.0169 (18) | 0.0029 (17) | −0.0170 (17) |
N8B | 0.034 (2) | 0.041 (2) | 0.039 (2) | −0.0061 (16) | −0.0104 (16) | −0.0108 (17) |
N11B | 0.0363 (19) | 0.0259 (17) | 0.0303 (18) | −0.0030 (14) | −0.0091 (15) | −0.0103 (14) |
C2B | 0.045 (3) | 0.034 (2) | 0.026 (2) | −0.0075 (19) | −0.0052 (18) | −0.0121 (17) |
C3B | 0.049 (3) | 0.047 (3) | 0.034 (2) | −0.019 (2) | 0.001 (2) | −0.018 (2) |
C5B | 0.040 (3) | 0.047 (3) | 0.040 (3) | −0.015 (2) | 0.001 (2) | −0.014 (2) |
C6B | 0.043 (3) | 0.050 (3) | 0.050 (3) | −0.021 (2) | 0.001 (2) | −0.009 (2) |
C7B | 0.041 (3) | 0.046 (3) | 0.053 (3) | −0.014 (2) | −0.004 (2) | −0.019 (2) |
C9B | 0.044 (3) | 0.038 (2) | 0.039 (2) | −0.005 (2) | −0.018 (2) | −0.012 (2) |
C10B | 0.046 (3) | 0.030 (2) | 0.031 (2) | −0.0064 (18) | −0.0110 (19) | −0.0116 (17) |
C12B | 0.034 (2) | 0.032 (2) | 0.037 (2) | −0.0022 (17) | −0.0046 (18) | −0.0150 (18) |
C13B | 0.034 (2) | 0.027 (2) | 0.031 (2) | −0.0003 (17) | −0.0060 (17) | −0.0075 (17) |
C14B | 0.035 (2) | 0.030 (2) | 0.031 (2) | −0.0065 (17) | −0.0058 (18) | −0.0102 (17) |
C15B | 0.035 (2) | 0.050 (3) | 0.055 (3) | −0.004 (2) | −0.006 (2) | −0.027 (2) |
C16B | 0.047 (3) | 0.043 (3) | 0.068 (4) | 0.004 (2) | −0.025 (3) | −0.022 (3) |
C51B | 0.053 (4) | 0.087 (5) | 0.078 (4) | −0.030 (3) | 0.023 (3) | −0.047 (4) |
C71B | 0.040 (3) | 0.061 (3) | 0.069 (4) | −0.013 (2) | −0.008 (3) | −0.027 (3) |
C72B | 0.054 (3) | 0.056 (4) | 0.067 (4) | 0.004 (3) | −0.010 (3) | −0.014 (3) |
N17B | 0.038 (2) | 0.038 (2) | 0.0310 (19) | −0.0087 (17) | 0.0029 (16) | −0.0114 (16) |
O19B | 0.080 (3) | 0.048 (2) | 0.0366 (19) | −0.0211 (19) | −0.0215 (19) | 0.0027 (16) |
O18B | 0.0379 (19) | 0.044 (2) | 0.071 (3) | −0.0199 (16) | 0.0027 (17) | −0.0153 (18) |
O10 | 0.057 (2) | 0.0339 (18) | 0.058 (2) | −0.0118 (16) | −0.0290 (19) | 0.0016 (16) |
Ni6 | 0.0239 (4) | 0.0255 (4) | 0.0292 (4) | −0.0016 (3) | −0.0070 (3) | −0.0069 (3) |
N65 | 0.045 (2) | 0.037 (2) | 0.036 (2) | 0.0007 (17) | −0.0105 (18) | −0.0109 (17) |
N66 | 0.041 (2) | 0.033 (2) | 0.039 (2) | −0.0010 (17) | −0.0054 (17) | −0.0119 (17) |
C65 | 0.030 (2) | 0.028 (2) | 0.031 (2) | −0.0019 (16) | −0.0059 (17) | −0.0112 (17) |
C66 | 0.028 (2) | 0.029 (2) | 0.032 (2) | −0.0040 (16) | −0.0084 (17) | −0.0055 (17) |
Ni7 | 0.0347 (4) | 0.0229 (4) | 0.0236 (4) | −0.0003 (3) | −0.0062 (3) | −0.0037 (3) |
N75 | 0.103 (4) | 0.044 (3) | 0.070 (3) | −0.027 (3) | −0.055 (3) | 0.015 (2) |
N76 | 0.051 (2) | 0.032 (2) | 0.034 (2) | −0.0030 (17) | −0.0105 (18) | −0.0021 (16) |
C75 | 0.067 (3) | 0.027 (2) | 0.040 (3) | −0.010 (2) | −0.024 (2) | 0.0038 (19) |
C76 | 0.036 (2) | 0.035 (2) | 0.030 (2) | 0.0003 (18) | −0.0120 (18) | −0.0080 (18) |
Ni8 | 0.0329 (4) | 0.0360 (4) | 0.0239 (4) | −0.0116 (3) | −0.0039 (3) | −0.0067 (3) |
N85 | 0.041 (2) | 0.052 (3) | 0.051 (3) | −0.008 (2) | 0.007 (2) | −0.006 (2) |
N86 | 0.069 (3) | 0.042 (2) | 0.041 (2) | −0.014 (2) | −0.013 (2) | −0.005 (2) |
C85 | 0.041 (3) | 0.038 (2) | 0.031 (2) | −0.007 (2) | −0.007 (2) | −0.0045 (19) |
C86 | 0.041 (3) | 0.045 (3) | 0.031 (2) | −0.012 (2) | −0.0067 (19) | −0.012 (2) |
O11 | 0.045 (2) | 0.047 (2) | 0.054 (2) | 0.0014 (17) | −0.0155 (17) | −0.0196 (18) |
O12 | 0.064 (2) | 0.0332 (18) | 0.049 (2) | −0.0175 (16) | −0.0165 (19) | −0.0036 (16) |
O13 | 0.044 (2) | 0.076 (3) | 0.052 (2) | −0.021 (2) | −0.0031 (17) | −0.025 (2) |
O14 | 0.068 (3) | 0.0320 (19) | 0.056 (2) | 0.0013 (18) | 0.021 (2) | 0.0120 (17) |
Cu1A—N4A | 1.999 (4) | N8B—C7B | 1.464 (6) |
Cu1A—N11A | 2.013 (3) | N8B—C9B | 1.492 (6) |
Cu1A—N8A | 2.031 (3) | N8B—H8B | 0.9100 |
Cu1A—N1A | 2.041 (3) | N11B—C12B | 1.467 (5) |
Cu1A—N55 | 2.226 (3) | N11B—C10B | 1.494 (5) |
N1A—C14A | 1.476 (5) | N11B—H11B | 0.9100 |
N1A—C2A | 1.486 (5) | C2B—C3B | 1.509 (7) |
N1A—H1A | 0.9100 | C2B—H2C | 0.9700 |
N4A—C5A | 1.304 (6) | C2B—H2D | 0.9700 |
N4A—C3A | 1.480 (6) | C3B—H3C | 0.9700 |
N8A—C7A | 1.443 (6) | C3B—H3D | 0.9700 |
N8A—C9A | 1.484 (5) | C5B—C51B | 1.503 (7) |
N8A—H8A | 0.9100 | C5B—C6B | 1.525 (7) |
N11A—C12A | 1.476 (5) | C6B—C7B | 1.538 (7) |
N11A—C10A | 1.492 (5) | C6B—H6C | 0.9700 |
N11A—H11A | 0.9100 | C6B—H6D | 0.9700 |
N17A—O18A | 1.208 (5) | C7B—C71B | 1.528 (7) |
N17A—O19A | 1.218 (5) | C7B—C72B | 1.550 (8) |
N17A—C13A | 1.541 (5) | C9B—C10B | 1.489 (6) |
C2A—C3A | 1.526 (7) | C9B—H9C | 0.9700 |
C2A—H2A | 0.9700 | C9B—H9D | 0.9700 |
C2A—H2B | 0.9700 | C10B—H10C | 0.9700 |
C3A—H3A | 0.9700 | C10B—H10D | 0.9700 |
C3A—H3B | 0.9700 | C12B—C13B | 1.514 (6) |
C5A—C51A | 1.489 (7) | C12B—H12C | 0.9700 |
C5A—C6A | 1.510 (7) | C12B—H12D | 0.9700 |
C6A—C7A | 1.529 (7) | C13B—C14B | 1.534 (6) |
C6A—H6A | 0.9700 | C13B—N17B | 1.550 (5) |
C6A—H6B | 0.9700 | C13B—C15B | 1.555 (6) |
C7A—C71A | 1.522 (7) | C14B—H14C | 0.9700 |
C7A—C72A | 1.598 (10) | C14B—H14D | 0.9700 |
C9A—C10A | 1.508 (6) | C15B—C16B | 1.534 (7) |
C9A—H9A | 0.9700 | C15B—H15F | 0.9700 |
C9A—H9B | 0.9700 | C15B—H15G | 0.9700 |
C10A—H10A | 0.9700 | C16B—H16D | 0.9600 |
C10A—H10B | 0.9700 | C16B—H16E | 0.9600 |
C12A—C13A | 1.534 (6) | C16B—H16F | 0.9600 |
C12A—H12A | 0.9700 | C51B—H51D | 0.9600 |
C12A—H12B | 0.9700 | C51B—H51E | 0.9600 |
C13A—C14A | 1.537 (6) | C51B—H51F | 0.9600 |
C13A—C15A | 1.553 (6) | C71B—H71D | 0.9600 |
C14A—H14A | 0.9700 | C71B—H71E | 0.9600 |
C14A—H14B | 0.9700 | C71B—H71F | 0.9600 |
C51A—H51A | 0.9600 | C72B—H72D | 0.9600 |
C51A—H51B | 0.9600 | C72B—H72E | 0.9600 |
C51A—H51C | 0.9600 | C72B—H72F | 0.9600 |
C71A—H71A | 0.9600 | N17B—O18B | 1.227 (5) |
C71A—H71B | 0.9600 | N17B—O19B | 1.229 (5) |
C71A—H71C | 0.9600 | O10—H10E | 0.839 (19) |
C72A—H72A | 0.9600 | O10—H10F | 0.853 (19) |
C72A—H72B | 0.9600 | Ni6—C65ii | 1.876 (4) |
C72A—H72C | 0.9600 | Ni6—C65 | 1.876 (4) |
C15A—C16A | 1.522 (7) | Ni6—C66ii | 1.879 (4) |
C15A—H15A | 0.9700 | Ni6—C66 | 1.879 (4) |
C15A—H15B | 0.9700 | N65—C65 | 1.149 (5) |
C16A—H16A | 0.9600 | N66—C66 | 1.147 (5) |
C16A—H16B | 0.9600 | Ni7—C75 | 1.846 (5) |
C16A—H16C | 0.9600 | Ni7—C75iii | 1.846 (5) |
Ni5—C56 | 1.871 (4) | Ni7—C76iii | 1.874 (4) |
Ni5—C56i | 1.871 (4) | Ni7—C76 | 1.874 (4) |
Ni5—C55 | 1.877 (4) | N75—C75 | 1.148 (7) |
Ni5—C55i | 1.877 (4) | N76—C76 | 1.150 (5) |
N55—C55 | 1.146 (5) | Ni8—C85iv | 1.870 (5) |
N56—C56 | 1.159 (6) | Ni8—C85 | 1.871 (5) |
Cu1B—N4B | 1.986 (4) | Ni8—C86iv | 1.880 (5) |
Cu1B—N8B | 2.018 (4) | Ni8—C86 | 1.880 (5) |
Cu1B—N1B | 2.020 (3) | N85—C85 | 1.145 (6) |
Cu1B—N11B | 2.026 (4) | N86—C86 | 1.136 (6) |
Cu1B—O10 | 2.396 (3) | O11—H11F | 0.832 (19) |
Cu1B—N65 | 2.677 (4) | O12—H12E | 0.835 (19) |
N1B—C14B | 1.465 (5) | O12—H12F | 0.832 (19) |
N1B—C2B | 1.500 (5) | O13—H13E | 0.837 (19) |
N1B—H1B | 0.9100 | O13—H13F | 0.831 (19) |
N4B—C5B | 1.304 (6) | O14—H14E | 0.818 (19) |
N4B—C3B | 1.474 (6) | O14—H14F | 0.815 (19) |
N4A—Cu1A—N11A | 164.6 (2) | O10—Cu1B—N65 | 168.7 (1) |
N4A—Cu1A—N8A | 95.6 (2) | C14B—N1B—C2B | 111.4 (3) |
N11A—Cu1A—N8A | 85.9 (1) | C14B—N1B—Cu1B | 117.4 (3) |
N4A—Cu1A—N1A | 85.4 (2) | C2B—N1B—Cu1B | 106.6 (3) |
N11A—Cu1A—N1A | 89.7 (1) | C14B—N1B—H1B | 107.0 |
N8A—Cu1A—N1A | 166.8 (2) | C2B—N1B—H1B | 107.0 |
N4A—Cu1A—N55 | 99.9 (2) | Cu1B—N1B—H1B | 107.0 |
N11A—Cu1A—N55 | 95.1 (1) | C5B—N4B—C3B | 123.4 (4) |
N8A—Cu1A—N55 | 96.7 (2) | C5B—N4B—Cu1B | 126.2 (3) |
N1A—Cu1A—N55 | 96.1 (1) | C3B—N4B—Cu1B | 109.3 (3) |
C14A—N1A—C2A | 110.9 (3) | C7B—N8B—C9B | 118.9 (4) |
C14A—N1A—Cu1A | 115.6 (2) | C7B—N8B—Cu1B | 120.9 (3) |
C2A—N1A—Cu1A | 105.4 (2) | C9B—N8B—Cu1B | 105.4 (3) |
C14A—N1A—H1A | 108.2 | C7B—N8B—H8B | 102.9 |
C2A—N1A—H1A | 108.2 | C9B—N8B—H8B | 102.9 |
Cu1A—N1A—H1A | 108.2 | Cu1B—N8B—H8B | 102.9 |
C5A—N4A—C3A | 122.2 (4) | C12B—N11B—C10B | 112.0 (3) |
C5A—N4A—Cu1A | 125.7 (3) | C12B—N11B—Cu1B | 117.5 (3) |
C3A—N4A—Cu1A | 110.3 (3) | C10B—N11B—Cu1B | 105.3 (3) |
C7A—N8A—C9A | 119.2 (4) | C12B—N11B—H11B | 107.2 |
C7A—N8A—Cu1A | 120.2 (3) | C10B—N11B—H11B | 107.2 |
C9A—N8A—Cu1A | 106.8 (3) | Cu1B—N11B—H11B | 107.2 |
C7A—N8A—H8A | 102.5 | N1B—C2B—C3B | 108.6 (4) |
C9A—N8A—H8A | 102.5 | N1B—C2B—H2C | 110.0 |
Cu1A—N8A—H8A | 102.5 | C3B—C2B—H2C | 110.0 |
C12A—N11A—C10A | 112.0 (3) | N1B—C2B—H2D | 110.0 |
C12A—N11A—Cu1A | 117.1 (2) | C3B—C2B—H2D | 110.0 |
C10A—N11A—Cu1A | 106.6 (2) | H2C—C2B—H2D | 108.4 |
C12A—N11A—H11A | 106.9 | N4B—C3B—C2B | 108.0 (4) |
C10A—N11A—H11A | 106.9 | N4B—C3B—H3C | 110.1 |
Cu1A—N11A—H11A | 106.9 | C2B—C3B—H3C | 110.1 |
O18A—N17A—O19A | 123.1 (4) | N4B—C3B—H3D | 110.1 |
O18A—N17A—C13A | 119.2 (3) | C2B—C3B—H3D | 110.1 |
O19A—N17A—C13A | 117.8 (3) | H3C—C3B—H3D | 108.4 |
N1A—C2A—C3A | 108.5 (3) | N4B—C5B—C51B | 124.4 (5) |
N1A—C2A—H2A | 110.0 | N4B—C5B—C6B | 118.3 (4) |
C3A—C2A—H2A | 110.0 | C51B—C5B—C6B | 117.2 (4) |
N1A—C2A—H2B | 110.0 | C5B—C6B—C7B | 117.2 (4) |
C3A—C2A—H2B | 110.0 | C5B—C6B—H6C | 108.0 |
H2A—C2A—H2B | 108.4 | C7B—C6B—H6C | 108.0 |
N4A—C3A—C2A | 107.6 (4) | C5B—C6B—H6D | 108.0 |
N4A—C3A—H3A | 110.2 | C7B—C6B—H6D | 108.0 |
C2A—C3A—H3A | 110.2 | H6C—C6B—H6D | 107.2 |
N4A—C3A—H3B | 110.2 | N8B—C7B—C71B | 111.5 (4) |
C2A—C3A—H3B | 110.2 | N8B—C7B—C6B | 107.9 (4) |
H3A—C3A—H3B | 108.5 | C71B—C7B—C6B | 107.5 (4) |
N4A—C5A—C51A | 124.5 (5) | N8B—C7B—C72B | 109.8 (4) |
N4A—C5A—C6A | 118.6 (4) | C71B—C7B—C72B | 109.5 (5) |
C51A—C5A—C6A | 116.0 (5) | C6B—C7B—C72B | 110.5 (5) |
C5A—C6A—C7A | 115.9 (5) | C10B—C9B—N8B | 107.4 (4) |
C5A—C6A—H6A | 108.3 | C10B—C9B—H9C | 110.2 |
C7A—C6A—H6A | 108.3 | N8B—C9B—H9C | 110.2 |
C5A—C6A—H6B | 108.3 | C10B—C9B—H9D | 110.2 |
C7A—C6A—H6B | 108.3 | N8B—C9B—H9D | 110.2 |
H6A—C6A—H6B | 107.4 | H9C—C9B—H9D | 108.5 |
N8A—C7A—C71A | 114.4 (4) | C9B—C10B—N11B | 109.7 (4) |
N8A—C7A—C6A | 110.2 (4) | C9B—C10B—H10C | 109.7 |
C71A—C7A—C6A | 110.3 (5) | N11B—C10B—H10C | 109.7 |
N8A—C7A—C72A | 106.4 (5) | C9B—C10B—H10D | 109.7 |
C71A—C7A—C72A | 107.3 (5) | N11B—C10B—H10D | 109.7 |
C6A—C7A—C72A | 108.0 (5) | H10C—C10B—H10D | 108.2 |
N8A—C9A—C10A | 107.5 (3) | N11B—C12B—C13B | 118.5 (4) |
N8A—C9A—H9A | 110.2 | N11B—C12B—H12C | 107.7 |
C10A—C9A—H9A | 110.2 | C13B—C12B—H12C | 107.7 |
N8A—C9A—H9B | 110.2 | N11B—C12B—H12D | 107.7 |
C10A—C9A—H9B | 110.2 | C13B—C12B—H12D | 107.7 |
H9A—C9A—H9B | 108.5 | H12C—C12B—H12D | 107.1 |
N11A—C10A—C9A | 108.0 (3) | C12B—C13B—C14B | 117.0 (4) |
N11A—C10A—H10A | 110.1 | C12B—C13B—N17B | 109.8 (3) |
C9A—C10A—H10A | 110.1 | C14B—C13B—N17B | 105.6 (3) |
N11A—C10A—H10B | 110.1 | C12B—C13B—C15B | 110.0 (4) |
C9A—C10A—H10B | 110.1 | C14B—C13B—C15B | 109.3 (4) |
H10A—C10A—H10B | 108.4 | N17B—C13B—C15B | 104.3 (3) |
N11A—C12A—C13A | 114.4 (3) | N1B—C14B—C13B | 115.7 (3) |
N11A—C12A—H12A | 108.7 | N1B—C14B—H14C | 108.4 |
C13A—C12A—H12A | 108.7 | C13B—C14B—H14C | 108.4 |
N11A—C12A—H12B | 108.7 | N1B—C14B—H14D | 108.4 |
C13A—C12A—H12B | 108.7 | C13B—C14B—H14D | 108.4 |
H12A—C12A—H12B | 107.6 | H14C—C14B—H14D | 107.4 |
C12A—C13A—C14A | 115.2 (3) | C16B—C15B—C13B | 114.2 (4) |
C12A—C13A—N17A | 108.9 (3) | C16B—C15B—H15F | 108.7 |
C14A—C13A—N17A | 108.1 (3) | C13B—C15B—H15F | 108.7 |
C12A—C13A—C15A | 111.0 (3) | C16B—C15B—H15G | 108.7 |
C14A—C13A—C15A | 107.7 (3) | C13B—C15B—H15G | 108.7 |
N17A—C13A—C15A | 105.6 (3) | H15F—C15B—H15G | 107.6 |
N1A—C14A—C13A | 115.0 (3) | C15B—C16B—H16D | 109.5 |
N1A—C14A—H14A | 108.5 | C15B—C16B—H16E | 109.5 |
C13A—C14A—H14A | 108.5 | H16D—C16B—H16E | 109.5 |
N1A—C14A—H14B | 108.5 | C15B—C16B—H16F | 109.5 |
C13A—C14A—H14B | 108.5 | H16D—C16B—H16F | 109.5 |
H14A—C14A—H14B | 107.5 | H16E—C16B—H16F | 109.5 |
C5A—C51A—H51A | 109.5 | C5B—C51B—H51D | 109.5 |
C5A—C51A—H51B | 109.5 | C5B—C51B—H51E | 109.5 |
H51A—C51A—H51B | 109.5 | H51D—C51B—H51E | 109.5 |
C5A—C51A—H51C | 109.5 | C5B—C51B—H51F | 109.5 |
H51A—C51A—H51C | 109.5 | H51D—C51B—H51F | 109.5 |
H51B—C51A—H51C | 109.5 | H51E—C51B—H51F | 109.5 |
C7A—C71A—H71A | 109.5 | C7B—C71B—H71D | 109.5 |
C7A—C71A—H71B | 109.5 | C7B—C71B—H71E | 109.5 |
H71A—C71A—H71B | 109.5 | H71D—C71B—H71E | 109.5 |
C7A—C71A—H71C | 109.5 | C7B—C71B—H71F | 109.5 |
H71A—C71A—H71C | 109.5 | H71D—C71B—H71F | 109.5 |
H71B—C71A—H71C | 109.5 | H71E—C71B—H71F | 109.5 |
C7A—C72A—H72A | 109.5 | C7B—C72B—H72D | 109.5 |
C7A—C72A—H72B | 109.5 | C7B—C72B—H72E | 109.5 |
H72A—C72A—H72B | 109.5 | H72D—C72B—H72E | 109.5 |
C7A—C72A—H72C | 109.5 | C7B—C72B—H72F | 109.5 |
H72A—C72A—H72C | 109.5 | H72D—C72B—H72F | 109.5 |
H72B—C72A—H72C | 109.5 | H72E—C72B—H72F | 109.5 |
C16A—C15A—C13A | 115.9 (4) | O18B—N17B—O19B | 123.1 (4) |
C16A—C15A—H15A | 108.3 | O18B—N17B—C13B | 119.3 (4) |
C13A—C15A—H15A | 108.3 | O19B—N17B—C13B | 117.6 (4) |
C16A—C15A—H15B | 108.3 | Cu1B—O10—H10E | 125 (4) |
C13A—C15A—H15B | 108.3 | Cu1B—O10—H10F | 114 (4) |
H15A—C15A—H15B | 107.4 | H10E—O10—H10F | 103 (4) |
C15A—C16A—H16A | 109.5 | C65ii—Ni6—C65 | 180.0 |
C15A—C16A—H16B | 109.5 | C65ii—Ni6—C66ii | 89.14 (18) |
H16A—C16A—H16B | 109.5 | C65—Ni6—C66ii | 90.86 (18) |
C15A—C16A—H16C | 109.5 | C65ii—Ni6—C66 | 90.86 (18) |
H16A—C16A—H16C | 109.5 | C65—Ni6—C66 | 89.14 (18) |
H16B—C16A—H16C | 109.5 | C66ii—Ni6—C66 | 180.00 (14) |
C56—Ni5—C56i | 179.999 (1) | C65—N65—Cu1B | 137.7 (3) |
C56—Ni5—C55 | 90.63 (16) | N65—C65—Ni6 | 178.1 (4) |
C56i—Ni5—C55 | 89.37 (16) | N66—C66—Ni6 | 179.1 (4) |
C56—Ni5—C55i | 89.37 (16) | C75—Ni7—C75iii | 180.000 (1) |
C56i—Ni5—C55i | 90.63 (16) | C75—Ni7—C76iii | 89.64 (19) |
C55—Ni5—C55i | 179.999 (1) | C75iii—Ni7—C76iii | 90.36 (19) |
C55—N55—Cu1A | 168.2 (3) | C75—Ni7—C76 | 90.36 (19) |
N55—C55—Ni5 | 177.4 (4) | C75iii—Ni7—C76 | 89.64 (19) |
N56—C56—Ni5 | 179.6 (5) | C76iii—Ni7—C76 | 179.998 (3) |
N4B—Cu1B—N8B | 95.9 (2) | N75—C75—Ni7 | 179.2 (6) |
N4B—Cu1B—N1B | 86.0 (2) | N76—C76—Ni7 | 179.0 (4) |
N8B—Cu1B—N1B | 177.7 (2) | C85iv—Ni8—C85 | 179.999 (2) |
N4B—Cu1B—N11B | 170.7 (2) | C85iv—Ni8—C86iv | 89.5 (2) |
N8B—Cu1B—N11B | 86.9 (2) | C85—Ni8—C86iv | 90.5 (2) |
N1B—Cu1B—N11B | 91.0 (2) | C85iv—Ni8—C86 | 90.5 (2) |
N4B—Cu1B—O10 | 101.6 (2) | C85—Ni8—C86 | 89.5 (2) |
N8B—Cu1B—O10 | 87.0 (2) | C86iv—Ni8—C86 | 180.0 |
N1B—Cu1B—O10 | 93.9 (1) | N85—C85—Ni8 | 179.4 (5) |
N11B—Cu1B—O10 | 87.3 (2) | N86—C86—Ni8 | 179.8 (5) |
N4B—Cu1B—N65 | 88.6 (2) | H11E—O11—H11F | 109 (4) |
N8B—Cu1B—N65 | 96.8 (2) | H12E—O12—H12F | 112 (4) |
N1B—Cu1B—N65 | 81.9 (1) | H13E—O13—H13F | 106 (4) |
N11B—Cu1B—N65 | 82.2 (1) | H14E—O14—H14F | 105 (4) |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z; (iii) −x+3, −y, −z+1; (iv) −x, −y−1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···N85v | 0.91 | 2.26 | 3.124 (5) | 159 |
N11A—H11A···O14 | 0.91 | 2.11 | 2.869 (5) | 140 |
N11A—H11A···O19A | 0.91 | 2.41 | 2.978 (5) | 121 |
N1B—H1B···O19A | 0.91 | 2.12 | 2.937 (5) | 149 |
N8B—H8B···O12 | 0.91 | 2.13 | 3.041 (5) | 174 |
N8B—H8B···O10 | 0.91 | 2.58 | 3.052 (5) | 113 |
N11B—H11B···O19B | 0.91 | 2.29 | 2.874 (5) | 122 |
O10—H10E···N75vi | 0.84 (5) | 1.92 (5) | 2.745 (6) | 168 (5) |
O10—H10F···O12 | 0.85 (5) | 1.93 (5) | 2.702 (5) | 151 (5) |
O11—H11E···N66vii | 0.84 (3) | 2.04 (4) | 2.870 (5) | 170 (6) |
O11—H11F···N56 | 0.83 (5) | 2.28 (5) | 3.106 (5) | 172 (5) |
O12—H12F···N86 | 0.83 (4) | 1.97 (4) | 2.788 (5) | 168 (6) |
O12—H12E···O13 | 0.84 (4) | 1.88 (3) | 2.702 (5) | 171 (6) |
O13—H13E···O11viii | 0.84 (4) | 1.94 (4) | 2.733 (5) | 158 (6) |
O13—H13F···N56vii | 0.83 (4) | 2.15 (4) | 2.973 (6) | 170 (5) |
O14—H14E···N76vi | 0.82 (4) | 2.03 (4) | 2.847 (5) | 174 (7) |
O14—H14F···N85v | 0.82 (5) | 2.10 (5) | 2.872 (6) | 159 (6) |
Symmetry codes: (v) x, y+1, z; (vi) x−1, y, z; (vii) −x+1, −y+1, −z; (viii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2] [Ni(CN)4]2·8H2O |
Mr | 2339.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 11.7497 (2), 14.0540 (3), 17.9014 (4) |
α, β, γ (°) | 70.154 (1), 78.165 (1), 81.290 (1) |
V (Å3) | 2710.6 (1) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.52 |
Crystal size (mm) | 0.35 × 0.35 × 0.08 |
Data collection | |
Diffractometer | SMART 1K CCD area detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) R(int)=0.0470 before correction |
Tmin, Tmax | 0.538, 0.885 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22241, 14372, 9857 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.684 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.162, 1.05 |
No. of reflections | 14372 |
No. of parameters | 666 |
No. of restraints | 15 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.41, −0.73 |
Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 2001), SHELXTL (Bruker, 1997), SHELXTL, ORTEP-3.2 (Farrugia, 1997).
Cu1A—N4A | 1.999 (4) | Cu1B—N8B | 2.018 (4) |
Cu1A—N11A | 2.013 (3) | Cu1B—N1B | 2.020 (3) |
Cu1A—N8A | 2.031 (3) | Cu1B—N11B | 2.026 (4) |
Cu1A—N1A | 2.041 (3) | Cu1B—O10 | 2.396 (3) |
Cu1A—N55 | 2.226 (3) | Cu1B—N65 | 2.677 (4) |
N4A—C5A | 1.304 (6) | N65—C65 | 1.149 (5) |
Cu1B—N4B | 1.986 (4) | ||
N4A—Cu1A—N11A | 164.6 (2) | N4B—Cu1B—N11B | 170.7 (2) |
N4A—Cu1A—N8A | 95.6 (2) | N8B—Cu1B—N11B | 86.9 (2) |
N11A—Cu1A—N8A | 85.9 (1) | N1B—Cu1B—N11B | 91.0 (2) |
N4A—Cu1A—N1A | 85.4 (2) | N4B—Cu1B—O10 | 101.6 (2) |
N11A—Cu1A—N1A | 89.7 (1) | N8B—Cu1B—O10 | 87.0 (2) |
N8A—Cu1A—N1A | 166.8 (2) | N1B—Cu1B—O10 | 93.9 (1) |
N4A—Cu1A—N55 | 99.9 (2) | N11B—Cu1B—O10 | 87.3 (2) |
N11A—Cu1A—N55 | 95.1 (1) | N4B—Cu1B—N65 | 88.6 (2) |
N8A—Cu1A—N55 | 96.7 (2) | N8B—Cu1B—N65 | 96.8 (2) |
N1A—Cu1A—N55 | 96.1 (1) | N1B—Cu1B—N65 | 81.9 (1) |
C55—N55—Cu1A | 168.2 (3) | N11B—Cu1B—N65 | 82.2 (1) |
N4B—Cu1B—N8B | 95.9 (2) | O10—Cu1B—N65 | 168.7 (1) |
N4B—Cu1B—N1B | 86.0 (2) | C65—Ni6—C66 | 89.14 (18) |
N8B—Cu1B—N1B | 177.7 (2) | C65—N65—Cu1B | 137.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···N85i | 0.91 | 2.26 | 3.124 (5) | 159 |
N11A—H11A···O14 | 0.91 | 2.11 | 2.869 (5) | 140 |
N11A—H11A···O19A | 0.91 | 2.41 | 2.978 (5) | 121 |
N1B—H1B···O19A | 0.91 | 2.12 | 2.937 (5) | 149 |
N8B—H8B···O12 | 0.91 | 2.13 | 3.041 (5) | 174 |
N8B—H8B···O10 | 0.91 | 2.58 | 3.052 (5) | 113 |
N11B—H11B···O19B | 0.91 | 2.29 | 2.874 (5) | 122 |
O10—H10E···N75ii | 0.84 (5) | 1.92 (5) | 2.745 (6) | 168 (5) |
O10—H10F···O12 | 0.85 (5) | 1.93 (5) | 2.702 (5) | 151 (5) |
O11—H11E···N66iii | 0.84 (3) | 2.04 (4) | 2.870 (5) | 170 (6) |
O11—H11F···N56 | 0.83 (5) | 2.28 (5) | 3.106 (5) | 172 (5) |
O12—H12F···N86 | 0.83 (4) | 1.97 (4) | 2.788 (5) | 168 (6) |
O12—H12E···O13 | 0.84 (4) | 1.88 (3) | 2.702 (5) | 171 (6) |
O13—H13E···O11iv | 0.84 (4) | 1.94 (4) | 2.733 (5) | 158 (6) |
O13—H13F···N56iii | 0.83 (4) | 2.15 (4) | 2.973 (6) | 170 (5) |
O14—H14E···N76ii | 0.82 (4) | 2.03 (4) | 2.847 (5) | 174 (7) |
O14—H14F···N85i | 0.82 (5) | 2.10 (5) | 2.872 (6) | 159 (6) |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) x−1, y−1, z. |
References
Blight, M. M. & Curtis, N. F. (1962). J. Chem. Soc. pp. 3016–3020. CrossRef Web of Science Google Scholar
Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SADABS (Version 2.03) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cernak, J., Orendac, M., Potocnak, I., Chomic, J., Orendacova, A., Skorsepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51–66. Web of Science CrossRef CAS Google Scholar
Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988a). J. Chem. Soc. Dalton Trans. pp. 497–502. CSD CrossRef Web of Science Google Scholar
Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988b). J. Chem. Soc. Dalton Trans. pp. 2145–2152. CSD CrossRef Web of Science Google Scholar
Comba, P., Curtis, N. F., Lawrance, G. A., Sargeson, A. M., Skelton, B. W. & White, A. H. (1986). Inorg. Chem. 25, 4260–4267. CSD CrossRef CAS Web of Science Google Scholar
Curtis, N. F. (1972). J. Chem. Soc. Dalton Trans. pp. 1357–1361. CrossRef Web of Science Google Scholar
Curtis, N. F., Powell, H. K. J., Puschmann, H., Rickard, C. E. F. & Waters, J. M. (2003). Inorg. Chim. Acta, 355, 25–32. Web of Science CSD CrossRef CAS Google Scholar
El Fallah, M. S., Ribas, J., Solans, X. & Font-Bardia, M. (2001). J. Chem. Soc. Dalton Trans. pp. 247–250. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gainsford, G. J. & Curtis, N. F. (1984). Aust. J. Chem. 37, 1799–1816. CSD CrossRef CAS Google Scholar
Kou, H. Z., Liao, D. Z., Jiang, Z. H., Yan, S. P., Wu, Q. J., Gao, S. & Wang, G. L. (2000). Inorg. Chem. Commun. 3, 151–154. Web of Science CSD CrossRef CAS Google Scholar
Lawrance, G. A., Lye, P. G., Maeder, M. & Wilkes, E. N. (1993). Spec. Publ. R. Soc. Chem. 131, 106–109. CAS Google Scholar
Lawrance, G. A., Maeder, M. & Wilkes, E. N. (1993). Rev. Inorg. Chem. 13, 199–132. CrossRef CAS Google Scholar
Lokaj, J., Gyerova, K., Sopkova, A., Sivy, J., Kettmann, V. & Vrabel, V. (1991). Acta Cryst. C47, 2447–2448. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Luo, J.-H., Wu, M.-X., Wang, Y.-M., Gao, D.-S., Li, D. & Cheng, C.-Z. (2000). Jiegou Huaxue, 19, 187–190. CAS Google Scholar
Spek, A. L. (2002). PLATON. Utrecht University, The Netherlands. Google Scholar
Zou, J. Z., Hu, X. D., Duan, C. Y., Xu, Z., You, X. Z. & Mak, T. C. W. (1998). Transition Met. Chem. 23, 477–480. Web of Science CSD CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
Michael condensations of (polyamine)metal complexes with methanal and nitroalkanes form nitroalkyl-substituted cyclic amine complexes (Lawrance et al., 1993; Comba et al., 1986), e.g. 6-methyl-6-nitro-1,4,8,11-tetraazacyclotetradecane)copper(II), formed from (3,7-diazanonane-1,9-diamine)metal compounds, methanal and nitroethane (Comba et al., 1988a, 1988b). The (tetraazamacrocycle)copper(II) cation, [Cu(L)]2+, present in the title compound, formed by an analogous reaction of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) with methanal and nitropropane, differs by the presence of the imine function, the introduction of the 5,7,7-trimethyl substituents and the substitution of a 6-ethyl substituent for 6-methyl.
Structures of a number of methylnitro-substituted azamacrocyclic compounds obtained by reaction of (amine)metal compounds with nitroethane and methanal have been reported, but this is the first for an ethylnitro-substituted analogue derived from nitropropane.
The structures of many compounds of (amine)metal cations with cyanometallate anions have been reported, often with oligo- or polymeric structures with bridging cyanometallate ions (Cernak et al., 2002).
The title compound, which crystallizes from aqueous solutions containing [Ni(CN)4]2− and [Cu(L)]2+, has the formal composition [Cu(L)][Ni(CN)4]·2.5H2O, but has two structurally distinct centrosymmetrical tetracyanonickelate(II)-bridged (azamacrocycle)copper(II) trinuclear cations, two independant tetracyanonickelate(II) anions, and one coordinated and four un-coordinated water molecules (see Fig. 1).
Atom Cu1A is in a square-planar coordination environment formed by the three secondary amine atoms, N1A, N8A and N11A, and imine atom N4A of macrocycle La, with atom N55 of the tetracyanonickelate(II) ion, [Ni5(CN)4]2−, coordinated axially; the result is a centrosymmetrical trinuclear cation, [(La)Cu—NC—Ni(CN)2—CN—Cu(La)]2+, with a Cu···Cu separation of 10.426 (5) Å (see Fig. 2).
Atom Cu1B is in square-planar coordination environment formed by the four N atoms, N1B, N4B, N8B and N11B, of macrocyle Lb, with weaker axial interactions with water atom O10 and atom N65 of the [Ni6(CN)4]2− ion forming a weakly bound centrosymmetrical trinuclear cation, [(H2O)(Lb)Cu—NC—Ni(CN)2—CN—Cu(Lb)(OH2)]2+, with a Cu···Cu separation of 10.599 (5) Å (see Fig. 3).
For the two (azamacrocycle)copper(II) cations, the Cu—Nring distances are similar (with Cu—Nimine ca 0.03 Å shorter than the mean Cu—Namine distance), the configuration is the same (1S,8R,11R; Spek, 2002) and the conformations are similar. The nitro group and the C72 methyl component of the gem dimethyl group are axially oriented on the same side of the N4 macrocycle coordination plane as the N1/H1 and N11/H11 groups, with the N8/H8 group and the axial ligand (N55 for Cu1A and O10 for Cu1B) on the other side. The N4 plane is less tetrahedrally twisted and the Cu atom is further displaced from this plane for [Cu1A(La)]2+ [± 0.017 (2) and 0.246 (2) Å] than for [Cu1B(Lb)]2+ [±0.067 (2) and 0.088 (2) Å]; these planes are inclined at 30.9 (2)°. The C15 methylene substituents of both macrocyles are equatorially oriented, with the terminal methyl group, C16A, of [Cu(La)]2+ further equatorially extended and closer to atom O18A, while the C16B group is axially oriented on the same side as axial water ligand O10.
The coordinated isocyano atom N55 is close to the square pyramidal axis of [Cu1A(La)]2+, with Nring—Cu1A—N55 angles of between 95.1 (1) and 99.3 (1)°. The non-bridging N56—C56—Ni5 group is approximately aligned with the C7A···C14A axis [N56···Ni5···Cu1A—C7A = −1.4 (2)°]. The ion is tilted with respect to the N4 coordination plane so that the N8A···N56 distance [6.250 (5) Å] is longer than the N1A···N56(-x, 2 − y, −z) distance [4.998 (5) Å].
For [Cu1B(Lb)]2+, the coordinated water O and isocyano N atoms are displaced from the square-bipyramidal axis, with Nring—Cu1B—O10 angles of 87.1 (1)–101.8 (1)° and Nring—Cu1B—N65 angles of 81.9 (1)–96.8 (1)°.
The dimensions of the coordinated and non-coordinated [Ni(CN)4]2− ions, all centrosymmetric, do not differ significantly. The two tetracyanonickelate(II) anions including atoms Ni7 and Ni8, and the water molecules including atoms O11, O12, O13 and O14, have no direct interaction with the copper(II) cations, though all are linked into a hydrogen-bonding network (see Table 2).
Bis(ethane-1,2-diamine)copper(II) tetracyanonickelate(II) has a polymeric chain structure [–Cu(en)2—NC—Ni(CN)2—CN—Cu(en)2–] (Luo et al., 2000; Lokaj et al., 1991) [as do analogous compounds of other (tetraamine)copper(II) cations and the meso-(5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane)copper(II), [Cu(L1)]2+, compounds with [Fe(CN)6]3− (Zou et al., 1998) and [Cr(CN)6]3− (El Fallah et al., 2001), which are similar to the [Ni(CN)4]2− compounds formed by [Ni(L1)]2+ (Gainsford & Curtis, 1984) and (3,10-diethyl-1,3,5,8,10,12- hexaazacyclotetradecane)nickel(II) (Kou et al., 2000)], with the Cu—Ncyano distances longer than the Ni—Ncyano distances. The two faces of these (azamacrocycle)metal(II) cations are equivalent, favouring the symmetrical structures observed. The two faces of the [Cu(L)]2+ cation are inherently different, the configuration observed having the the axial nitro and methyl groups on the same side, which minimizes the interaction with an axial substituent coordinated on the other side. For [Cu(La)]2+, the isocyano N atom is coordinated on this less congested side, while for [Cu(Lb)]2+, water is bound on this side and the isocyano group is bound more weakly on the other side.