metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

A compound of a novel tetra­aza-macrocycle with trinuclear tetra­cyano­nickelate-bridged cations

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical and Physical Sciences, Victoria University of Wellington, Box 600, Wellington, New Zealand, and bDurham University Chemical Crystallography Group, Durham DH1 3LE, England
*Correspondence e-mail: neil.curtis@vuw.ac.nz

(Received 4 June 2004; accepted 24 June 2004; online 21 July 2004)

The cation of the title compound, [Cu(L)]2+, is formed by Michael condensation of (4,6,6-tri­methyl-3,7-di­aza­non-3-ene-1,9-di­amine)copper(II) with methanal and nitro­propane. This cation forms a tetra­cyano­nickelate(II) compound, the unit cell of which contains two centrosymmetric tetra­cyano­nickelate(II)-bridged trinuclear cations, namely di­aqua-1,3κ2O-di-μ-cyano-1:2κ2C:N;1:3κ2C:N-di­cyano-1κ2C-bis(13-ethyl-5,7,7-tri­methyl-13-nitro-1,4,8,11-tetra­aza­cyclo­tetra­dec-4-ene)-2κ4N1,N4,N8,N11;3κ4N1,N4,N8,N11-dicopper(II)­nickel(II) di-μ-cyano-1:2κ2C:N;1:3κ2C:N-di­cyano-1κ2C-bis­(13-ethyl-5,7,7-tri­methyl-13-nitro-1,4,8,11-tetra­aza­cyclo­tetra­dec-4-ene)-2κ4N1,N4,N8,N11;3κ4N1,N4,N8,N11-dicopper(II)­nickel(II) bis­[tetra­cyano­nickelate(II)] octahydrate, [Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2][Ni(CN)4]2·8H2O. One cation, [(L)Cu–NC–Ni(CN)2–CN–Cu(L)]2+, has an axially coordinated bridging [Ni(CN)4]2− ion, with a Cu—N distance of 2.226 (3) Å and a Cu—N—C angle of 168.2 (3)°. The other cation, [(H2O)(L)Cu–NC–Ni(CN)2–CN–Cu(L)(OH2)]2+, has water axially coordinated trans to a weakly bound bridging [Ni(CN)4]2− ion, with a Cu—O distance of 2.396 (3) Å, a Cu—N distance of 2.677 (4) Å, an O—Cu—N angle of 168.7 (1)° and a Cu—N—C angle of 137.7 (3)°. These cations, plus independent [Ni(CN)4]2− ions and water mol­ecules, are linked into a hydrogen-bonded network. All [Ni(CN)4]2− ions are on centres of symmetry.

Comment

Michael condensations of (poly­amine)­metal complexes with methanal and nitro­alkanes form nitro­alkyl-substituted cyclic amine complexes (Lawrance, Lye et al., 1993[Lawrance, G. A., Lye, P. G., Maeder, M. & Wilkes, E. N. (1993). Spec. Publ. R. Soc. Chem. 131, 106-109.]; Lawrance, Maeder et al., 1993[Lawrance, G. A., Maeder, M. & Wilkes, E. N. (1993). Rev. Inorg. Chem. 13, 199-132.]; Comba et al., 1986[Comba, P., Curtis, N. F., Lawrance, G. A., Sargeson, A. M., Skelton, B. W. & White, A. H. (1986). Inorg. Chem. 25, 4260-4267.]), such as 6-methyl-6-nitro-1,4,8,11-tetra­aza­cyclo­tetra­decane)copper(II), which is formed from (3,7-di­aza­nonane-1,9-di­amine)­metal compounds, methanal and nitro­ethane (Comba et al., 1988a[Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988a). J. Chem. Soc. Dalton Trans. pp. 497-502.],b[Comba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988b). J. Chem. Soc. Dalton Trans. pp. 2145-2152.]). The (tetra­aza-macrocycle)copper(II) cation, [Cu(L)]2+[link], present in the title compound, formed by an analogous reaction of (4,6,6-tri­methyl-3,7-di­aza­non-3-ene-1,9-diamine)copper(II) with me­thanal and nitro­propane, differs by the presence of the imine function, the introduction of the 5,7,7-tri­methyl substituents and the substitution of a 6-ethyl substituent for 6-methyl.

[Scheme 1]

Structures of a number of methyl/nitro-substituted aza-macrocycle compounds obtained by reaction of (amine)­metal compounds with nitro­ethane and methanal have been reported, but this is the first for an ethyl/nitro-substituted analogue derived from nitro­propane.

The structures of many compounds of (amine)­metal cations with cyano­metallate anions have been reported, often with oligo- or polymeric structures with bridging cyano­metallate ions (Cernak et al., 2002[Cernak, J., Orendac, M., Potocnak, I., Chomic, J., Orendacova, A., Skorsepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51-66.]).

[Scheme 2]

The title compound, (I[link]), which crystallizes from aqueous solutions containing [Ni(CN)4]2− and [Cu(L)]2+, has the formal composition [Cu(L)][Ni(CN)4]·2.5H2O, but has two structurally distinct centrosymmetric tetra­cyano­nickelate(II)-bridged (aza-macrocycle)copper(II) trinuclear cations, two independent tetra­cyano­nickelate(II) anions, and one coordinated and four uncoordinated water mol­ecules (see Fig. 1[link] and Table 1[link]).

Atom Cu1A is in a square-planar coordination environment formed by the three secondary amine atoms, viz. N1A, N8A and N11A, and imine atom N4A of macrocycle La, with atom N55 of the [Ni5(CN)4]2− tetra­cyano­nickelate(II) ion coordinated axially; the result is a centrosymmetric trinuclear cation, [(La)Cu–NC–Ni(CN)2–CN–Cu(La)]2+, with a Cu⋯Cu separation of 10.426 (5) Å (see Fig. 2[link]).

Atom Cu1B is in a square-planar coordination environment formed by the four N atoms, viz. N1B, N4B, N8B and N11B, of macrocycle Lb, with weaker axial interactions with water atom O10 and atom N65 of the [Ni6(CN)4]2− ion forming a weakly bound centrosymmetric trinuclear cation, [(H2O)(Lb)Cu–NC–Ni(CN)2–CN–Cu(Lb)(OH2)]2+, with a Cu⋯Cu separation of 10.599 (5) Å (see Fig. 3[link]).

For the two (aza-macrocycle)copper(II) cations, the Cu—Nring distances are similar (with the Cu—Nimine distance ca 0.03 Å shorter than the mean Cu—Namine distance), the configuration is the same (1S,8R,11R; Spek, 2002[Spek, A. L. (2002). PLATON. Utrecht University, The Netherlands.]) and the conformations are similar. The nitro group and the C72 methyl component of the gem-di­methyl group are axially oriented on the same side of the N4 macrocycle coordination plane as the N1—H1 and N11—H11 groups, with the N8—H8 group and the axial ligand (N55 for Cu1A and O10 for Cu1B) on the other side. The N4 plane is less tetrahedrally twisted and the Cu atom is further displaced from this plane for the [Cu1A(La)]2+ ion [[\pm]0.017 (2) and 0.246 (2) Å] than for the [Cu1B(Lb)]2+ ion [[\pm]0.067 (2) and 0.088 (2) Å]; these planes are inclined at 30.9 (2)°. The C15 methyl­ene substituents of both macrocycles are equatorially oriented, with the terminal methyl group, C16A, of the [Cu(La)]2+ ion further equatorially extended and closer to atom O18A, while the C16B group is axially oriented on the same side as axial water ligand O10.

The coordinated iso­cyano atom N55 is close to the square-pyramidal axis of the [Cu1A(La)]2+ ion, with Nring—Cu1A—N55 angles of between 95.1 (1) and 99.3 (1)°. The non-bridging N56—C56—Ni5 group is approximately aligned with the C7A⋯C14A axis [N56⋯Ni5⋯Cu1A—C7A = −1.4 (2)°]. The ion is tilted with respect to the N4 coordination plane so that the N8A⋯N56 distance [6.250 (5) Å] is longer than the N1A⋯N56(−x, 2 − y, −z) distance [4.998 (5) Å].

For [Cu1B(Lb)]2+, the coordinated water O and iso­cyano N atoms are displaced from the square-bipyramidal axis, with Nring—Cu1B—O10 angles of 87.1 (1)–101.8 (1)° and Nring—Cu1B—N65 angles of 81.9 (1)–96.8 (1)°.

The dimensions of the coordinated and non-coordinated [Ni(CN)4]2− ions, all centrosymmetric, do not differ significantly. The two tetra­cyano­nickelate(II) anions including atoms Ni7 and Ni8, and the water mol­ecules including atoms O11, O12, O13 and O14 have no direct interaction with the copper(II) cations, though all are linked into a hydrogen-bonding network (see Table 2[link]).

Chain polymeric structures are present for bis­(ethane-1,2-di­amine)copper(II) tetra­cyano­nickelate(II), [–Cu(en)2–NC–Ni(CN)2–CN–Cu(en)2–] (Luo et al., 2000[Luo, J.-H., Wu, M.-X., Wang, Y.-M., Gao, D.-S., Li, D. & Cheng, C.-Z. (2000). Jiegou Huaxue, 19, 187-190.]; Lokaj et al., 1991[Lokaj, J., Gyerova, K., Sopkova, A., Sivy, J., Kettmann, V. & Vrabel, V. (1991). Acta Cryst. C47, 2447-2448.]), and for analogous cyanometallate compounds of other (tetra­amine)copper(II) cations, including the meso-(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane)copper(II), [Cu(L1)]2+, compounds with [Fe(CN)6]3− (Zou et al., 1998[Zou, J. Z., Hu, X. D., Duan, C. Y., Xu, Z., You, X. Z. & Mak, T. C. W. (1998). Transition Met. Chem. 23, 477-480.]) and [Cr(CN)6]3− (El Fallah et al., 2001[El Fallah, M. S., Ribas, J., Solans, X. & Font-Bardia, M. (2001). J. Chem. Soc. Dalton Trans. pp. 247-250.]). The [Ni(CN)4]2− compounds formed by [Ni(L1)]2+ (Gainsford & Curtis, 1984[Gainsford, G. J. & Curtis, N. F. (1984). Aust. J. Chem. 37, 1799-1816.]) and (3,10-diethyl-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane)­nickel(II) (Kou et al., 2000[Kou, H. Z., Liao, D. Z., Jiang, Z. H., Yan, S. P., Wu, Q. J., Gao, S. & Wang, G. L. (2000). Inorg. Chem. Commun. 3, 151-154.]) have similar structures, but with the Ni—Ncyano distances longer than Cu—Ncyano. The two faces of these (aza-macrocycle)­metal(II) cations are equivalent, favouring the symmetrical structures observed. The two faces of the [Cu(L)]2+ cation are inherently different, the configuration observed having the axial nitro and methyl groups on the same side, which minimizes the interaction with an axial substituent coordinated on the other side. For the [Cu(La)]2+ ion, the iso­cyano N atom is coordinated on this less congested side, while for the [Cu(Lb)]2+ ion, water is bound on this side and the iso­cyano group is bound more weakly on the other side.

[Figure 1]
Figure 1
The structure of the title compound, drawn with displacement ellipsoids at the 50% probability level for non-H atoms, showing the asymmetric unit (labelled atoms and atoms of associated macrocycles), with additional atoms generated by symmetry operations to complete the tetra­cyano­nickelate(II) anions and trinuclear cations.
[Figure 2]
Figure 2
The [(La)Cu–NC–Ni(CN)2–CN–Cu(La)]2+ cation, drawn with dis­place­ment ellipsoids at the 50% probability level.
[Figure 3]
Figure 3
The [(H2O)(La)Cu–NC–Ni(CN)2–CN–Cu(Lb)(OH2)]2+ cation, drawn with displacement ellipsoids at the 50% probability level.

Experimental

Aqua(13-ethyl-5,7,7-tri­methyl-13-nitro-1,4,8,11-tetra­aza­cyclo­tetra­dec-4-ene)copper(II) bis(perchlorate), [Cu(L)(H2O)](ClO4)2, was prepared by condensation of (4,6,6-tri­methyl-3,7-di­aza­non-3-ene-1,9-di­amine)copper(II) perchlorate (Blight & Curtis, 1962[Blight, M. M. & Curtis, N. F. (1962). J. Chem. Soc. pp. 3016-3020.]; Curtis, 1972[Curtis, N. F. (1972). J. Chem. Soc. Dalton Trans. pp. 1357-1361.]; Curtis et al., 2003[Curtis, N. F., Powell, H. K. J., Puschmann, H., Rickard, C. E. F. & Waters, J. M. (2003). Inorg. Chim. Acta, 355, 25-32.]), methanal and nitro­propane in water, with NaHCO3 as base. The mauve-coloured tetra­cyano­nickelate(II) compound precipitated when aqueous solutions containing [Ni(CN)4]2− and [Cu(L)]2+ were mixed. The sparingly soluble compound was recrystallized by evaporation of an aqueous solution.

Crystal data
  • [Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2][Ni(CN)4]2·8H2O

  • Mr = 2339.23

  • Triclinic, [P\overline 1]

  • a = 11.7497 (2) Å

  • b = 14.0540 (3) Å

  • c = 17.9014 (4) Å

  • α = 70.154 (1)°

  • β = 78.165 (1)°

  • γ = 81.290 (1)°

  • V = 2710.6 (1) Å3

  • Z = 1

  • Dx = 1.431 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7862 reflections

  • θ = 2.3–29.3°

  • μ = 1.52 mm−1

  • T = 120 (2) K

  • Plate, purple

  • 0.35 × 0.35 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD area detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS (Version 2.03) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.538, Tmax = 0.885

  • Rint = 0.047 before correction

  • 22 241 measured reflections

  • 14 372 independent reflections

  • 9857 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 29.1°

  • h = −15 → 15

  • k = −19 → 19

  • l = −24 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.162

  • S = 1.05

  • 14 372 reflections

  • 666 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0668P)2 + 5.1175P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.006

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1A—N4A 1.999 (4)
Cu1A—N11A 2.013 (3)
Cu1A—N8A 2.031 (3)
Cu1A—N1A 2.041 (3)
Cu1A—N55 2.226 (3)
N4A—C5A 1.304 (6)
Cu1B—N4B 1.986 (4)
Cu1B—N8B 2.018 (4)
Cu1B—N1B 2.020 (3)
Cu1B—N11B 2.026 (4)
Cu1B—O10 2.396 (3)
Cu1B—N65 2.677 (4)
N4B—C5B 1.304 (6)
N4A—Cu1A—N11A 164.6 (2)
N4A—Cu1A—N8A 95.6 (2)
N11A—Cu1A—N8A 85.9 (1)
N4A—Cu1A—N1A 85.4 (2)
N11A—Cu1A—N1A 89.7 (1)
N8A—Cu1A—N1A 166.8 (2)
N4A—Cu1A—N55 99.9 (2)
N11A—Cu1A—N55 95.1 (1)
N8A—Cu1A—N55 96.7 (2)
N1A—Cu1A—N55 96.1 (1)
C55—N55—Cu1A 168.2 (3)
N4B—Cu1B—N8B 95.9 (2)
N4B—Cu1B—N1B 86.0 (2)
N8B—Cu1B—N1B 177.7 (2)
N4B—Cu1B—N11B 170.7 (2)
N8B—Cu1B—N11B 86.9 (2)
N1B—Cu1B—N11B 91.0 (2)
N4B—Cu1B—O10 101.6 (2)
N8B—Cu1B—O10 87.0 (2)
N1B—Cu1B—O10 93.9 (1)
N11B—Cu1B—O10 87.3 (2)
N4B—Cu1B—N65 88.6 (2)
N8B—Cu1B—N65 96.8 (2)
N1B—Cu1B—N65 81.9 (1)
N11B—Cu1B—N65 82.2 (1)
O10—Cu1B—N65 168.7 (1)
C65—Ni6—C66 89.1 (2)
C65—N65—Cu1B 137.7 (3)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯N85i 0.91 2.26 3.124 (5) 159
N11A—H11A⋯O14 0.91 2.11 2.869 (5) 140
N11A—H11A⋯O19A 0.91 2.41 2.978 (5) 121
N1B—H1B⋯O19A 0.91 2.12 2.937 (5) 149
N8B—H8B⋯O12 0.91 2.13 3.041 (5) 174
N8B—H8B⋯O10 0.91 2.58 3.052 (5) 113
N11B—H11B⋯O19B 0.91 2.29 2.874 (5) 122
O10—H10E⋯N75ii 0.84 (5) 1.92 (5) 2.745 (6) 168 (5)
O10—H10F⋯O12 0.85 (5) 1.93 (5) 2.702 (5) 151 (5)
O11—H11E⋯N66iii 0.84 (3) 2.04 (4) 2.870 (5) 170 (6)
O11—H11F⋯N56 0.83 (5) 2.28 (5) 3.106 (5) 172 (5)
O12—H12F⋯N86 0.83 (4) 1.97 (4) 2.788 (5) 168 (6)
O12—H12E⋯O13 0.84 (4) 1.88 (3) 2.702 (5) 171 (6)
O13—H13E⋯O11iv 0.84 (4) 1.94 (4) 2.733 (5) 158 (6)
O13—H13F⋯N56iii 0.83 (4) 2.15 (4) 2.973 (6) 170 (5)
O14—H14E⋯N76ii 0.82 (4) 2.03 (4) 2.847 (5) 174 (7)
O14—H14F⋯N85i 0.82 (5) 2.10 (5) 2.872 (6) 159 (6)
Symmetry codes: (i) x,1+y,z; (ii) x-1,y,z; (iii) 1-x,1-y,-z; (iv) x-1, y-1,z.

C- and N-bound H atoms were placed in calculated positions and treated as riding. Water H atoms were located from difference syntheses, and their positions were refined with restrained O—H distances [0.82 (2) Å] and H—O—H angles [H⋯H = 1.35 (2) Å].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SADABS (Version 2.03) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Michael condensations of (polyamine)metal complexes with methanal and nitroalkanes form nitroalkyl-substituted cyclic amine complexes (Lawrance et al., 1993; Comba et al., 1986), e.g. 6-methyl-6-nitro-1,4,8,11-tetraazacyclotetradecane)copper(II), formed from (3,7-diazanonane-1,9-diamine)metal compounds, methanal and nitroethane (Comba et al., 1988a, 1988b). The (tetraazamacrocycle)copper(II) cation, [Cu(L)]2+, present in the title compound, formed by an analogous reaction of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) with methanal and nitropropane, differs by the presence of the imine function, the introduction of the 5,7,7-trimethyl substituents and the substitution of a 6-ethyl substituent for 6-methyl.

Structures of a number of methylnitro-substituted azamacrocyclic compounds obtained by reaction of (amine)metal compounds with nitroethane and methanal have been reported, but this is the first for an ethylnitro-substituted analogue derived from nitropropane.

The structures of many compounds of (amine)metal cations with cyanometallate anions have been reported, often with oligo- or polymeric structures with bridging cyanometallate ions (Cernak et al., 2002).

The title compound, which crystallizes from aqueous solutions containing [Ni(CN)4]2− and [Cu(L)]2+, has the formal composition [Cu(L)][Ni(CN)4]·2.5H2O, but has two structurally distinct centrosymmetrical tetracyanonickelate(II)-bridged (azamacrocycle)copper(II) trinuclear cations, two independant tetracyanonickelate(II) anions, and one coordinated and four un-coordinated water molecules (see Fig. 1).

Atom Cu1A is in a square-planar coordination environment formed by the three secondary amine atoms, N1A, N8A and N11A, and imine atom N4A of macrocycle La, with atom N55 of the tetracyanonickelate(II) ion, [Ni5(CN)4]2−, coordinated axially; the result is a centrosymmetrical trinuclear cation, [(La)Cu—NC—Ni(CN)2—CN—Cu(La)]2+, with a Cu···Cu separation of 10.426 (5) Å (see Fig. 2).

Atom Cu1B is in square-planar coordination environment formed by the four N atoms, N1B, N4B, N8B and N11B, of macrocyle Lb, with weaker axial interactions with water atom O10 and atom N65 of the [Ni6(CN)4]2− ion forming a weakly bound centrosymmetrical trinuclear cation, [(H2O)(Lb)Cu—NC—Ni(CN)2—CN—Cu(Lb)(OH2)]2+, with a Cu···Cu separation of 10.599 (5) Å (see Fig. 3).

For the two (azamacrocycle)copper(II) cations, the Cu—Nring distances are similar (with Cu—Nimine ca 0.03 Å shorter than the mean Cu—Namine distance), the configuration is the same (1S,8R,11R; Spek, 2002) and the conformations are similar. The nitro group and the C72 methyl component of the gem dimethyl group are axially oriented on the same side of the N4 macrocycle coordination plane as the N1/H1 and N11/H11 groups, with the N8/H8 group and the axial ligand (N55 for Cu1A and O10 for Cu1B) on the other side. The N4 plane is less tetrahedrally twisted and the Cu atom is further displaced from this plane for [Cu1A(La)]2+ [± 0.017 (2) and 0.246 (2) Å] than for [Cu1B(Lb)]2+ [±0.067 (2) and 0.088 (2) Å]; these planes are inclined at 30.9 (2)°. The C15 methylene substituents of both macrocyles are equatorially oriented, with the terminal methyl group, C16A, of [Cu(La)]2+ further equatorially extended and closer to atom O18A, while the C16B group is axially oriented on the same side as axial water ligand O10.

The coordinated isocyano atom N55 is close to the square pyramidal axis of [Cu1A(La)]2+, with Nring—Cu1A—N55 angles of between 95.1 (1) and 99.3 (1)°. The non-bridging N56—C56—Ni5 group is approximately aligned with the C7A···C14A axis [N56···Ni5···Cu1A—C7A = −1.4 (2)°]. The ion is tilted with respect to the N4 coordination plane so that the N8A···N56 distance [6.250 (5) Å] is longer than the N1A···N56(-x, 2 − y, −z) distance [4.998 (5) Å].

For [Cu1B(Lb)]2+, the coordinated water O and isocyano N atoms are displaced from the square-bipyramidal axis, with Nring—Cu1B—O10 angles of 87.1 (1)–101.8 (1)° and Nring—Cu1B—N65 angles of 81.9 (1)–96.8 (1)°.

The dimensions of the coordinated and non-coordinated [Ni(CN)4]2− ions, all centrosymmetric, do not differ significantly. The two tetracyanonickelate(II) anions including atoms Ni7 and Ni8, and the water molecules including atoms O11, O12, O13 and O14, have no direct interaction with the copper(II) cations, though all are linked into a hydrogen-bonding network (see Table 2).

Bis(ethane-1,2-diamine)copper(II) tetracyanonickelate(II) has a polymeric chain structure [–Cu(en)2—NC—Ni(CN)2—CN—Cu(en)2–] (Luo et al., 2000; Lokaj et al., 1991) [as do analogous compounds of other (tetraamine)copper(II) cations and the meso-(5,5,7,12,12,14-hexamethyl- 1,4,8,11-tetraazacyclotetradecane)copper(II), [Cu(L1)]2+, compounds with [Fe(CN)6]3− (Zou et al., 1998) and [Cr(CN)6]3− (El Fallah et al., 2001), which are similar to the [Ni(CN)4]2− compounds formed by [Ni(L1)]2+ (Gainsford & Curtis, 1984) and (3,10-diethyl-1,3,5,8,10,12- hexaazacyclotetradecane)nickel(II) (Kou et al., 2000)], with the Cu—Ncyano distances longer than the Ni—Ncyano distances. The two faces of these (azamacrocycle)metal(II) cations are equivalent, favouring the symmetrical structures observed. The two faces of the [Cu(L)]2+ cation are inherently different, the configuration observed having the the axial nitro and methyl groups on the same side, which minimizes the interaction with an axial substituent coordinated on the other side. For [Cu(La)]2+, the isocyano N atom is coordinated on this less congested side, while for [Cu(Lb)]2+, water is bound on this side and the isocyano group is bound more weakly on the other side.

Experimental top

Aqua-(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec- 4-ene)copper(II) perchlorate, [Cu(L)(H2O)](ClO4)2, was prepared by condensation of (4,6,6-trimethyl-3,7-diazanon-3-ene-1,9-diamine)copper(II) perchlorate, (Blight & Curtis, 1962; Curtis, 1972; Curtis et al., 2003) methanal and nitropropane in water, with NaHCO3 as base. The mauve-coloured tetracyanonickelate(II) compound precipitated when aqueous solutions containing [Ni(CN)4]2− and [Cu(L)]2+ were mixed. The sparingly soluble compound was recrystallized by evaporation of an aqueous solution.

Refinement top

C– and N-bound H atoms were placed in calculated positions and treated as riding. Water H atoms were located from difference syntheses, and their positions were refined with restrained O—H distances [0.82 (2) Å] and H—O—H angles [H···H = 1.35 (s.u.?) Å].

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3.2 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, drawn with displacement ellipsoids at the 50% confidence level for non-H atoms, showing the asymmetric unit (labelled atoms and atoms of associated macrocycles), with additional atoms generated by symmetry operations to complete the tetracyanonickelate(II) anions and trinuclear cations.
[Figure 2] Fig. 2. The [(La)Cu—NC—Ni(CN)2—CN—Cu(La)]2+ cation, drawn with displacement ellipsoids at the 50% confidence level.
[Figure 3] Fig. 3. The [(H2O)(La)Cu—NC—Ni(CN)2—CN—Cu(Lb)(OH2)]2+ cation, drawn with displacement ellipsoids at the 50% confidence level.
di-µ-cyano-1:2κ2C:N;1:3κ2C:N-tetracyano-1κ4N-bis(13-ethyl-5,7,7- trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)- 2κ4N1,N4,N8,N11;3κ4N1,N4,N8,N11-dicopper(II)nickel(II) diaqua-1,3κ2O-di-µ-cyano-1:2κ2C:N;1:3κ2C:N-tetracyano-1κ4N- bis(13-ethyl-5,7,7-trimethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)- 2κ4N1,N4,N8,N11;3κ4N1,N4,N8,N11-dicopper(II)nickel(II) bis[tetracyanonickelate(II)] octahydrate top
Crystal data top
[Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2] [Ni(CN)4]2·8H2OZ = 1
Mr = 2339.23F(000) = 1220
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7497 (2) ÅCell parameters from 7862 reflections
b = 14.0540 (3) Åθ = 2.3–29.3°
c = 17.9014 (4) ŵ = 1.52 mm1
α = 70.154 (1)°T = 120 K
β = 78.165 (1)°Plate, purple
γ = 81.290 (1)°0.35 × 0.35 × 0.08 mm
V = 2710.6 (1) Å3
Data collection top
SMART 1K CCD area detector
diffractometer
14372 independent reflections
Radiation source: fine-focus sealed tube9857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8 pixels mm-1θmax = 29.1°, θmin = 1.2°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2001) R(int)=0.0470 before correction
k = 1919
Tmin = 0.538, Tmax = 0.885l = 2423
22241 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0668P)2 + 5.1175P]
where P = (Fo2 + 2Fc2)/3
14372 reflections(Δ/σ)max = 0.006
666 parametersΔρmax = 1.41 e Å3
15 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2] [Ni(CN)4]2·8H2Oγ = 81.290 (1)°
Mr = 2339.23V = 2710.6 (1) Å3
Triclinic, P1Z = 1
a = 11.7497 (2) ÅMo Kα radiation
b = 14.0540 (3) ŵ = 1.52 mm1
c = 17.9014 (4) ÅT = 120 K
α = 70.154 (1)°0.35 × 0.35 × 0.08 mm
β = 78.165 (1)°
Data collection top
SMART 1K CCD area detector
diffractometer
14372 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001) R(int)=0.0470 before correction
9857 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.885Rint = 0.034
22241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06315 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.41 e Å3
14372 reflectionsΔρmin = 0.73 e Å3
666 parameters
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 5 sets of ω scans; each set at different ϕ and/or 2θ angles and each scan (10 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.95 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1A0.51585 (4)0.65895 (3)0.23611 (3)0.02303 (11)
N1A0.3381 (3)0.6770 (2)0.2623 (2)0.0259 (7)
H1A0.31270.61700.29670.031*
N4A0.5137 (3)0.7137 (3)0.3259 (2)0.0355 (8)
N8A0.6877 (3)0.6078 (3)0.2270 (2)0.0316 (8)
H8A0.72060.65640.18290.038*
N11A0.5031 (3)0.5711 (2)0.17031 (19)0.0232 (6)
H11A0.47500.51250.20540.028*
N17A0.2472 (3)0.5344 (3)0.1980 (2)0.0303 (7)
C2A0.3118 (4)0.7529 (3)0.3059 (3)0.0360 (10)
H2A0.23100.75250.33240.043*
H2B0.32380.82040.26820.043*
C3A0.3928 (4)0.7256 (4)0.3681 (3)0.0400 (11)
H3A0.38500.77880.39230.048*
H3B0.37320.66270.41030.048*
C5A0.6043 (5)0.7166 (4)0.3564 (3)0.0481 (12)
C6A0.7245 (4)0.7033 (4)0.3093 (3)0.0468 (12)
H6A0.78180.70630.34040.056*
H6B0.73310.76020.25990.056*
C7A0.7534 (5)0.6051 (5)0.2876 (4)0.0521 (14)
C9A0.7008 (4)0.5189 (3)0.1980 (3)0.0316 (9)
H9A0.67690.45910.24220.038*
H9B0.78170.50550.17550.038*
C10A0.6247 (3)0.5438 (3)0.1343 (3)0.0313 (9)
H10A0.65260.60030.08830.038*
H10B0.62660.48560.11640.038*
C12A0.4256 (3)0.6120 (3)0.1093 (2)0.0272 (8)
H12A0.42950.56360.08080.033*
H12B0.45440.67410.07040.033*
C13A0.2975 (3)0.6348 (3)0.1435 (2)0.0272 (8)
C14A0.2764 (3)0.7086 (3)0.1926 (3)0.0293 (9)
H14A0.30020.77430.15710.035*
H14B0.19330.71720.21170.035*
C51A0.5990 (6)0.7505 (6)0.4274 (4)0.074 (2)
H51A0.52070.74930.45660.111*
H51B0.62220.81830.40960.111*
H51C0.65080.70570.46190.111*
C71A0.8848 (5)0.5850 (6)0.2652 (4)0.0654 (18)
H71A0.90140.52630.24740.098*
H71B0.92110.57300.31140.098*
H71C0.91480.64280.22270.098*
C72A0.7108 (8)0.5134 (6)0.3658 (4)0.090 (3)
H72A0.62750.52250.38050.136*
H72B0.74730.51220.40950.136*
H72C0.73190.45040.35450.136*
C15A0.2225 (4)0.6784 (3)0.0753 (3)0.0347 (9)
H15A0.14090.68090.09980.042*
H15B0.24070.74770.04570.042*
C16A0.2383 (4)0.6202 (4)0.0155 (3)0.0398 (11)
H16A0.31430.62830.01690.060*
H16B0.17980.64600.01850.060*
H16C0.23080.54940.04420.060*
O18A0.1574 (3)0.5370 (3)0.2445 (2)0.0469 (9)
O19A0.3001 (3)0.4555 (2)0.1910 (3)0.0598 (11)
Ni50.50001.00000.00000.02336 (15)
N550.5351 (3)0.8009 (2)0.1318 (2)0.0311 (8)
N560.7477 (3)1.0469 (3)0.0123 (3)0.0437 (10)
C550.5245 (3)0.8761 (3)0.0810 (2)0.0258 (8)
C560.6528 (4)1.0292 (3)0.0074 (2)0.0297 (9)
Cu1B0.09397 (4)0.18678 (4)0.25244 (3)0.02937 (13)
N1B0.2299 (3)0.2477 (3)0.2668 (2)0.0289 (7)
H1B0.22850.31310.23340.035*
N4B0.0107 (4)0.2139 (3)0.3526 (2)0.0388 (9)
N8B0.0399 (3)0.1284 (3)0.2332 (2)0.0373 (8)
H8B0.02120.06020.25250.045*
N11B0.1758 (3)0.1839 (3)0.1419 (2)0.0300 (7)
H11B0.17010.24870.10770.036*
C2B0.2048 (4)0.2517 (3)0.3513 (3)0.0341 (9)
H2C0.25040.30090.35590.041*
H2D0.22580.18580.38840.041*
C3B0.0763 (4)0.2817 (4)0.3717 (3)0.0417 (11)
H3C0.05580.27520.42850.050*
H3D0.05750.35180.34060.050*
C5B0.0948 (4)0.1919 (4)0.3884 (3)0.0422 (11)
C6B0.1509 (5)0.1167 (4)0.3657 (3)0.0489 (13)
H6C0.22950.11060.39600.059*
H6D0.10770.05080.38340.059*
C7B0.1583 (4)0.1412 (4)0.2763 (3)0.0456 (12)
C9B0.0222 (4)0.1486 (4)0.1444 (3)0.0387 (10)
H9C0.06920.10680.13180.046*
H9D0.04490.21930.11730.046*
C10B0.1040 (4)0.1237 (3)0.1175 (3)0.0339 (9)
H10C0.11960.13940.05950.041*
H10D0.12470.05170.14170.041*
C12B0.2997 (4)0.1465 (3)0.1334 (3)0.0336 (9)
H12C0.32800.15570.07670.040*
H12D0.30510.07400.16150.040*
C13B0.3825 (4)0.1929 (3)0.1630 (3)0.0313 (9)
C14B0.3471 (4)0.1995 (3)0.2486 (3)0.0316 (9)
H14C0.35240.13120.28640.038*
H14D0.40320.23680.25760.038*
C15B0.5068 (4)0.1368 (4)0.1545 (3)0.0447 (11)
H15F0.53200.13970.09870.054*
H15G0.56030.17250.16770.054*
C16B0.5147 (5)0.0253 (4)0.2079 (4)0.0500 (13)
H16D0.45730.00940.19860.075*
H16E0.50050.02200.26350.075*
H16F0.59120.00630.19510.075*
C51B0.1626 (5)0.2302 (5)0.4549 (4)0.0696 (19)
H51D0.12640.28600.45660.104*
H51E0.16370.17660.50540.104*
H51F0.24120.25240.44520.104*
C71B0.2370 (5)0.0675 (4)0.2707 (4)0.0538 (14)
H71D0.20420.00100.29260.081*
H71E0.24300.08060.21540.081*
H71F0.31320.07650.30080.081*
C72B0.2114 (5)0.2517 (4)0.2413 (4)0.0613 (15)
H72D0.22310.26350.18730.092*
H72E0.15900.29810.24110.092*
H72F0.28490.26210.27390.092*
N17B0.3986 (3)0.3035 (3)0.1073 (2)0.0364 (8)
O19B0.3262 (4)0.3450 (3)0.0628 (2)0.0553 (10)
O18B0.4805 (3)0.3460 (3)0.1104 (2)0.0518 (9)
O100.1759 (3)0.0153 (3)0.3044 (2)0.0500 (9)
H10E0.215 (4)0.006 (4)0.342 (3)0.060*
H10F0.127 (4)0.029 (3)0.317 (3)0.060*
Ni60.00000.50000.00000.02634 (16)
N650.0374 (4)0.3807 (3)0.1702 (2)0.0395 (9)
N660.1233 (3)0.3209 (3)0.0505 (2)0.0380 (9)
C650.0219 (4)0.4272 (3)0.1060 (3)0.0296 (8)
C660.0769 (4)0.3893 (3)0.0320 (3)0.0300 (9)
Ni71.50000.00000.50000.02809 (17)
N751.3252 (5)0.0362 (4)0.4144 (3)0.0727 (17)
N761.5201 (4)0.2129 (3)0.3831 (2)0.0404 (9)
C751.3917 (5)0.0218 (3)0.4474 (3)0.0455 (12)
C761.5120 (4)0.1317 (3)0.4271 (3)0.0335 (9)
Ni80.00000.50000.50000.03084 (18)
N850.2488 (4)0.5019 (3)0.4135 (3)0.0525 (11)
N860.0354 (4)0.2762 (3)0.4102 (3)0.0512 (11)
C850.1545 (4)0.5016 (4)0.4466 (3)0.0377 (10)
C860.0221 (4)0.3605 (4)0.4439 (3)0.0381 (10)
O110.8374 (3)0.8482 (3)0.1108 (2)0.0472 (8)
H11E0.841 (5)0.797 (2)0.096 (3)0.057*
H11F0.808 (5)0.899 (3)0.078 (3)0.057*
O120.0259 (4)0.0996 (3)0.2857 (2)0.0486 (9)
H12E0.025 (5)0.108 (4)0.2417 (17)0.058*
H12F0.001 (5)0.147 (3)0.325 (2)0.058*
O130.0452 (3)0.1146 (3)0.1370 (2)0.0549 (10)
H13E0.015 (3)0.113 (5)0.118 (3)0.066*
H13F0.098 (3)0.096 (5)0.098 (2)0.066*
O140.4609 (4)0.4265 (3)0.3287 (3)0.0643 (12)
H14E0.482 (5)0.3659 (19)0.345 (4)0.077*
H14F0.395 (3)0.433 (4)0.353 (4)0.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu1A0.0241 (2)0.0199 (2)0.0228 (2)0.00072 (17)0.00397 (18)0.00506 (17)
N1A0.0251 (16)0.0198 (15)0.0314 (17)0.0009 (12)0.0009 (13)0.0089 (13)
N4A0.034 (2)0.044 (2)0.0325 (19)0.0004 (16)0.0062 (16)0.0184 (17)
N8A0.0308 (18)0.0321 (18)0.0337 (19)0.0069 (14)0.0137 (15)0.0121 (15)
N11A0.0218 (15)0.0192 (15)0.0245 (16)0.0018 (12)0.0025 (12)0.0024 (12)
N17A0.0271 (18)0.0245 (17)0.0378 (19)0.0071 (14)0.0061 (15)0.0055 (14)
C2A0.029 (2)0.034 (2)0.050 (3)0.0006 (17)0.0005 (19)0.024 (2)
C3A0.036 (2)0.048 (3)0.043 (3)0.005 (2)0.003 (2)0.030 (2)
C5A0.046 (3)0.062 (3)0.048 (3)0.001 (2)0.010 (2)0.034 (3)
C6A0.037 (3)0.069 (3)0.050 (3)0.005 (2)0.018 (2)0.037 (3)
C7A0.041 (3)0.069 (4)0.059 (3)0.018 (3)0.019 (2)0.040 (3)
C9A0.028 (2)0.030 (2)0.032 (2)0.0047 (16)0.0019 (17)0.0081 (17)
C10A0.024 (2)0.037 (2)0.032 (2)0.0014 (17)0.0007 (16)0.0148 (18)
C12A0.029 (2)0.0234 (19)0.029 (2)0.0060 (15)0.0076 (16)0.0044 (15)
C13A0.028 (2)0.0204 (18)0.030 (2)0.0044 (15)0.0038 (16)0.0032 (15)
C14A0.0238 (19)0.0200 (18)0.042 (2)0.0008 (15)0.0061 (17)0.0075 (17)
C51A0.062 (4)0.117 (6)0.072 (4)0.016 (4)0.024 (3)0.070 (4)
C71A0.040 (3)0.112 (5)0.064 (4)0.029 (3)0.030 (3)0.056 (4)
C72A0.129 (7)0.085 (5)0.054 (4)0.035 (5)0.038 (4)0.023 (4)
C15A0.033 (2)0.031 (2)0.038 (2)0.0042 (17)0.0109 (18)0.0038 (18)
C16A0.037 (2)0.045 (3)0.042 (3)0.008 (2)0.014 (2)0.013 (2)
O18A0.0382 (18)0.0399 (18)0.059 (2)0.0161 (15)0.0117 (16)0.0170 (16)
O19A0.045 (2)0.0256 (17)0.095 (3)0.0104 (15)0.013 (2)0.0122 (18)
Ni50.0273 (4)0.0142 (3)0.0243 (3)0.0034 (3)0.0017 (3)0.0014 (3)
N550.0341 (19)0.0213 (16)0.0354 (19)0.0087 (14)0.0093 (15)0.0012 (14)
N560.035 (2)0.0290 (19)0.061 (3)0.0063 (16)0.0079 (19)0.0048 (18)
C550.0242 (19)0.0217 (18)0.031 (2)0.0058 (14)0.0044 (16)0.0058 (16)
C560.038 (2)0.0155 (18)0.030 (2)0.0008 (16)0.0045 (17)0.0006 (15)
Cu1B0.0320 (3)0.0313 (3)0.0269 (3)0.0058 (2)0.0053 (2)0.0105 (2)
N1B0.0351 (19)0.0270 (17)0.0238 (17)0.0070 (14)0.0025 (14)0.0065 (14)
N4B0.044 (2)0.042 (2)0.034 (2)0.0169 (18)0.0029 (17)0.0170 (17)
N8B0.034 (2)0.041 (2)0.039 (2)0.0061 (16)0.0104 (16)0.0108 (17)
N11B0.0363 (19)0.0259 (17)0.0303 (18)0.0030 (14)0.0091 (15)0.0103 (14)
C2B0.045 (3)0.034 (2)0.026 (2)0.0075 (19)0.0052 (18)0.0121 (17)
C3B0.049 (3)0.047 (3)0.034 (2)0.019 (2)0.001 (2)0.018 (2)
C5B0.040 (3)0.047 (3)0.040 (3)0.015 (2)0.001 (2)0.014 (2)
C6B0.043 (3)0.050 (3)0.050 (3)0.021 (2)0.001 (2)0.009 (2)
C7B0.041 (3)0.046 (3)0.053 (3)0.014 (2)0.004 (2)0.019 (2)
C9B0.044 (3)0.038 (2)0.039 (2)0.005 (2)0.018 (2)0.012 (2)
C10B0.046 (3)0.030 (2)0.031 (2)0.0064 (18)0.0110 (19)0.0116 (17)
C12B0.034 (2)0.032 (2)0.037 (2)0.0022 (17)0.0046 (18)0.0150 (18)
C13B0.034 (2)0.027 (2)0.031 (2)0.0003 (17)0.0060 (17)0.0075 (17)
C14B0.035 (2)0.030 (2)0.031 (2)0.0065 (17)0.0058 (18)0.0102 (17)
C15B0.035 (2)0.050 (3)0.055 (3)0.004 (2)0.006 (2)0.027 (2)
C16B0.047 (3)0.043 (3)0.068 (4)0.004 (2)0.025 (3)0.022 (3)
C51B0.053 (4)0.087 (5)0.078 (4)0.030 (3)0.023 (3)0.047 (4)
C71B0.040 (3)0.061 (3)0.069 (4)0.013 (2)0.008 (3)0.027 (3)
C72B0.054 (3)0.056 (4)0.067 (4)0.004 (3)0.010 (3)0.014 (3)
N17B0.038 (2)0.038 (2)0.0310 (19)0.0087 (17)0.0029 (16)0.0114 (16)
O19B0.080 (3)0.048 (2)0.0366 (19)0.0211 (19)0.0215 (19)0.0027 (16)
O18B0.0379 (19)0.044 (2)0.071 (3)0.0199 (16)0.0027 (17)0.0153 (18)
O100.057 (2)0.0339 (18)0.058 (2)0.0118 (16)0.0290 (19)0.0016 (16)
Ni60.0239 (4)0.0255 (4)0.0292 (4)0.0016 (3)0.0070 (3)0.0069 (3)
N650.045 (2)0.037 (2)0.036 (2)0.0007 (17)0.0105 (18)0.0109 (17)
N660.041 (2)0.033 (2)0.039 (2)0.0010 (17)0.0054 (17)0.0119 (17)
C650.030 (2)0.028 (2)0.031 (2)0.0019 (16)0.0059 (17)0.0112 (17)
C660.028 (2)0.029 (2)0.032 (2)0.0040 (16)0.0084 (17)0.0055 (17)
Ni70.0347 (4)0.0229 (4)0.0236 (4)0.0003 (3)0.0062 (3)0.0037 (3)
N750.103 (4)0.044 (3)0.070 (3)0.027 (3)0.055 (3)0.015 (2)
N760.051 (2)0.032 (2)0.034 (2)0.0030 (17)0.0105 (18)0.0021 (16)
C750.067 (3)0.027 (2)0.040 (3)0.010 (2)0.024 (2)0.0038 (19)
C760.036 (2)0.035 (2)0.030 (2)0.0003 (18)0.0120 (18)0.0080 (18)
Ni80.0329 (4)0.0360 (4)0.0239 (4)0.0116 (3)0.0039 (3)0.0067 (3)
N850.041 (2)0.052 (3)0.051 (3)0.008 (2)0.007 (2)0.006 (2)
N860.069 (3)0.042 (2)0.041 (2)0.014 (2)0.013 (2)0.005 (2)
C850.041 (3)0.038 (2)0.031 (2)0.007 (2)0.007 (2)0.0045 (19)
C860.041 (3)0.045 (3)0.031 (2)0.012 (2)0.0067 (19)0.012 (2)
O110.045 (2)0.047 (2)0.054 (2)0.0014 (17)0.0155 (17)0.0196 (18)
O120.064 (2)0.0332 (18)0.049 (2)0.0175 (16)0.0165 (19)0.0036 (16)
O130.044 (2)0.076 (3)0.052 (2)0.021 (2)0.0031 (17)0.025 (2)
O140.068 (3)0.0320 (19)0.056 (2)0.0013 (18)0.021 (2)0.0120 (17)
Geometric parameters (Å, º) top
Cu1A—N4A1.999 (4)N8B—C7B1.464 (6)
Cu1A—N11A2.013 (3)N8B—C9B1.492 (6)
Cu1A—N8A2.031 (3)N8B—H8B0.9100
Cu1A—N1A2.041 (3)N11B—C12B1.467 (5)
Cu1A—N552.226 (3)N11B—C10B1.494 (5)
N1A—C14A1.476 (5)N11B—H11B0.9100
N1A—C2A1.486 (5)C2B—C3B1.509 (7)
N1A—H1A0.9100C2B—H2C0.9700
N4A—C5A1.304 (6)C2B—H2D0.9700
N4A—C3A1.480 (6)C3B—H3C0.9700
N8A—C7A1.443 (6)C3B—H3D0.9700
N8A—C9A1.484 (5)C5B—C51B1.503 (7)
N8A—H8A0.9100C5B—C6B1.525 (7)
N11A—C12A1.476 (5)C6B—C7B1.538 (7)
N11A—C10A1.492 (5)C6B—H6C0.9700
N11A—H11A0.9100C6B—H6D0.9700
N17A—O18A1.208 (5)C7B—C71B1.528 (7)
N17A—O19A1.218 (5)C7B—C72B1.550 (8)
N17A—C13A1.541 (5)C9B—C10B1.489 (6)
C2A—C3A1.526 (7)C9B—H9C0.9700
C2A—H2A0.9700C9B—H9D0.9700
C2A—H2B0.9700C10B—H10C0.9700
C3A—H3A0.9700C10B—H10D0.9700
C3A—H3B0.9700C12B—C13B1.514 (6)
C5A—C51A1.489 (7)C12B—H12C0.9700
C5A—C6A1.510 (7)C12B—H12D0.9700
C6A—C7A1.529 (7)C13B—C14B1.534 (6)
C6A—H6A0.9700C13B—N17B1.550 (5)
C6A—H6B0.9700C13B—C15B1.555 (6)
C7A—C71A1.522 (7)C14B—H14C0.9700
C7A—C72A1.598 (10)C14B—H14D0.9700
C9A—C10A1.508 (6)C15B—C16B1.534 (7)
C9A—H9A0.9700C15B—H15F0.9700
C9A—H9B0.9700C15B—H15G0.9700
C10A—H10A0.9700C16B—H16D0.9600
C10A—H10B0.9700C16B—H16E0.9600
C12A—C13A1.534 (6)C16B—H16F0.9600
C12A—H12A0.9700C51B—H51D0.9600
C12A—H12B0.9700C51B—H51E0.9600
C13A—C14A1.537 (6)C51B—H51F0.9600
C13A—C15A1.553 (6)C71B—H71D0.9600
C14A—H14A0.9700C71B—H71E0.9600
C14A—H14B0.9700C71B—H71F0.9600
C51A—H51A0.9600C72B—H72D0.9600
C51A—H51B0.9600C72B—H72E0.9600
C51A—H51C0.9600C72B—H72F0.9600
C71A—H71A0.9600N17B—O18B1.227 (5)
C71A—H71B0.9600N17B—O19B1.229 (5)
C71A—H71C0.9600O10—H10E0.839 (19)
C72A—H72A0.9600O10—H10F0.853 (19)
C72A—H72B0.9600Ni6—C65ii1.876 (4)
C72A—H72C0.9600Ni6—C651.876 (4)
C15A—C16A1.522 (7)Ni6—C66ii1.879 (4)
C15A—H15A0.9700Ni6—C661.879 (4)
C15A—H15B0.9700N65—C651.149 (5)
C16A—H16A0.9600N66—C661.147 (5)
C16A—H16B0.9600Ni7—C751.846 (5)
C16A—H16C0.9600Ni7—C75iii1.846 (5)
Ni5—C561.871 (4)Ni7—C76iii1.874 (4)
Ni5—C56i1.871 (4)Ni7—C761.874 (4)
Ni5—C551.877 (4)N75—C751.148 (7)
Ni5—C55i1.877 (4)N76—C761.150 (5)
N55—C551.146 (5)Ni8—C85iv1.870 (5)
N56—C561.159 (6)Ni8—C851.871 (5)
Cu1B—N4B1.986 (4)Ni8—C86iv1.880 (5)
Cu1B—N8B2.018 (4)Ni8—C861.880 (5)
Cu1B—N1B2.020 (3)N85—C851.145 (6)
Cu1B—N11B2.026 (4)N86—C861.136 (6)
Cu1B—O102.396 (3)O11—H11F0.832 (19)
Cu1B—N652.677 (4)O12—H12E0.835 (19)
N1B—C14B1.465 (5)O12—H12F0.832 (19)
N1B—C2B1.500 (5)O13—H13E0.837 (19)
N1B—H1B0.9100O13—H13F0.831 (19)
N4B—C5B1.304 (6)O14—H14E0.818 (19)
N4B—C3B1.474 (6)O14—H14F0.815 (19)
N4A—Cu1A—N11A164.6 (2)O10—Cu1B—N65168.7 (1)
N4A—Cu1A—N8A95.6 (2)C14B—N1B—C2B111.4 (3)
N11A—Cu1A—N8A85.9 (1)C14B—N1B—Cu1B117.4 (3)
N4A—Cu1A—N1A85.4 (2)C2B—N1B—Cu1B106.6 (3)
N11A—Cu1A—N1A89.7 (1)C14B—N1B—H1B107.0
N8A—Cu1A—N1A166.8 (2)C2B—N1B—H1B107.0
N4A—Cu1A—N5599.9 (2)Cu1B—N1B—H1B107.0
N11A—Cu1A—N5595.1 (1)C5B—N4B—C3B123.4 (4)
N8A—Cu1A—N5596.7 (2)C5B—N4B—Cu1B126.2 (3)
N1A—Cu1A—N5596.1 (1)C3B—N4B—Cu1B109.3 (3)
C14A—N1A—C2A110.9 (3)C7B—N8B—C9B118.9 (4)
C14A—N1A—Cu1A115.6 (2)C7B—N8B—Cu1B120.9 (3)
C2A—N1A—Cu1A105.4 (2)C9B—N8B—Cu1B105.4 (3)
C14A—N1A—H1A108.2C7B—N8B—H8B102.9
C2A—N1A—H1A108.2C9B—N8B—H8B102.9
Cu1A—N1A—H1A108.2Cu1B—N8B—H8B102.9
C5A—N4A—C3A122.2 (4)C12B—N11B—C10B112.0 (3)
C5A—N4A—Cu1A125.7 (3)C12B—N11B—Cu1B117.5 (3)
C3A—N4A—Cu1A110.3 (3)C10B—N11B—Cu1B105.3 (3)
C7A—N8A—C9A119.2 (4)C12B—N11B—H11B107.2
C7A—N8A—Cu1A120.2 (3)C10B—N11B—H11B107.2
C9A—N8A—Cu1A106.8 (3)Cu1B—N11B—H11B107.2
C7A—N8A—H8A102.5N1B—C2B—C3B108.6 (4)
C9A—N8A—H8A102.5N1B—C2B—H2C110.0
Cu1A—N8A—H8A102.5C3B—C2B—H2C110.0
C12A—N11A—C10A112.0 (3)N1B—C2B—H2D110.0
C12A—N11A—Cu1A117.1 (2)C3B—C2B—H2D110.0
C10A—N11A—Cu1A106.6 (2)H2C—C2B—H2D108.4
C12A—N11A—H11A106.9N4B—C3B—C2B108.0 (4)
C10A—N11A—H11A106.9N4B—C3B—H3C110.1
Cu1A—N11A—H11A106.9C2B—C3B—H3C110.1
O18A—N17A—O19A123.1 (4)N4B—C3B—H3D110.1
O18A—N17A—C13A119.2 (3)C2B—C3B—H3D110.1
O19A—N17A—C13A117.8 (3)H3C—C3B—H3D108.4
N1A—C2A—C3A108.5 (3)N4B—C5B—C51B124.4 (5)
N1A—C2A—H2A110.0N4B—C5B—C6B118.3 (4)
C3A—C2A—H2A110.0C51B—C5B—C6B117.2 (4)
N1A—C2A—H2B110.0C5B—C6B—C7B117.2 (4)
C3A—C2A—H2B110.0C5B—C6B—H6C108.0
H2A—C2A—H2B108.4C7B—C6B—H6C108.0
N4A—C3A—C2A107.6 (4)C5B—C6B—H6D108.0
N4A—C3A—H3A110.2C7B—C6B—H6D108.0
C2A—C3A—H3A110.2H6C—C6B—H6D107.2
N4A—C3A—H3B110.2N8B—C7B—C71B111.5 (4)
C2A—C3A—H3B110.2N8B—C7B—C6B107.9 (4)
H3A—C3A—H3B108.5C71B—C7B—C6B107.5 (4)
N4A—C5A—C51A124.5 (5)N8B—C7B—C72B109.8 (4)
N4A—C5A—C6A118.6 (4)C71B—C7B—C72B109.5 (5)
C51A—C5A—C6A116.0 (5)C6B—C7B—C72B110.5 (5)
C5A—C6A—C7A115.9 (5)C10B—C9B—N8B107.4 (4)
C5A—C6A—H6A108.3C10B—C9B—H9C110.2
C7A—C6A—H6A108.3N8B—C9B—H9C110.2
C5A—C6A—H6B108.3C10B—C9B—H9D110.2
C7A—C6A—H6B108.3N8B—C9B—H9D110.2
H6A—C6A—H6B107.4H9C—C9B—H9D108.5
N8A—C7A—C71A114.4 (4)C9B—C10B—N11B109.7 (4)
N8A—C7A—C6A110.2 (4)C9B—C10B—H10C109.7
C71A—C7A—C6A110.3 (5)N11B—C10B—H10C109.7
N8A—C7A—C72A106.4 (5)C9B—C10B—H10D109.7
C71A—C7A—C72A107.3 (5)N11B—C10B—H10D109.7
C6A—C7A—C72A108.0 (5)H10C—C10B—H10D108.2
N8A—C9A—C10A107.5 (3)N11B—C12B—C13B118.5 (4)
N8A—C9A—H9A110.2N11B—C12B—H12C107.7
C10A—C9A—H9A110.2C13B—C12B—H12C107.7
N8A—C9A—H9B110.2N11B—C12B—H12D107.7
C10A—C9A—H9B110.2C13B—C12B—H12D107.7
H9A—C9A—H9B108.5H12C—C12B—H12D107.1
N11A—C10A—C9A108.0 (3)C12B—C13B—C14B117.0 (4)
N11A—C10A—H10A110.1C12B—C13B—N17B109.8 (3)
C9A—C10A—H10A110.1C14B—C13B—N17B105.6 (3)
N11A—C10A—H10B110.1C12B—C13B—C15B110.0 (4)
C9A—C10A—H10B110.1C14B—C13B—C15B109.3 (4)
H10A—C10A—H10B108.4N17B—C13B—C15B104.3 (3)
N11A—C12A—C13A114.4 (3)N1B—C14B—C13B115.7 (3)
N11A—C12A—H12A108.7N1B—C14B—H14C108.4
C13A—C12A—H12A108.7C13B—C14B—H14C108.4
N11A—C12A—H12B108.7N1B—C14B—H14D108.4
C13A—C12A—H12B108.7C13B—C14B—H14D108.4
H12A—C12A—H12B107.6H14C—C14B—H14D107.4
C12A—C13A—C14A115.2 (3)C16B—C15B—C13B114.2 (4)
C12A—C13A—N17A108.9 (3)C16B—C15B—H15F108.7
C14A—C13A—N17A108.1 (3)C13B—C15B—H15F108.7
C12A—C13A—C15A111.0 (3)C16B—C15B—H15G108.7
C14A—C13A—C15A107.7 (3)C13B—C15B—H15G108.7
N17A—C13A—C15A105.6 (3)H15F—C15B—H15G107.6
N1A—C14A—C13A115.0 (3)C15B—C16B—H16D109.5
N1A—C14A—H14A108.5C15B—C16B—H16E109.5
C13A—C14A—H14A108.5H16D—C16B—H16E109.5
N1A—C14A—H14B108.5C15B—C16B—H16F109.5
C13A—C14A—H14B108.5H16D—C16B—H16F109.5
H14A—C14A—H14B107.5H16E—C16B—H16F109.5
C5A—C51A—H51A109.5C5B—C51B—H51D109.5
C5A—C51A—H51B109.5C5B—C51B—H51E109.5
H51A—C51A—H51B109.5H51D—C51B—H51E109.5
C5A—C51A—H51C109.5C5B—C51B—H51F109.5
H51A—C51A—H51C109.5H51D—C51B—H51F109.5
H51B—C51A—H51C109.5H51E—C51B—H51F109.5
C7A—C71A—H71A109.5C7B—C71B—H71D109.5
C7A—C71A—H71B109.5C7B—C71B—H71E109.5
H71A—C71A—H71B109.5H71D—C71B—H71E109.5
C7A—C71A—H71C109.5C7B—C71B—H71F109.5
H71A—C71A—H71C109.5H71D—C71B—H71F109.5
H71B—C71A—H71C109.5H71E—C71B—H71F109.5
C7A—C72A—H72A109.5C7B—C72B—H72D109.5
C7A—C72A—H72B109.5C7B—C72B—H72E109.5
H72A—C72A—H72B109.5H72D—C72B—H72E109.5
C7A—C72A—H72C109.5C7B—C72B—H72F109.5
H72A—C72A—H72C109.5H72D—C72B—H72F109.5
H72B—C72A—H72C109.5H72E—C72B—H72F109.5
C16A—C15A—C13A115.9 (4)O18B—N17B—O19B123.1 (4)
C16A—C15A—H15A108.3O18B—N17B—C13B119.3 (4)
C13A—C15A—H15A108.3O19B—N17B—C13B117.6 (4)
C16A—C15A—H15B108.3Cu1B—O10—H10E125 (4)
C13A—C15A—H15B108.3Cu1B—O10—H10F114 (4)
H15A—C15A—H15B107.4H10E—O10—H10F103 (4)
C15A—C16A—H16A109.5C65ii—Ni6—C65180.0
C15A—C16A—H16B109.5C65ii—Ni6—C66ii89.14 (18)
H16A—C16A—H16B109.5C65—Ni6—C66ii90.86 (18)
C15A—C16A—H16C109.5C65ii—Ni6—C6690.86 (18)
H16A—C16A—H16C109.5C65—Ni6—C6689.14 (18)
H16B—C16A—H16C109.5C66ii—Ni6—C66180.00 (14)
C56—Ni5—C56i179.999 (1)C65—N65—Cu1B137.7 (3)
C56—Ni5—C5590.63 (16)N65—C65—Ni6178.1 (4)
C56i—Ni5—C5589.37 (16)N66—C66—Ni6179.1 (4)
C56—Ni5—C55i89.37 (16)C75—Ni7—C75iii180.000 (1)
C56i—Ni5—C55i90.63 (16)C75—Ni7—C76iii89.64 (19)
C55—Ni5—C55i179.999 (1)C75iii—Ni7—C76iii90.36 (19)
C55—N55—Cu1A168.2 (3)C75—Ni7—C7690.36 (19)
N55—C55—Ni5177.4 (4)C75iii—Ni7—C7689.64 (19)
N56—C56—Ni5179.6 (5)C76iii—Ni7—C76179.998 (3)
N4B—Cu1B—N8B95.9 (2)N75—C75—Ni7179.2 (6)
N4B—Cu1B—N1B86.0 (2)N76—C76—Ni7179.0 (4)
N8B—Cu1B—N1B177.7 (2)C85iv—Ni8—C85179.999 (2)
N4B—Cu1B—N11B170.7 (2)C85iv—Ni8—C86iv89.5 (2)
N8B—Cu1B—N11B86.9 (2)C85—Ni8—C86iv90.5 (2)
N1B—Cu1B—N11B91.0 (2)C85iv—Ni8—C8690.5 (2)
N4B—Cu1B—O10101.6 (2)C85—Ni8—C8689.5 (2)
N8B—Cu1B—O1087.0 (2)C86iv—Ni8—C86180.0
N1B—Cu1B—O1093.9 (1)N85—C85—Ni8179.4 (5)
N11B—Cu1B—O1087.3 (2)N86—C86—Ni8179.8 (5)
N4B—Cu1B—N6588.6 (2)H11E—O11—H11F109 (4)
N8B—Cu1B—N6596.8 (2)H12E—O12—H12F112 (4)
N1B—Cu1B—N6581.9 (1)H13E—O13—H13F106 (4)
N11B—Cu1B—N6582.2 (1)H14E—O14—H14F105 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x+3, y, z+1; (iv) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N85v0.912.263.124 (5)159
N11A—H11A···O140.912.112.869 (5)140
N11A—H11A···O19A0.912.412.978 (5)121
N1B—H1B···O19A0.912.122.937 (5)149
N8B—H8B···O120.912.133.041 (5)174
N8B—H8B···O100.912.583.052 (5)113
N11B—H11B···O19B0.912.292.874 (5)122
O10—H10E···N75vi0.84 (5)1.92 (5)2.745 (6)168 (5)
O10—H10F···O120.85 (5)1.93 (5)2.702 (5)151 (5)
O11—H11E···N66vii0.84 (3)2.04 (4)2.870 (5)170 (6)
O11—H11F···N560.83 (5)2.28 (5)3.106 (5)172 (5)
O12—H12F···N860.83 (4)1.97 (4)2.788 (5)168 (6)
O12—H12E···O130.84 (4)1.88 (3)2.702 (5)171 (6)
O13—H13E···O11viii0.84 (4)1.94 (4)2.733 (5)158 (6)
O13—H13F···N56vii0.83 (4)2.15 (4)2.973 (6)170 (5)
O14—H14E···N76vi0.82 (4)2.03 (4)2.847 (5)174 (7)
O14—H14F···N85v0.82 (5)2.10 (5)2.872 (6)159 (6)
Symmetry codes: (v) x, y+1, z; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2Ni(CN)4(C15H31N5O2)2(H2O)2][Cu2Ni(CN)4(C15H31N5O2)2] [Ni(CN)4]2·8H2O
Mr2339.23
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)11.7497 (2), 14.0540 (3), 17.9014 (4)
α, β, γ (°)70.154 (1), 78.165 (1), 81.290 (1)
V3)2710.6 (1)
Z1
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.35 × 0.35 × 0.08
Data collection
DiffractometerSMART 1K CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001) R(int)=0.0470 before correction
Tmin, Tmax0.538, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
22241, 14372, 9857
Rint0.034
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.162, 1.05
No. of reflections14372
No. of parameters666
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.41, 0.73

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 2001), SHELXTL (Bruker, 1997), SHELXTL, ORTEP-3.2 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cu1A—N4A1.999 (4)Cu1B—N8B2.018 (4)
Cu1A—N11A2.013 (3)Cu1B—N1B2.020 (3)
Cu1A—N8A2.031 (3)Cu1B—N11B2.026 (4)
Cu1A—N1A2.041 (3)Cu1B—O102.396 (3)
Cu1A—N552.226 (3)Cu1B—N652.677 (4)
N4A—C5A1.304 (6)N65—C651.149 (5)
Cu1B—N4B1.986 (4)
N4A—Cu1A—N11A164.6 (2)N4B—Cu1B—N11B170.7 (2)
N4A—Cu1A—N8A95.6 (2)N8B—Cu1B—N11B86.9 (2)
N11A—Cu1A—N8A85.9 (1)N1B—Cu1B—N11B91.0 (2)
N4A—Cu1A—N1A85.4 (2)N4B—Cu1B—O10101.6 (2)
N11A—Cu1A—N1A89.7 (1)N8B—Cu1B—O1087.0 (2)
N8A—Cu1A—N1A166.8 (2)N1B—Cu1B—O1093.9 (1)
N4A—Cu1A—N5599.9 (2)N11B—Cu1B—O1087.3 (2)
N11A—Cu1A—N5595.1 (1)N4B—Cu1B—N6588.6 (2)
N8A—Cu1A—N5596.7 (2)N8B—Cu1B—N6596.8 (2)
N1A—Cu1A—N5596.1 (1)N1B—Cu1B—N6581.9 (1)
C55—N55—Cu1A168.2 (3)N11B—Cu1B—N6582.2 (1)
N4B—Cu1B—N8B95.9 (2)O10—Cu1B—N65168.7 (1)
N4B—Cu1B—N1B86.0 (2)C65—Ni6—C6689.14 (18)
N8B—Cu1B—N1B177.7 (2)C65—N65—Cu1B137.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N85i0.912.263.124 (5)159
N11A—H11A···O140.912.112.869 (5)140
N11A—H11A···O19A0.912.412.978 (5)121
N1B—H1B···O19A0.912.122.937 (5)149
N8B—H8B···O120.912.133.041 (5)174
N8B—H8B···O100.912.583.052 (5)113
N11B—H11B···O19B0.912.292.874 (5)122
O10—H10E···N75ii0.84 (5)1.92 (5)2.745 (6)168 (5)
O10—H10F···O120.85 (5)1.93 (5)2.702 (5)151 (5)
O11—H11E···N66iii0.84 (3)2.04 (4)2.870 (5)170 (6)
O11—H11F···N560.83 (5)2.28 (5)3.106 (5)172 (5)
O12—H12F···N860.83 (4)1.97 (4)2.788 (5)168 (6)
O12—H12E···O130.84 (4)1.88 (3)2.702 (5)171 (6)
O13—H13E···O11iv0.84 (4)1.94 (4)2.733 (5)158 (6)
O13—H13F···N56iii0.83 (4)2.15 (4)2.973 (6)170 (5)
O14—H14E···N76ii0.82 (4)2.03 (4)2.847 (5)174 (7)
O14—H14F···N85i0.82 (5)2.10 (5)2.872 (6)159 (6)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x1, y1, z.
 

References

First citationBlight, M. M. & Curtis, N. F. (1962). J. Chem. Soc. pp. 3016–3020.  CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS (Version 2.03) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCernak, J., Orendac, M., Potocnak, I., Chomic, J., Orendacova, A., Skorsepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationComba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988a). J. Chem. Soc. Dalton Trans. pp. 497–502.  CSD CrossRef Web of Science Google Scholar
First citationComba, P., Curtis, N. F., Lawrance, G. A., O'Leary, M. A., Skelton, B. W. & White, A. H. (1988b). J. Chem. Soc. Dalton Trans. pp. 2145–2152.  CSD CrossRef Web of Science Google Scholar
First citationComba, P., Curtis, N. F., Lawrance, G. A., Sargeson, A. M., Skelton, B. W. & White, A. H. (1986). Inorg. Chem. 25, 4260–4267.  CSD CrossRef CAS Web of Science Google Scholar
First citationCurtis, N. F. (1972). J. Chem. Soc. Dalton Trans. pp. 1357–1361.  CrossRef Web of Science Google Scholar
First citationCurtis, N. F., Powell, H. K. J., Puschmann, H., Rickard, C. E. F. & Waters, J. M. (2003). Inorg. Chim. Acta, 355, 25–32.  Web of Science CSD CrossRef CAS Google Scholar
First citationEl Fallah, M. S., Ribas, J., Solans, X. & Font-Bardia, M. (2001). J. Chem. Soc. Dalton Trans. pp. 247–250.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J. & Curtis, N. F. (1984). Aust. J. Chem. 37, 1799–1816.  CSD CrossRef CAS Google Scholar
First citationKou, H. Z., Liao, D. Z., Jiang, Z. H., Yan, S. P., Wu, Q. J., Gao, S. & Wang, G. L. (2000). Inorg. Chem. Commun. 3, 151–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationLawrance, G. A., Lye, P. G., Maeder, M. & Wilkes, E. N. (1993). Spec. Publ. R. Soc. Chem. 131, 106–109.  CAS Google Scholar
First citationLawrance, G. A., Maeder, M. & Wilkes, E. N. (1993). Rev. Inorg. Chem. 13, 199–132.  CrossRef CAS Google Scholar
First citationLokaj, J., Gyerova, K., Sopkova, A., Sivy, J., Kettmann, V. & Vrabel, V. (1991). Acta Cryst. C47, 2447–2448.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLuo, J.-H., Wu, M.-X., Wang, Y.-M., Gao, D.-S., Li, D. & Cheng, C.-Z. (2000). Jiegou Huaxue, 19, 187–190.  CAS Google Scholar
First citationSpek, A. L. (2002). PLATON. Utrecht University, The Netherlands.  Google Scholar
First citationZou, J. Z., Hu, X. D., Duan, C. Y., Xu, Z., You, X. Z. & Mak, T. C. W. (1998). Transition Met. Chem. 23, 477–480.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds